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Abstract 

Background: Metagenomics technology can directly extract microbial genetic mate-
rial from the environmental samples to obtain their sequencing reads, which can be 
further assembled into contigs through assembly tools. Clustering methods of contigs 
are subsequently applied to recover complete genomes from environmental samples. 
The main problems with current clustering methods are that they cannot recover more 
high-quality genes from complex environments. Firstly, there are multiple strains under 
the same species, resulting in assembly of chimeras. Secondly, different strains under 
the same species are difficult to be classified. Thirdly, it is difficult to determine the 
number of strains during the clustering process.

Results: In view of the shortcomings of current clustering methods, we propose an 
unsupervised clustering method which can improve the ability to recover genes from 
complex environments and a new method for selecting the number of sample’s strains 
in clustering process. The sequence composition characteristics (tetranucleotide fre-
quency) and co-abundance are combined to train the probability model for clustering. 
A new recursive method that can continuously reduce the complexity of the samples 
is proposed to improve the ability to recover genes from complex environments. The 
new clustering method was tested on both simulated and real metagenomic datasets, 
and compared with five state-of-the-art methods including CONCOCT, Maxbin2.0, 
MetaBAT, MyCC and COCACOLA. In terms of the number and quality of recovered 
genes from metagenomic datasets, the results show that our proposed method is 
more effective.

Conclusions: A new contigs clustering method is proposed, which can recover more 
high-quality genes from complex environmental samples.

Keywords: Metagenomics, Unsupervised clustering, Contigs, Recursive strategy, 
Complexity of metagenomic samples
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Background
Before the emergence of metagenomics technology, the related research on microor-
ganisms was mainly through artificial pure culture of a single microorganism. However, 
most microorganisms are difficult or impossible to be cultured purely on the medium 
in the natural environment [1]. Metagenomics arises with the development of second-
generation sequencing technology, which can obtain the genetic material of all micro-
organisms in the samples directly from the natural environments without the need for 
pure culture on the medium like the traditional methods. Metagenomics provides new 
research ideas for scientists to study the community structure of microbes, the inter-
action between microbes and the relationship between microbes and the environment 
or diseases [2]. The shotgun sequences obtained by second-generation sequencing can 
be assembled into longer gene fragment (contigs) by short reads assemblers [3, 4]. Due 
to the limitations of assembly tools, only scattered gene fragments, not complete genes 
can be assembled. The binning methods of contigs are subsequently used to obtain more 
complete genes from metagenomic datasets.

The existing metagenomic binning methods are generally divided into two types, 
supervised classification and unsupervised clustering methods [5]. The reads obtained 
by second-generation sequencing are very short, which are only 50 bp to 200 bp. They 
carry limited information, so it is difficult to classify them effectively [6–8]. As the accu-
racy of assembly tools increases, which can reach 97% [9–11], more and more methods 
are used to classify assembled contigs.

Supervised classification methods use known genes as references and classify the con-
tigs based on the homology of gene sequence and similarity of sequence composition 
[12, 13]. Due to the need to build the reference databases and indexes, it requires high 
computer memory and hard disk storage space. In addition, there are a large number 
of unknown species in the environment, which cannot be matched with the sequences 
in the reference databases. Therefore, there will be a large number of unclassified con-
tigs. Furthermore, the method based on the similarity of sequence composition is slow 
in modeling when faced with complex metagenomic samples, and it is difficult to obtain 
training data and labels. On the contrary, unsupervised clustering methods can use the 
composition information of the sequences themselves [14, 15], and their abundance 
information in samples [16–18] or both [19–22] to perform clustering in order to obtain 
the complete genes of unknown strains and discover new strains.

The current mainstream clustering methods include CONCOCT [20], Maxbin2.0 [23], 
MetaBAT [24], MyCC [25], COCACOLA [26], DAS tool [27], etc. CONCOCT uses the 
composition information of the sequence (tetranucleotide frequency) and co-abundance to 
vectorize all sequences, and then uses the Principal Component Analysis method to reduce 
their dimensionality. Gaussian mixture model combined with the Expectation Maximiza-
tion Algorithm is used to classify contigs. CONCOCT performs well in the simple metagen-
omic datasets, but it performs poorly in the complex metagenomic datasets. Mabin2.0 and 
MetaBAT both combine sequence composition features and co-abundance, and calculate 
the probability of each sequence to the cluster centers through a pre-trained probability 
model. Then the Expectation Maximization algorithm and modified K-medoid algorithm 
are used for clustering respectively. Maxbin2.0 performs well on medium-complexity 
metagenomic datasets, but the ability to recover high-quality genes on the high-complexity 
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metagenomic datasets may decrease, and it couldn’t be applied to the ultra-high complexity 
metagenomic datasets. MetaBAT is an algorithm specially designed for complex metagen-
omic datasets, which performs well on ultra-high complexity metagenomic datasets. How-
ever, the disadvantage is that the algorithm needs too many parameters to be adjusted for 
different datasets, otherwise the expected results cannot be achieved. MyCC combines 
genomic signatures, marker genes and optional contig coverages within one of multiple 
samples. It performs well on low complexity datasets, but the performance may decrease 
greatly on medium and high complexity datasets. COCACOLA uses L1 distance instead 
of Euclidean distance as similarity measure, and combines the advantages of hard cluster-
ing and soft clustering through sparse regularization. In addition, COCACOLA also com-
bines customized knowledge to improve clustering accuracy. Like most clustering methods, 
it can’t achieve good performance in complex environmental datasets. DAS tool is not an 
independent tool, and it is an integrated tool, and its performance is mainly determined by 
the performance of the tools it contains.

The main problems of the current unsupervised clustering methods include: (1) The 
ability to recover genes in complex environment needs to be improved. (2) The number 
of strains is a key parameter of the unsupervised clustering method which greatly affects 
the performance of the algorithm, but the selection of the number of strains in the cluster-
ing process is very different from the actual situation. (3) It is difficult to distinguish the 
sequences from the same species but different strains in the samples. There are two rea-
sons. One reason is that it is easy to produce chimeras due to the high sequence similarity 
from the same species but different strains when using assembly tools to assemble the reads 
[9]. The second reason is that there are lots of species in a complex environment, which 
makes it difficult to distinguish effectively.

To address these problems, we propose a new clustering method MetaCRS (MetaCRS: 
unsupervised clustering of Contigs with the Recursive Strategy of reducing metagenomic 
dataset’s complexity) that can continuously reduce the complexity of the samples through a 
recursive strategy to improve the ability to recover genes from complex environments and a 
new method to determine the number of strains in the samples. We first pre-train the prob-
ability model which can calculate the probabilities that any two contigs come from the same 
strain. The probability model and composition characteristics of the sequences (tetranu-
cleotide frequency) and co-abundance are used to calculate the probabilities between each 
contig and all cluster center sequences. We also propose a new method to determine the 
number of strains in the samples. After combing the sequences analyzed by a marker gene 
identification method [13, 28–33] and the gene sequences predicted by FragGeneScan [34], 
they will be screened and filtered. Then the sequences that can be used as the initial cluster 
centers are finally obtained, and their number is the initial value of the number of strains in 
the samples. A recursive strategy is adopted to continuously reduce the sample’s complexity 
to improve the ability to recover genes from metagenomic datasets.

Methods
The whole pipeline of the method is shown in Fig. 1. Firstly, the reads of each sample 
are aggregated to build a gene library. Then they will be assembled into the contigs. The 
composition feature (tetranucleotide frequency) and co-abundance of the sequences 
are counted and combined with the pre-trained probability model to calculate the 
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probabilities of which the sequences are from the same strain. Through the marker gene 
analysis, the parameters can be initialized in the clustering process, such as the number 
of clusters and the initial cluster center sequences. In the clustering process, we propose 
a new clustering method that can continuously reduce the complexity of the samples 
through a recursive strategy. Finally, the bins that meet the threshold can be obtained.

Measuring probabilities of each contig belonging to any clustering center

We define a probability model which can calculate the probabilities of each contig 
belonging to any cluster centers based on their tetranucleotide frequencies and co-abun-
dance [23, 24]. Tetranucleotide frequency is defined as the frequency of four consecutive 
nucleotides in a given gene sequence, and it is proved to have species-specific patterns in 
gene feature representation [35–38]. Meanwhile, co-abundance feature is proved to be 
very effective to deconvolute complex communities if there are many samples available 
[20, 21]. The 3181 bacterial and archaeal genes downloaded from the IMG website [22] 
are simulated to generate metagenomic datasets. The Euclidean distance is calculated 
between tetranucleotide frequencies extracted from intra-genome (sequences from the 
same gene) and inter-genome (sequence from different genes) sequences 1 million times 
in order to obtain the prior probability distribution of the Euclidean distance between 
tetranucleotide frequencies from the same gene and from different genes [22]. Then the 
posterior probability of two contigs from the same gene is calculated according to the 
following Bayesian formula [24]:

where T represents the situation where two contigs are from different strains and R rep-
resents the situation where two contigs are from the same strains. D is the Euclidean dis-
tance between tetranucleotide frequencies of two contigs. Here we set P(T ) = 10 ∗ P(R)

.

(1)Pdist(R|D) =
P(R)P(D|R)

P(R)P(D|R)+ P(T )P(D|T )

Fig. 1 The whole pipeline of MetaCRS method
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The posterior probability between contigs of different lengths can be approximated by 
logistic regression as shown in (2):

where Dij represents the Euclidean distance between tetranucleotide frequencies of con-
tig i and contig j. The b and c are two logistic regression parameters, which are estimated 
from experimental data [24].

Shotgun sequencing follows the Lander–Waterman model, which uses the Poisson 
distribution to calculate the coverage of contigs [39]. The Poisson distribution is used to 
evaluate the similarity between the sequence S and the cluster center G in the metagen-
omic sample k [22, 24]. The probability is defined as follows:

where cov(Sk) and cov(Gk) is the coverage of sequence S and cluster center sequence G 
in metagenomic sample k, PCOV

(

S ∈ G|cov(Gk)
)

 is a Poisson probability density func-
tion given mean � = cov(Gk).

Assuming that all metagenomic samples are independently sequenced, the similarity 
probability of coverage between sequence S and cluster center sequence G needs to con-
sider all metagenomic samples, which is defined as:

where M is the number of metagenomic samples, cov(Sk) and cov(Gk) is the coverage of 
sequences S and G in metagenomic sample k.
Pdist and  Pcov  are combined as a measure of the probabilities between each config and 

cluster center sequences, which is defined as:

Formula (5) is the probability model used in the following clustering process.

A recursive strategy for clustering

A recursive strategy is proposed for clustering, which can continuously reduce the com-
plexity of samples to improve the ability to recover genes from complex environmental 
samples. The whole pipeline of the algorithm is shown in Fig. 2. It is mainly divided into 
the following two stages. At the first stage, for each contig in the dataset, their tetra-
nucleotide frequencies and co-abundance are calculated first to form the composition 
matrix and coverage matrix. The coverage matrix is normalized due to the different 
lengths of contigs, so as that our pre-trained probability model can calculate probabili-
ties of the contigs in different lengths. Because the K-means algorithm [40] can converge 
quickly and dirty data has little effect under large datasets, we use the K-means algo-
rithm combined with the pre-trained probability model to cluster.

(2)P
(

Dij; bij , cij
)

=
1

1+ e−(bij+cij∗Dij)

(3)PCOV
(

S ∈ G|cov(Gk)
)

= Possion(cov(Sk)|cov(Gk)

(4)
M
∏

k=1

Pcov
(

S ∈ G|cov(Gk)
)

=

M
∏

k=1

Possion(cov(Sk)|cov(Gk))

(5)P(S ∈ G) = Pdist
(

R|D
)

·

M
∏

k=1

Pcov
(

S ∈ G|cov(Gk)
)
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At the second stage, the clustering results are processed first. We filter out the 
sequences that don’t meet the minimum probability threshold in each cluster and put 
them in the set S1. Then we use the quality evaluation tool CheckM [41] to detect 
the quality of the bins and set the quality thresholds. If there are no bins that meet 
the threshold, it is determined whether the minimum threshold setting is reached. If 
the minimum threshold setting has been reached, the algorithm ends. Otherwise the 
threshold is adjusted and continues to determine whether there are bins that meet the 
threshold. If there are bins that meet the threshold, put them into the set Q and put 
the bins that don’t meet the threshold into the set S2. Then contigs in sets S1 and S2 
are mixed into set S, and S1 and S2 are cleared at the same time. K-medoids algorithm 

Fig. 2 The whole pipeline of recursive strategy for clustering
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[42] is used to cluster the set S. The initial number K2 of strains is given and K2 clus-
ter centers are initialized by our proposed method for selecting the number of strains 
in the set S. Then the second stage is repeated. Among them, CheckM is used to cal-
culate the recall (percent of expected single-copy-genes that are binned) and preci-
sion (the absence of genes from different genomes) rates. The precision is estimated 
from the number of multicopy marker genes identified in each marker set [41]:

where s is a set of collocated marker gene and M is the set of all collocated marker sets s. 
Cg is N−1 for a gene g identified N ≥ 1 times, and 0 for a missing gene.

The recall is estimated as the number of marker sets present in a genome taking 
into account that only a portion of a marker set may be identified [41]:

where s is a set of collocated marker gene. M is the set of all collocated marker sets s, and 
GM is the set of marker genes identified in a genome.

The overall procedure is summarized as follows.
The first stage of the algorithm:

 1. Compute the composition and coverage matrices.
 2. Normalize the coverage matrix.
 3. Estimate the number of clusters K1. through our proposed method.
 4. Clustering contigs by K-means:

(a) Initialization: randomly select K1 contigs as the cluster centers.
(b) Assignment step: associate each contig to the cluster center with the highest prob-

ability through the pre-trained probability model.
(c) Update step: update the cluster centers by using the centroid of each cluster.
(d) Repeat steps b and c until there is no change of the cluster centers.

 The second stage of the algorithm:

 5. Filter out the sequences that don’t meet the minimum probability threshold in each 
cluster and put them in the set S1.

 6. Detect the quality of each bin and set the quality thresholds (set thresholds when you 
meet for the first time, skip it when you meet again) through CheckM.

 7. Determine whether there are bins that meet the threshold. If not, it is judged whether 
the minimum threshold setting has been reached. If it is reached, the algorithm ends, 
otherwise the threshold setting is adjusted and the judgment is made again. If there 
are bins that meet the threshold, go to step 8.

(6)precision =

∑

s∈M

∑

g∈s Cg

|s|

|M|

(7)recall =

∑

s∈M
|s∩GM |

|s|

|M|
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 8. Put the bins that meet the threshold into the set Q and put the bins that don’t meet 
the threshold into the set S2. Mix the set S1 and S2 into set S. Clear S1 and S2 at the 
same time.

 9. Clustering contigs in set S by K-medoids:

(1) Initialization: The initial number K2 of strains is given and K2 medoids are ini-
tialized through our proposed method for selecting the number of strains in the 
set S.

(2) Assignment step: associate each contig to the medoid with the highest probability 
through the pre-trained probability model.

(3) Update step: For all other contigs in each cluster except the corresponding 
medoid, the value of the criterion function is calculated when they become a new 
medoid in order. The sequence is selected as a new medoid corresponding to the 
minimum value of the criterion function. The criterion function based on the 
average dissimilarity of all contigs to the new medoid in the cluster.

(4) Repeat steps (2) and (3) until there is no change of the medoids.

 10. Back to step 5.

Estimation of the number of strains and Initialization of the algorithm

We propose a new method for selecting the number of strains in metagenomic data-
sets. Six reading frames are used to translate the DNA sequences in the dataset into 
the protein sequences. Among all the sequences that have been translated or not, the 
DNA sequences and Hidden Markov model profiles of 34 marker genes with classifica-
tion information are identified [13, 28–33]. The recognized DNA sequences combined 
with the genes predicted by FragGeneScan [34] are used to make a de-redundant inte-
gration. Then HMMER3 [43] are applied to analyze the integrated genes with 107 single-
copy marker genes, and they are filtered to obtain the shortest number of marker gene 
sequences, which is defined as the number of strains, and these sequences are used as 
the initial cluster centers [22]. As shown in Fig. 3, the K1 and K2 parameters of the clus-
tering algorithm are obtained, and the cluster centers of the second stage in clustering 
algorithm are initialized with the sequences obtained by this method.

Definition of the complexity of metagenomic samples

The concept of complexity is defined as follows when the metagenomic datasets are con-
structed [9, 23, 24]:

where Metacomplexity represents the complexity of the metagenomic datasets. GN  rep-
resents the number of genes and CN  represents the circular elements that are distinct 
from strains, species, genera or orders represented by public genomes in the metagen-
omic datasets. Here in the Metacomplexity value between 0 and 200 is considered as low 
complexity, between 200 and 800 as medium complexity, between 800 and 1400 as high 
complexity, and above 1400 is considered as ultra-high complexity.

(8)Metacomplexity = GN + CN
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Results
In order to verify the effectiveness of our proposed method and the ability to recover 
genes from complex environments, we compared it with five state-of-the-art methods 
including CONCOCT, Maxbin2.0, MetaBAT, MyCC, and COCACOLA on simulated 
and real datasets.

Binning performance on CAMI simulated datasets

The simulation datasets in [9] was used for benchmark testing, which was generated 
to have a unified evaluation standard for each clustering algorithm. The simulation 
datasets were divided into low complexity dataset (40 genomes and 20 circular ele-
ments), medium complexity dataset (132 genomes and 100 circular elements), and 
high complexity dataset (596 genomes and 478 circular elements). These datasets 
were from newly sequenced genome of about 700 microbial isolates and 600 circu-
lar elements that were distinct from strains, species, genera or orders represented 
by public genomes. At the same time, they are consistent with the situation in the 
real environment, including a large number of closely related strains, plasmids, viral 
sequences, and realistic abundance profiles.

Fig. 3 The method of selecting the number of strains in the sample and the method of clustering 
initialization
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We tested our method on three datasets of different complexity, and compared it 
with other state-of-the-art clustering methods including CONCOCT [20], Maxbin2.0 
[23], MetaBAT [24], MyCC [25], and COCACOLA [26]. The number of bins was 
counted with the precision rate greater than 90% and the recall rate greater than 30% 
(bins that meet this condition are considered as good quality bins, and it is generally 
believed that the bins are different strains from the same species.). Since the composi-
tion characteristics on short contigs were not obvious, it would affect the clustering 
effect. Here we clustered contigs larger than 1500  bp, and the contigs shorter than 
1500 bp were excluded. The minimum probability threshold of all contigs to the clus-
ter center in each cluster after clustering was set as 80%, and there were three thresh-
old conditions for bins screening using CheckM [41]: the precision rates were set to 
be greater than 90%, and the recall rates were set to be greater than 90%, 60%, and 
30% respectively. The number of bins obtained were counted. As show in Fig. 4. Our 
proposed method obtained the largest number of genes in almost every recall thresh-
old both in medium-complexity and high-complexity dataset. Especially in high-com-
plexity datasets, our method performed much better than the other five methods. In 
low-complexity dataset, CONCOCT was better than our method at the recall rate 
greater than 90%. This may be the reason that the K-means algorithm of our proposed 
method is affected by dirty data in low-complexity dataset, resulting in poor cluster-
ing effect in the first stage. As shown in Table  1, our method identified the largest 
number of recovered genes when the precision rate was greater than 90% and the 

Fig. 4 The performance of CONCOCT, Mabin2.0, MetaBAT, MyCC, COCACOLA and our proposed method on 
the CAMI’s datasets with low-complexity (a), medium-complexity (b) and high-complexity (c)
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recall rate was greater than 30%. When both the precision rate and the recall rate 
were greater than 95%, the number of recovered genes was only less than CONCOCT 
on the low-complexity dataset and was the largest on the other datasets.

Binning performance on real metagenomic assembly datasets

We compared our proposed method with the other five methods on the Sharon data-
set [44]. The Sharon dataset contains 2329 assembled contigs, which comes from gut 
microbes of an obese human. We filtered out the contigs that did not exceed 1500 bp, 
and mapped reads to contigs through Bowtie2 [31] to get the coverage information of 
each contig. We ran six methods on this dataset, and the parameter settings were the 
same as the simulation datasets. As shown in Fig. 5, our method performed better than 
the other five methods, and identified the highest number of bins between 90 and 60% of 
the recall rate. CONCOCT obtained the highest number of bins when the recall rate was 
greater than 90%.

We tested all the six methods on the real dataset constructed in [24], which was 
from 264 MetaHIT human intestinal metagenomic data. Firstly, all data was selected 

Table 1 The number of strains recovered by the six clustering methods

The left side of/is the number of bins recovered when precision rate is greater than 95% and recall rate is greater than 95%. 
The right side of/is the number of bins recovered when precision rate is greater than 90% and recall rate is greater than 30%

Methods Low complexity Medium complexity High complexity

CONCOCT 14/17 10/18 24/36

Maxbin2.0 11/22 42/76 155/250

MetaBAT 10/18 40/63 235/440

MyCC 10/10 16/18 2/2

COCACOLA 1/5 1/8 55/90

Our method 12/25 55/97 263/472

Fig. 5 The performance of CONCOCT, Maxbin2.0, MetaBAT, MyCC, COCACOLA and our proposed method 
on the Sharon dataset. The x-axis represents six different clustering methods, and the y-axis represents the 
number of strains obtained with different recall rate thresholds when the precision rate was greater than 90%
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from 264 MetaHIT human intestinal metagenomic data. After mapping all the reads 
to the bacterial genes in the NCBI library, 290 genes were selected with an average 
coverage greater than 5X and then the scaffolds of selected genomes were shredded 
using truncated exponential distribution of minimum contig size of 2.5  kb with 31 
overlapped bases. Bowtie2 was used to match reads to each library. The coverage 
information of contigs was calculated, and 118,025 contigs was obtained for cluster-
ing. CheckM [41] was used to detect the quality of each bin. The results are shown in 
Fig. 6, our method achieved best results among other methods at each recall thresh-
old similar to the simulated datasets situation, especially on the bins with the recall 
rate between 60 and 90%.

Discussions
The pipeline of all of methods mainly consists of three modules, assembling short 
reads into contigs, binning contigs and evaluating clustering results. We mainly com-
pared the running time of different algorithms for clustering. All of these algorithms 
were run on 8 virtual CPU and 32  GB-RAM cloud computing platform provided 
by Elastic Compute Service. The running time of binning between our method and 
five state-of-the-art methods including CONCOCT, Maxbin2.0, MetaBAT, MyCC 
and COCACOLA was compared on the simulated datasets and the real datasets. As 
shown in Table  2, MetaBAT and COCACOLA were faster than the other methods. 
Our proposed method was faster than Maxbin2.0. Although it took more time in the 
high complexity datasets, the running time was still acceptable compared to the high-
quality genes identified. To reduce the time complexity, an alternative algorithm can 
be chosen [45] to replace the K-means algorithm.

Fig. 6 The performance of CONCOCT, Maxbin2.0, MetaBAT, MyCC, COCACOLA and our proposed method 
on the MetaHIT dataset. The x-axis represents six different clustering methods, and the y-axis represents the 
number of strains with different recall rate thresholds when the precision rate was greater than 90%



Page 13 of 16Jiang et al. BMC Bioinformatics          (2021) 22:315  

Conclusion
Reconstructing as many complete genes as possible from complex environments is 
still a hot topic in metagenomic research. In this paper, we propose a new clustering 
method which is based on feature vectorization of tetranucleotide frequency and co-
abundance. A pre-trained probability model is used to implement the clustering pro-
cess by using K-means [40] and a recursive strategy combining with K-medoids [42] 
algorithms and CheckM [41]. CheckM is a quality assessment tool for bins, and here it 
is used to simplify the complexity of the samples through a recursive strategy so that 
the clustering can achieve better results. We also propose a new method of selecting 
the number of strains in the samples. The key point of K-means and K-medoids algo-
rithm lies in the selection of the number K of strains in the samples. Other methods 
such as HDBSCAN [45] don’t need to know the number of clusters in advance, but 
they need other parameters. We adopt the K-means algorithm in the first stage of 
the algorithm. Due to the high data dimensions, the time cost will increase when fac-
ing large-scale datasets. There are other alternative methods to replace K-means to 
reduce the time cost of the algorithm, such as stratified angle regression algorithm 
proposed in [46].

We tested our proposed method on simulated datasets and real datasets, and com-
pared it with five state-of-the-art clustering methods including CONCOCT, Meta-
BAT, Maxbin2.0, MyCC and COCACOLA. Our proposed method achieved better 
performance in terms of precision, recall and estimated number of strains on both 
simulated and real datasets, and identified more high-quality genes in complex envi-
ronmental samples. The main contributions of our work are: (1) A new recursive strat-
egy is proposed, which could continuously reduce samples complexity and improved 
clustering performance. (2) A new method of selecting the number of strains in the 
samples is proposed. (3) Samples in natural environments are usually very complex, 
and our method performs much better in complex environments.

The use of assembly tools will bring chimeras of different strains from the same spe-
cies. With the development of third-generation sequencing technology, it is expected 
that longer read fragments can be obtained quickly and cheaply. Clustering of longer 
reads will recover more high-quality genes from the complex environments. Next, we 
will apply this algorithm to the datasets containing long reads, and the effect may be 
better. At the same time, we will also study the clustering algorithm based on density 
[45] and consider to replace K-means with different clustering methods.

Table 2 Running time of CONCOCT, Maxbin2.0, MetaBAT, MyCC, COCACOLA, MetaCRS (h:min:s)

Methods ‘Low’ ‘Medium’ ‘High’ ‘Sharon’ ‘MetaHIT’

CONCOCT 00:01:35 00:03:23 00:30:16 00:00:26 01:20:03

Maxbin2.0 00:10:03 00:16:24 02:45:03 00:01:45 06:35:36

MetaBAT 00:00:10 00:00:25 00:01:55 00:00:23 00:12:35

MyCC 00:00:13 00:00:59 00:10:36 00:00:16 00:15:26

COCACOLA 00:00:15 00:00:20 00:03:17 00:00:14 00:04:34

MetaCRS 00:05:24 00:11:45 02:13:52 00:00:56 05:26:43
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CONCOCT: Binning metagenomic contigs by coverage and composition; MaxBin 2.0: An automated binning algorithm 
to recover genomes from multiple metagenomic datasets; MetaBAT: An efficient tool for accurately reconstructing 
single genomes from complex microbial communities; MyCC: Accurate binning of metagenomic contigs via automated 
clustering sequences using information of genomic signatures and marker genes; COCACOLA: Binning metagenomic 
contigs using sequence COmposition, read CoverAge, CO-alignment and paired-end read LinkAge; MetaCRS: Unsuper-
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