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Abstract: In this study, we prepared and evaluated hydroxyapatite–gelatin/curcumin nanofibrous
composites and determined their antimicrobial effects against Escherichia coli, Staphylococcus aureus,
and Streptococcus mutans. Hydroxyapatite–gelatin/curcumin nanofibrous composites were prepared
by the electrospinning method. The prepared nanocomposites were then subjected to physico-
chemical studies by the light scattering method for their particle size, Fourier transmission infrared
spectroscopy (FTIR) to identify their functional groups, X-ray diffraction (XRD) to study their crys-
tallinity, and scanning electron microscopy (SEM) to study their morphology. For the microbial
evaluation of nanocomposites, the disk diffusion method was used against Streptococcus mutans,
Staphylococcus aureus, and Escherichia coli. The results showed that the nanofibers were uniform in
shape without any bead (structural defects). The release pattern of curcumin from the nanocomposite
was a two-stage release, 60% of which was released in the first two days and the rest being slowly
released until the 14th day. The results of the microbial evaluations showed that the nanocom-
posites had significant antimicrobial effects against all bacteria (p = 0.0086). It seems that these
nanocomposites can be used in dental tissue engineering or as other dental materials. Also, according
to the appropriate microbial results, these plant antimicrobials can be used instead of chemical
antimicrobials, or along with them, to reduce bacterial resistance.

Keywords: nanocomposites; nanofibers; hydroxyapatite; gelatin; curcumin; antimicrobial effects; scaffold

1. Introduction

Antibiotic-resistant microorganisms have prompted researchers to explore nano-
optimization for drug delivery to specific regions [1–3]. The surface-to-volume proportion
of nanoscale particles has risen dramatically due to their manufacturing, increasing their
efficacy even at minimal concentrations [4].

A variety of beneficial effects of herbal medicines have been identified [5–8]. Curcumin
(diferuloylmethane) is achieved from the Curcuma longa (Turmeric) rhizome. Lately, it has
received important attention as a medicinal plant owing to its distinctive therapeutic
benefits including antimicrobial, anti-pathogenic, antioxidant and anti-inflammatory, anti-
angiogenic, anticancer, and anti-diabetic effects [9–12]. Despite its outstanding biological
effects, there are limitations to its clinical use owing to its low bioavailability. Recently,
several nanoparticles such as nanofibers, solid lipid nanoparticles, nanostructured lipid
carriers, liposomes, micelles, nanogels, and magnetic nanoparticles have advanced as
potential strategies to improve the therapeutic effects of curcumin [9–15]. Different reports
have confirmed that the novel systems of curcumin and stem cell differentiation have great
therapeutic potential against various bone-related diseases and disorders [16].

There are many dental uses for composites. Nanocomposites have recently been
used enormously in the dentistry field. For the treatment of oral disorders, they may be
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utilized as drug delivery systems, fillers, restorative substances, and tissue engineering
components [17–19]. Fiber nanocomposites have a high surface-to-volume ratio, owing
to their fiber shape. Studies emphasize applying localized antibiotic-containing three-
dimensional nanofibers in combination with stem-cell-enriched injectable scaffolds or
growth factors and an intracanal medication delivery approach. Dental pulp regeneration
in humans may be improved using nanofibers [20,21]. Several medicines may be carried
via nanofibers. Antibiotics, anticancer drugs, DNA, RNA, proteins, and growth factors may
be delivered through polymer nanofibers [21].

Composite fiber scaffolds can create an environment that can facilitate adhesion,
proliferation, and cell differentiation. Nanofibers are used to mimic a variety of tissues
by mimicking the extracellular matrix with a porous network. Nanofiber scaffolds not
only enhance the regeneration of dental tissues, but can also advance the technology for
tissue engineering replacements in many physiological systems. Besides, this technology
can assist in maxillofacial surgeries to facilitate surgical procedures and to reduce their
costs [22,23].

The electrospinning technique is the most common way to make fibers in the laboratory
and on a large scale in the industry [9,24]. The electric jet force used in electrospinning
yields polymer nanofibers. It is possible to create more sophisticated nanofibers by mixing
different polymer solutions with various other elements, such as pharmaceuticals, other
nanoparticles, and even cells. Using these particular nanofibers as biocompatible solutions
or gels has many therapeutic advantages [25]. Antibiotic-containing nanofibers, for instance,
have been studied for their impact on bacterial biofilm formation. The microscopic scans
of infected dentin subjected to these nanofibers revealed significant microbial mortality.
Numerous investigations on the efficacy of these nanofibers throughout animals with
periapical illnesses have been published [26–28].

Enamel, dentin, cementum, and bone include hydroxyapatite, a crystalline calcium
phosphate [29]. Because of its tooth-like microstructure, nanohydroxyapatite is effective
in remineralizing teeth and restoring their fracture resistance. In addition to its ability to
decrease tooth susceptibility, clinical and experimental investigations have revealed that
this compound may also inhibit tubules [30].

Gelatin is a kind of amorphous collagen that is made by gradually melting Type
I collagen. It has the benefit of being less expensive and less complicated to produce
when compared to collagen. Additionally, hydroxyapatite–gelatin is more effective than
hydroxyapatite–collagen in triggering osteoblast reactions [31]. Composites made of
gelatin and hydroxyapatite have recently been suggested as drug delivery vehicles to
bone cells [32,33].

In this study, we prepared and evaluated hydroxyapatite-gelatin/curcumin fiber
nanocomposites and determined their antimicrobial effects against Escherichia coli,
Staphylococcus aureus, and Streptococcus mutans.

2. Materials

Curcumin, gelatin, 2, 2, 2 trifluoroethanol, and dimethyl sulfone were provided
from Sigma Aldrich (St. Louis, MO, USA). From the Nanobazar Company (Tehran, Iran),
hydroxyapatite nanoparticles with an average particle size of 40 nm were purchased.
Muller-Hinton agar was purchased from Thermo Fisher Company (Melbourne, Australia).

3. Methods
3.1. Nanocomposites Fabrication

Nanocomposites comprising gelatin, hydroxyapatite, and curcumin fiber were made
using an electrospinning apparatus (Nanofanavaran, Mashhad, Iran) in a vertical electro-
spinning process with a fixed collector. There was a 75:25 proportion of gelatin to curcumin
in the organic gelatin–curcumin solution made in 2,2,2 trifluoroethanol (yellow solution).
Additionally, hydroxyapatite nanoparticles were suspended in a solution containing 8%
gelatin (white solution). Five-milliliter syringes were filled with yellow and white solutions,
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respectively. A micrometer syringe head was used to connect a nozzle to the tips of the
syringes before they were put into the electrospinning apparatus. Aluminum foil was used
to wrap the device’s collection plate. A few crucial device variables were set as follows:
20 kV voltage, a spacing of 10 cm between the syringe nozzle tip and the collection plate,
and a flow rate of 1.5 mL/h for a solution coming out of the nozzle. When the device’s
starting button was pressed, the required solutions were hurled from the nozzle’s tip to
an aluminum foil-covered spinning collection plate on the other end. Throughout the fast
launch procedure, the organic solvent vaporized. Nanometer fibers, the ultimate product,
were gathered on the plate. The collection plate and aluminum foil were carefully separated.
Drying the fibers at room temperature was carried out. The sample was placed in a refrig-
erator at −18 ◦C. To examine the antibacterial properties of curcumin, gelatin nanofibers
comprising hydroxyapatite nanoparticles free of curcumin were produced in the same
manner. In addition, gelatin–curcumin nanofibers free of hydroxyapatite nanoparticles
were manufactured to similarly examine the resulting composite’s characteristics.

3.2. Nanoparticle’s Particle Size

Dynamic light scattering (DLS, Malvern, Cambridge, Massachusetts, UK) was used
to verify the nanoscale size precision of the produced nanofibers at 25 ◦C, using an argon
laser beam at 633 nm and a 90◦ scattering angle. For this, distilled water was used to make
a high-quality suspension of nanofibers, which was then put into the device’s specific tube.

3.3. Morphology of Nanoparticles

Electron microscopy was used to examine the nanoparticles’ morphological aspects
(Razi Company of Tehran, Tehran, Iran). Using a scanning electron microscope (SEM,
TESCAN-USA) under a high-vacuum atmosphere and at an acceleration voltage of 10 kV,
the powdered specimens were put on an SEM plate and then gold-coated. The SEM
magnification was selected to be 50 kx.

3.4. The Loading Efficiency and the Release Pattern of Curcumin

Ten milligrams of nanofibers were dissolved in an organic solvent (dimethyl sulfonide)
to measure the quantity of curcumin loaded onto the nanofibers. An ultraviolet spectropho-
tometer was used to measure the UV absorbance. One milliliter of the dispersed nanofiber
solution was put into a tube to obtain the adsorption number for curcumin, by setting the
device’s λmax at 350 nm.

The drug dissolution device No. 2 (Apparatus 2) was utilized to assess the curcumin
release from nanofibers. Each of the six valves received 300 mL of the phosphate-buffered
solution. Five mg of the nanofibers were added to each valve of the apparatus. The pH
was set to 7.4. The temperature was adjusted to 37 ◦C. The speed was adjusted to 100 rpm.
Daily, one milliliter of the specimen was collected from the valves, and the UV absorption
was determined employing a spectrophotometer. One milliliter of fresh buffer medium
was used to substitute the specimen collected.

3.5. X-ray Diffraction (XRD) Analysis

The materials were analyzed using XRD patterns at room temperature. An X-ray
diffractometer (D5000, Siemens, Munich, Bavaria, Germany), a wavelength of 5405/1 Å, a
voltage of 40 kV, and a current of 30 mA were used to measure the patterns of the samples.
Ultimately, their patterns were determined in a range from zero to sixty 2-theta degrees.

3.6. Fourier Transform Infrared Spectroscopy (FTIR)

The functional groups were identified using Fourier transmission infrared spec-
troscopy (FTIR, Shimadzu 8400S-Japan, Kyoto, Japan). The samples were mixed with
potassium bromide of IR grade and compressed via an IR pellet manufacturing machine.
Then, the wavelengths were set from 400 to 4000 (cm−1).
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3.7. Microbial Methods

Staphylococcus aureus (ATCC: 6538), Escherichia coli (ATCC: 25922), and Streptococcus mutans
(ATCC: 25175) bacteria were provided from the Pasteur Institute of Iran (Tehran, Iran). A
disk diffusion procedure was applied to examine the produced nanocomposite’s antimicro-
bial performance. Vancomycin (30 mg per disc) and rifampicin (5 mg per disc) were used
as positive controls. Antibacterial actions of the prepared fibers were assessed by a disk
diffusion agar on the Muller-Hinton agar. Briefly, the bacterial suspension, equivalent to the
0.5 McFarland standard (1.5 × 108 CFU/mL), was inoculated on the Muller-Hinton plates
using a swab and allowed to dry for 10 min. Six millimeter disks of samples were located
on the agar surface and plates were incubated at 35 ◦C for 24 h. Finally, the inhibition zones
around the disks were measured.

3.8. Statistical Analysis

The results were reported as mean ± SD and frequency (percentage). Data normality
was assessed using the Kolmogorov–Smirnov test. To compare the findings of the average
inhibition zone across microorganisms and among the investigated groups, a one-way
ANOVA was employed. SPSS software (version 16, IBM, New York, NY, USA) was used to
analyze the data. The p-values of less than 0.05 were considered as the significance level.

4. Results
4.1. Mean Particle Size

The manufactured nanofibers’ mean particle size is shown in Figure 1. The findings
demonstrated that the mean particle size was 98 nanometers.
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4.2. Morphological Assessment

Images of scanning electron microscopy (SEM) for gelatin–curcumin nanofibers and
hydroxyapatite–gelatin/curcumin nanocomposites are shown in Figure 2. The results
show that the nanofibers are uniform in shape without any bead (structural defect). Their
dimensions are measured in nanometers. Nanocomposite images show the presence of
hydroxyapatite nanoparticles on the fibers as well.
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4.3. Release Pattern of Curcumin

The release of curcumin from hydroxyapatite–gelatin/curcumin nanocomposites is
shown in Figure 3. Curcumin was released from the nanofibers in a two-step sequence,
60% in the initial two days and the rest gradually over the next 14 days.
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4.4. X-ray Diffraction (XRD) Analysis

Hydroxyapatite–gelatin/curcumin nanocomposites and their purified forms are illus-
trated in Figure 4 in terms of their X-ray diffraction patterns.
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4.5. Fourier Transform Infrared Spectroscopy (FTIR) Analysis

Figure 5 depicts the Fourier transmission infrared spectroscopy (FTIR) findings. FTIR
results revealed no novel interactions among the investigated compounds.
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4.6. Microbial Findings

All three tested microorganisms showed inhibition zones in the presence of the
nanocomposite, as shown in Figure 6a–c. No inhibitory outcomes were obtained using
gelatin–hydroxyapatite nanofibers without curcumin.
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Figure 6. Findings of the antimicrobial assessment for three types of bacteria; (a) Staphylococcus aureus,
(b) Escherichia coli and (c) Streptococcus mutans.

4.7. Statistical Analysis for Microbial Findings

Table 1 illustrates the inhibition zone for the produced substances and their positive
and negative controls against S. mutans, S. aureus, and E. coli.
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Table 1. Sizes of inhibition zones for the manufactured substances, positive and negative controls.

Zone Size of Sample Zone Size of Positive Control Zone Size of Negative Control

S. mutans 13.17 ± 0.05 12.6 ± 0.03 0
E. coli 14.43 ± 0.01 14.1 ± 0.08 0
S. aureus 10.7 ± 0.05 16.13 ± 0.02 0

Table 2 displays the conclusions of the one-way ANOVA for the produced nanocom-
posite (analysis of the inhibition zone between these three microbes). Staphylococcus aureus
exhibited the greatest inhibition zone, followed by Escherichia coli and Streptococcus mutans.
For the synthesized nanocomposite, there was a significant disparity in the extent of
inhibition zones among the bacteria (p = 0.0086).

Table 2. One-way ANOVA findings for synthesized nanocomposites (comparison of inhibition zone
between three microbes).

ANOVA Summary

F 115.1
p value 0.0086
p value summary **
Significant diff. among means (p < 0.05)? Yes

5. Discussion

It is necessary to specify the physicochemical characteristics of nanocarriers before
using them for various purposes, to guarantee their appropriateness. The SEM image
revealed that the nanofibers were arranged in a lattice-like pattern. Their measurements
matched up with a nanometer-scale microscopic assessment. No structural defects were
found in the nanofibers based on the taken images. This composite was effectively produced
when the images of gelatin–curcumin nanofibers were compared to the gelatin–curcumin–
hydroxyapatite nanocomposite. When compared to the other scaffolds in vivo and in vitro,
electrospun nanofiber scaffolds have shown an outstanding capacity to direct cell motility,
morphological aspects of cell shape and eventually influence cell differentiation [34–36].
The investigations have also demonstrated the possibility of cell compatibility throughout
this fibrous layer as a nanoscale microenvironment, due to particular biological processes,
including cell differentiation, attachment, and motility [37].

Our findings indicated that curcumin was released from the produced nanocomposite
in a two-step mechanism that began quickly (60%) on the first and second days and, after
that, was then gradually released. A drug may be delivered from a biodegradable matrix
through various processes, namely through molecular diffusion from the matrix, matrix
breakdown over time, and material degradation, or a combination of both processes [38].
Therefore, it appears that the diffusion process is responsible for the first immediate release
of curcumin from the nanofiber matrix in this experiment. The sustained release is then
due to the degradation of the nanofiber matrix [38,39]. Shabdoost et al. demonstrated that
curcumin was delivered in two phases from the polyurethane nanofiber matrix. They found
that the first, fast release lasted one day, and the subsequent, gradual release persevered
for an additional eleven days [39]. According to the study by Boroumand et al., fifty-eight
percent of curcumin was released from the polycaprolactone nanofiber matrix during the
first day. The residual percent was then released after 30 days [38].

X-ray diffraction pattern findings revealed that all purified materials in our research
(hydroxyapatite with 26, 31, 39, 41 2-theta and curcumin with 8, 9, 12, 14, 17 2-theta) ex-
hibited their index peaks [40]. All components’ peaks may be observed in the produced
nanocomposite’s peak, as well. The explanation for the reduction in peak intensity through-
out the nanocomposites is the transformation of substances to the nanoscale, as well as the
amorphous structure of gelatin, which, as the largest proportion of the matrix, pushes the



Biomimetics 2022, 7, 4 9 of 12

peak primarily towards the amorphous region. Polylactic acid–hydroxyapatite–curcumin
nanocomposites studied by Hazma et al. exhibited comparable outcomes [40]. The ester,
the ketone, and the ether groups of curcumin had absorption values of 1720, 1650, and
11,300 cm−1, respectively, according to the findings of FTIR spectroscopy. It has also been
shown that the broad peak at 3200–3500 cm−1 is linked to the OH group’s tension spec-
trum [41]. At 563 and 602 cm−1, the index peaks are associated with the hydroxyapatite
phosphate group [40], and at 1652 cm−1, the amide bands associated with gelatin may be
observed [42].

Staphylococcus aureus exhibited the greatest inhibition zone, followed by Escherichia coli
and Streptococcus mutans. For the synthesized nanocomposite, there was a significant
difference in the extent of the inhibition zone among the bacteria (p = 0.0086). There were
comparable antibacterial findings against Staphylococcus aureus and Escherichia coli when
Ghavimi et al. investigated collagen–curcumin nanofibers’ antimicrobial capabilities [9].
Curcumin has shown to have comparable impacts on Gram-positive and Gram-negative
bacteria in other studies [43–45].

Nanomaterials apply their antibacterial actions on bacteria by several mechanisms [46,47].
Based on the reports, the physicochemical possessions of nanoparticles are actually vital in
their antimicrobial properties [48]. Nanomaterials have the ability to disrupt cell membrane
functions by binding to the surface of cell membranes with a high affinity. This effect is
more predominant in smaller nanoparticles, owing to their larger surface space [49–51].
The interaction between the membrane and nanomaterials also leads to local pores in the
membrane and harms the bacteria due to the passing of nanoparticles into the bacteria
and the interaction of bacteria‘s proteins with DNA [52]. Some nanomaterials are also
able to mix with the bacterial cell wall to release their antimicrobial material into the
cytoplasm [46,53]. Antimicrobial nanofibers can also pass through the bacteria pores due
to their very small diameter and can then disrupt the bacteria’s different functions [54,55].

Conclusions and the Future Perspectives

The results showed that the hydroxyapatite–gelatin/curcumin nanocomposites were
uniform in shape without any structural defects and had a two-stage release pattern of
curcumin from nanocomposite. Besides, the prepared nanocomposites had significant
antimicrobial effects against all bacteria. The antimicrobial activity of curcumin against the
selected bacteria showed that herbal antimicrobials may be used as a substitute for chem-
ical anti-bacterials in the future to decrease bacterial resistance. Moreover, the prepared
nanocomposites may create an environment that can facilitate adhesion, proliferation, and
cell differentiation by mimicking the extracellular matrix. They can enhance the regen-
eration of dental tissues to advanced levels. For example, they may assist maxillofacial
surgeries to facilitate surgical procedures and to reduce their costs. The cellular studies
are recommended to determine if hydroxyapatite nanoparticles induce bone tissue effects.
Curcumin-induced cell proliferation and tissue healing may be studied in vitro as well.
Also, further animal and human studies are required for the establishment of the actual
therapeutic usefulness of this novel substance.
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