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Exploiting the Dynamics of Soft Materials
for Machine Learning

Kohei Nakajima,1,2, Helmut Hauser,3 Tao Li,4 and Rolf Pfeifer5

Abstract

Soft materials are increasingly utilized for various purposes in many engineering applications. These materials
have been shown to perform a number of functions that were previously difficult to implement using rigid
materials. Here, we argue that the diverse dynamics generated by actuating soft materials can be effectively
used for machine learning purposes. This is demonstrated using a soft silicone arm through a technique of
multiplexing, which enables the rich transient dynamics of the soft materials to be fully exploited as a com-
putational resource. The computational performance of the soft silicone arm is examined through two standard
benchmark tasks. Results show that the soft arm compares well to or even outperforms conventional machine
learning techniques under multiple conditions. We then demonstrate that this system can be used for the sensory
time series prediction problem for the soft arm itself, which suggests its immediate applicability to a real-world
machine learning problem. Our approach, on the one hand, represents a radical departure from traditional
computational methods, whereas on the other hand, it fits nicely into a more general perspective of computation
by way of exploiting the properties of physical materials in the real world.
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Introduction

Soft materials have been attracting attention because
they add unprecedented functionality to machines and

devices. This functionality enables soft materials to be used
in a vast array of applications, such as grasping objects,1,2

human–robot interactions,3 medical and surgical tools,4 and
prosthetics and wearables.5 The inherent softness of such
materials results in increased adaptivity and decreased damage
to other surfaces during contact.6,7 In addition, robots made
with soft materials are able to generate complex behaviors
with simpler actuations by partially outsourcing control to the
morphological and material properties,8 which enhances the
active coupling between control, body, and environment.9,10

Compared with rigid materials, soft materials exhibit rich
dynamics including a variety of properties, such as nonline-

arity, elasticity, and high dimensionality. In this article, we
demonstrate that these dynamic properties constitute an asset
that can be effectively employed for machine learning pur-
poses. Our approach is based on a technique called reservoir
computing,11–13 which is a framework rooted in recurrent
neural network learning. When a high-dimensional dynami-
cal system, which is referred to as the reservoir, is driven with
input streams, it generates transient dynamics that operate as
a type of temporal and finite kernel that facilitates the sepa-
ration of the input states. If the dynamics involve short-term
memory and nonlinear processing of the input stream, then
nonlinear dynamical systems can be learned by adjusting a
linear, static readout from the high-dimensional state space of
the reservoir.

We exploit the rich physical dynamics of soft materials di-
rectly as a reservoir for temporal machine learning problems.
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This is clearly demonstrated using the physical dynamics of a
soft silicone arm. Previously, using the same platform, we il-
lustrated the potential of the approach by emulating Boolean
functions and nonlinear dynamical systems and by embedding
a closed-loop control into the arm without any external memory
and nonlinearity support from the controller.14,15 The current
study builds on these approaches and aims to boost the com-
putational performance of the arm for real-world applications.
We use the technique to supply a huge number of computa-
tional nodes, making use of the timescale difference between
input–output computation and the physical dynamics of the
arm. We first evaluate the effectiveness of our approach
through two benchmark tasks, and then we show the validity of
the approach and its limitations by comparing it with standard
machine learning systems. Next, we show that our approach
can be readily used for a sensory time series prediction of the
arm, which suggests that it can be applied to the detection of
anomalies or the interpolation of real-world sensory time series.

Materials and Methods: Platform and Information
Processing Scheme

Soft body dynamics

The platform consists of a soft silicone arm, its actuation and
sensing systems, and data processing through a PC (see Sup-
plementary Data for details; Supplementary Data are available
online at www.liebertpub.com/soro). The soft silicone arm
was developed in Ref.14 and exhibits diverse body dynam-
ics14,15 (Fig. 1A). It is cone shaped, immersed in fresh water,
and designed not to touch the ground or walls of the water tank
during movement. A similar type of morphology and material
characteristics is commonly seen in soft robotic arm design
(see, e.g., Refs.16–18). For example, for octopus swimming

robots, the passive body dynamics of which generate sufficient
driving force when actuated appropriately.19

The base of the arm can rotate left and right through the
actuation of a servo motor (see Supplementary Data for de-
tails). The motor commands sent from the PC control the po-
sition of the base rotation of the arm. It can take one of two real
values, f� 1:0, 1:0g, where � 1:0 corresponds to one maxi-
mum rotation angle of the servo motor and 1:0 corresponds to
the other maximum rotation angle of the servo motor. The two
maximum rotation angles are symmetrical along a vertical
centerline, which is defined by the rotation when the arm is
aligned vertically to the water’s surface. These two angles are
experimentally determined to prevent damage to the motor
components. Our system is a typical underactuated system that
has only one active degree of freedom but a higher number of
passive degrees of freedom in the silicone arm.

The arm contains 10 bend sensors embedded near the sur-
face of the silicone material with their ventral sides directed
outward. Each bend sensor has a base value when it is straight,
and the ventral side of sensors has a layer of bend-sensitive ink.
The sensory value becomes lower than the base value if the
sensor bends to the ventral side, and the value becomes higher
if it bends to the dorsal side (see Supplementary Fig. S1). In
either case, the change in value reflects the degree of the bend.
The sensors are numbered from the base toward the tip as s1

through s10 and are embedded alternately. The odd-numbered
sensors (s1, s3, s5, s7, and s9) are embedded on one side of the
arm, and the even-numbered sensors (s2, s4, s6, s8, and s10) on
the other. The unit of the timestep t that expresses the time
evolution of the system (sensory time series) corresponds to
the single sensing and actuation loop of the PC, which is
*0.03 [s] in physical time. Further details on the platform
setup are given in Supplementary Data.

FIG. 1. Information processing scheme that uses the dynamics of the soft silicone arm and a multiplexing technique. (A)
A soft silicone arm immersed in water with 10 bend sensors embedded. The body dynamics of the arm are generated by
rotating the arm’s base, and the corresponding sensory time series is exploited as a computational resource. Red wires,
which connect the sensors to a sensory board, were attached as carefully as possible so as not to affect the arm’s behavior.
(B) Schematics summarizing how to prepare virtual nodes according to parameter s. Using the generated (10 · s)þ 1 node
(one bias node) with wi

out, the system output is generated. The figure shows the case for s¼ 5.
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Computational scheme

We demonstrate that sensory time series, which are re-
flections of the physical dynamics generated by the interaction
between the water and the soft silicone material, are readily
available as a computational resource for temporal machine
learning tasks. In our experiments, the inputs to the system are
provided as motor commands, and the corresponding outputs
are generated by the weighted sum of the sensory values,
which act as computational nodes in our setup.

Previously, using the same platform, we showed that soft
body dynamics have a computational performance compa-
rable to the standard reservoir computing network (i.e., the
echo state network, ESN), which has the same number of
computational nodes as the sensors.14,15 In these studies, for
each input–output computation, a single corresponding set of
sensory values (i.e., 10 values with 1 bias) was used as res-
ervoir states.

Here, we supply an additional number of computational
nodes by introducing a different timescale between the dy-
namics of the soft silicone arm (sensory time series) and the
input–output computation (Fig. 1B) to boost the computa-
tional power for applications. We set parameter s to regulate
the timescale of each input–output computation, in which a
single computation takes s timesteps (see Supplementary
Fig. S2). Setting the input–output computational timestep as
k, the corresponding data series of the m-th sensor is
fsm

ks, sm
ksþ 1, . . . , sm

ksþ l, . . . , sm
ksþ (s� 1)g, where l indicates a

serial number ranging from 0 to s� 1 sampled over all the
sensors (i.e., from m¼ 1 to 10) for each computational
timestep. Using these sampled data, 10 · s computational
nodes fx1

k , x2
k , . . . , xi

k, . . . , x10s
k g in total were prepared with

reconfigured numbering i¼ 10(m� 1)þ l, which is deter-
mined by m and l (Fig. 1B). This procedure is called a mul-
tiplexing technique in this article, and this setting of nodes
allows us to make full use of the transient dynamics of a
physical soft body. Recently, this approach of preparing
computational nodes has been applied in different forms of
physical reservoirs (see, e.g., Refs.20–22). We here, for the
first time, apply this scheme for soft materials.

According to the inputs uk provided to the system as motor
commands, the corresponding output yk is calculated as follows:

yk¼ +
10s

i¼ 0

wi
outx

i
k, (1)

where x0
k is a constant value bias set as ‘‘1,’’ which means we

exploit (10 · s)þ 1 in total for computation, and wi
out is the

readout weight of the i-th computational node (Fig. 1B). In
the reservoir computing framework, the learning of the target
function ŷk¼ f (uk, uk� 1, . . . ) is conducted by adjusting the
linear readout weights wi

out. During the training phase of the
weights, the input stream is provided to the system, which
then generates the arm motions, and the corresponding sen-
sory time series is collected together with the target outputs
for supervised learning (see Supplementary Fig. S3). In this
article, we apply a ridge regression, which is known as an L2
regularization, to obtain the optimal weights (Supplementary
Fig. S4). This was introduced to prevent the over-fitting
caused by an increase in the computational nodes regulated
by s. The performance of the system output with the optimal
weights was then evaluated by comparing it with the target

output for a new input stream to demonstrate the general-
ization property. We also analyzed the effective degrees of
freedom of the computational nodes, which provide infor-
mation about the effectiveness of the physical dynamics to
perform given tasks. Further details on the training and
evaluation procedures and on the analysis of the effective
degrees of freedom are given in Supplementary Data.

Results: Demonstrations of Temporal Learning Tasks

To demonstrate the computational power of the soft silicone
arm, we first used two benchmark tasks proposed in the context
of machine learning. The first task is the emulation of nonlinear
dynamical systems, called nonlinear autoregressive–moving-
average (NARMA) systems. The second task is the Boolean
function emulation over a binary input sequence. Each task
requires a certain amount of nonlinear processing of input and
short-term memory of the recent input stream to be im-
plemented. To perform the tasks successfully with our setup,
the required memory and nonlinear processing of the inputs
will have to be provided through the properties of the soft
silicone arm and from the resulting dynamics because we are
only adding a static and linear readout.

Throughout this study, the input stream uk provided as a
motor command is set as a random binary sequence of
f� 1:0, 1:0g, which does not add additional temporal coherence
originating from the external input to the system and enables us
to evaluate the computational power contributed by our system
alone. To characterize the contribution of the arm dynamics
explicitly, we compare the task performance with that of a
simple linear regression (LR) model, yk ¼w1

LR · ukþw0
LR,

where w0
LR and w1

LR are the readout weights. Note that this LR
system corresponds to the case in which no physical body is
available, and only the raw input remains for LR. From this
comparison, for any system performance better than that of this
model, we can conclude that soft body dynamics contribute to
task performance positively. The computational power of the
arm is further characterized by comparing the task performance
of our system with that of a conventional reservoir system, that
is, an ESN.11 To show the relevance of the multiplexing
technique clearly, a setting without multiplexing is also
demonstrated, in which we take 10 sensory values,
fs1

ksþ (s� 1), . . . , s10
ksþ (s� 1)g, and 1 bias term as a computa-

tional resource for each computational timestep k (this setting
was applied in our previous experiments14). The learning and
evaluation of these systems are conducted with the same
scheme using the same time series/conditions as that of our
soft silicone arm to make a fair comparison (see Supple-
mentary Data for the detailed settings of the ESN).

NARMA task

The NARMA task is frequently used as a benchmark in the
context of recurrent neural network learning to evaluate whe-
ther the system can implement nonlinear computations with
long time lags. The first NARMA system is the second-order
nonlinear dynamical system, which can be written as follows:

yk ¼ 0:4yk� 1þ 0:4yk� 1yk� 2þ 0:6u3
k þ 0:1: (2)

This system was introduced in Ref.23 and used, for ex-
ample, in Refs.15,24,25 We call this system NARMA2 in this
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article. The second NARMA system is the nth-order non-
linear dynamical system, which can be written as follows:

yk¼ ayk�1þ byk�1( +
n� 1

j¼ 0

yk� j�1)þ cuk� nþ 1ukþ d, (3)

where (a, b, c, d) are set to (0:3, 0:05, 1:5, 0:1). Here, n is
varied using values from 3 to 10, and the corresponding
systems are called NARMA3 to NARMA10, respectively. In
particular, NARMA10 with this parameter setting was intro-
duced in Ref.23 and is commonly used (see, e.g., Refs.13,15,25).
Here, according to the input stream, the system should
simultaneously emulate all the NARMA systems, which we
call multitasking.

Figure 2 plots typical examples of the task performance of
NARMA2, NARMA3, and NARMA4, each with different

settings of parameter s. Clearly, in each NARMA task, the
outputs generated by our system trace the target outputs more
accurately than the LR system does. Furthermore, the system
performance with a multiplexing technique is clearly supe-
rior to that without it, which suggests the effectiveness of the
technique. This can be confirmed by checking Supplemen-
tary Video S1.

Detailed analyses for the task performance from NARMA2
to NARMA7 in terms of averaged normalized mean squared
error (NMSE) are shown in Figure 3A. We can see that the
performance of our system is much better than that of both the
LR system and the system without multiplexing, especially
when the order of the target NARMA system is small. Ac-
cording to the increase of the order of the target NARMA
system, the performance of our systems (including the sys-
tem without the multiplexing) approaches that of the LR
system step by step. Actually, for the NARMA7 task or larger
order tasks, we can confirm that the performance of our
systems becomes equivalent to that of the LR system for all
the s settings (see Supplementary Fig. S4 in Supplementary
Data for the results of the larger order tasks other than
NARMA7).

Interestingly, for each NARMA task, the value of s that
shows the best performance was different. For example, for
the NARMA2 task, the case when the value of s is relatively
large, such as around s¼ 20, showed the best performance.
For the NARMA3 and NARMA4 tasks, the case for value
around s¼ 7� 12 showed the best performance; for the
NARMA5 and NARMA6 tasks, the cases for value around
s¼ 6� 8 and value around s¼ 5� 7, respectively, showed
the best performance; and for the NARMA7 task, the case for
value around s¼ 5� 6 showed the best performance. Note
that parameter s not only regulates the number of computa-
tional nodes but also controls the behavior of the arm, and this
indicates that how the input information processed through
the body dynamics is different (see Supplementary Fig. S2).
As a result, the computational power that we can induce from
the arm will also differ according to s. In particular, for the
NARMA3 and NARMA4 tasks, it is clear from the figure that
our system can induce higher or comparable computational
power than the conventional ESN having 200 computational
nodes, which is a larger number of computational nodes than
our system with multiplexing. According to the analyses of
the effective degrees of freedom of the system to perform
each NARMA task, the lower the order of the target NARMA
system is, the better the system exploits the increasing
number computational nodes according to the increase of
s (Fig. 3B). This result supports the effectiveness and sug-
gests the range of validity of the multiplexing technique.

FIG. 2. Typical performances for the NARMA tasks in the
evaluation phase. In all the shown examples, the performance
of the LR system and the system performance without mul-
tiplexing (labeled as ‘‘no multiplexing’’) are overlaid as a
reference. In the upper, middle, and lower diagram, the sys-
tem performance for the NARMA2, NARMA3, and NAR-
MA4 tasks is shown with s¼ 20, 10, and 11, respectively. See
texts for details. LR, linear regression; NARMA, nonlinear
autoregressive–moving-average.

FIG. 3. Performance analyses of the NARMA tasks and the Boolean function emulation tasks. (A) Plots showing the averaged
NMSEs according to s of each NARMA task (NARMA2–7). (B) The averaged effective degrees of freedom of the system to
perform each NARMA task are presented according to s. The gray line presents f (s)¼ 10 � sþ 1, which represents the
maximum degree of freedom. (C) Plots showing the averaged capacities of the Boolean function emulation tasks. The first plot
from the left shows the total capacity Ctotal, which is the capacity averaged over all the three-bit Boolean function emulation tasks
according to s. The second and third plots from the left show the capacities CSM and Cparity according to s, which are for the short-
term memory task and the parity check task representing a typical linear and nonlinear task, respectively. The diagram at the
right end shows Cnonlinear compared with Clinear, which overlays the results for s¼ 5� 20. As a reference, some plots contain the
averaged results of the LR system, the system performance without multiplexing (‘‘no multiplexing’’), and the performance of
the ESN. Note that ‘‘ESN10,’’ for example, indicates the results of the ESN with 10 nodes. For all the plots, the error bars show
the standard deviations. ESN, echo state network; NMSE, normalized mean squared error.

‰
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Boolean function emulation tasks
and computational capacity

Emulation tasks of Boolean function against random binary
input stream are also popular benchmark tasks to evaluate the
power of computational systems (see, e.g., Ref.26). In this ar-
ticle, we applied the emulation task of a three-bit Boolean
function expressed as yk ¼ f (uk� 2� d, uk� 1� d , uk� d), where
f is a Boolean function and d is a delay and can vary from 0 to
49. According to the increase of the number of d, more memory
for the previous input is needed to emulate the function. There
are 23¼ 8 input patterns and 223 ¼ 256 functions, and these
functions include both linear and nonlinear functions.27

To evaluate the task performance for each target function,
a measure capacity C is used (e.g., Ref.28). By calculating the
square of correlation between the system output and the
target output for given delay d, C is expressed as a summation
of the calculated squared correlation over all the delays from
0 to 49. Note that, unlike in the case of NMSE, if the system
output emulates the target output well over the delays, the
value of the capacity becomes higher. We exploit several
variants of this measure for the analyses. See Supplementary
Data for details on the measures.

First, to see the overall performance of our system, we ana-
lyzed the averaged capacity over all the three-bit Boolean
functions Caverage (we have excluded functions that outputs only
0 or 1 from the analyses because the results are trivial). Figure 3C
(left diagram) plots the results of the averaged Caverage for each s,
showing that Caverage takes the highest value when s is around 5–
8. In general, our system performance for Boolean function
emulation tasks was not as good as the performance of an ESN
having the same number of computational nodes. Actually, these
capacity values when s is around 5–8 are comparable with those
of an ESN with 7–8 computational nodes. Nevertheless, our
system showed much higher values of Caverage than the LR
system and the system without multiplexing over all the values
of s, suggesting the effectiveness of the multiplexing technique.

To further characterize the computational power of our
system, we analyzed the capacities for two target Boolean
functions as representatives of linear and nonlinear functions.
The first is a function that outputs a previous input value as
yk¼ uk� d� 2, which represents a linear function commonly
used to evaluate the system’s short-term memory.26,28 The
second is a famous parity checker function, which represents a
nonlinear function. Capacities for these two functions are de-
noted as CSM and Cparity, respectively, for clarity. The results for
CSM and Cparity according to s are shown in Figure 3C (middle
diagrams). Clearly, for both cases, our system outperforms the
cases for the LR system and the system without multiplexing.
For CSM , we can see that our system takes the maximum value
of CSM at s¼ 5, and it gradually decreases until the value of
s gets to 12, and takes the fixed value for the increasing value of
s. For Cparity, it has a peak value at s¼ 8. These results suggest
that according to the selection of s, the type of computational
power that can be exploited from the arm is different, which we
have also confirmed from the analyses of the NARMA task. In
particular, for Cparity, the peak value is comparable with the
value of an ESN having 30–40 computational nodes.

By calculating the averaged capacity over all the linear
functions Clinear and that over all the nonlinear functions
Cnonlinear, we illustrated the relationship between these two ca-
pacities in Figure 3C (right diagram). There are two important

points that we can observe from the plot. First, we can see that
according to the introduction of a time-multiplexing technique,
both Clinear and Cnonlinear improve significantly, but the rela-
tionship (ratio) between them does not change. Second, we can
see that our system has a tendency to take the ratio of Cnonlinear to
Clinear higher than the ESN, which characterizes the property of
the type of computation that can be induced from our system.

Sensory Time Series Predictions

As we have demonstrated so far through two benchmark
tasks, the dynamics of the soft silicone arm can be used for

A

B

FIG. 4. Typical performances of the sensory time series
prediction tasks in the evaluation phase. (A) Random input
sequence uk (upper diagram) and the corresponding sensory
time series xi

k (lower diagram) during the task performance.
All the sensory time series are overlaid in the lower plot. (B)
In all the shown examples, the performance of the LR
system and the performance of the ESN with 200 nodes
(ESN200) are overlaid as a reference. From the upper to the
lower diagram, the target sensory time series is from
s2, s4, s6, s8 to s10. Parameter s is set to 16.
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temporal learning tasks, which has the potential to implement
a comparable computational performance with a conven-
tional ESN. In particular, we have revealed that there exists a
preference regarding the type of computation for the system
according to parameter s, which is considered to be regulated
by the balancing between the increase of computational
nodes according to the multiplexing technique and the cor-
responding type of dynamics the soft body generates. Here,
we aim to perform a machine learning task using the soft
silicone arm for engineering applications.

In general, sensory time series carry important information
about the state of the body and are essential ingredients in
deciding the next motion of robots or motor commands in the
sensorimotor loop. In real-world applications, however, these
sensory values are often fluctuated against external noise.
They may accidentally stop sensing and break down due to
external damage, which causes not only the loss of data but
also has severe effects on overall behavioral generation. To
face these situations, one solution would be to construct a
model of the sensory time series of the robot under a certain
behavior using machine learning. This would allow us to
interpolate the missing data and also implement an anomaly
detection scheme in sensory time series (by calculating the
deviation from the modeled sensory value). Needless to say,
in the case of soft robots, sensory time series are, in general,
diverse containing memory of previous motor commands and
nonlinear processing of them. Hence, they are not able to
predict without using a temporal machine learning scheme,
such as recurrent neural networks.

Here, we aim to implement a sensory time series prediction
using our scheme. That is, we predict the sensory value of
sensor i at computational timestep k, exploiting the other
sensory time series, which means the target output is ex-
pressed as yk¼ si

ksþ s� 1. Assuming that sensor i is missing,
the output is calculated with the weighted sum over 9 · sþ 1
computational nodes prepared using the rest of the nine
sensors using the same procedures of multiplexing explained

previously. The optimal weights are also trained using ridge
regression. See Supplementary Data for details on the ex-
perimental settings. We also compare our system perfor-
mance with that of the LR system and the ESN, the detailed
settings of which are given in Supplementary Data.

Figure 4 shows typical examples of the performance for
the sensory time series prediction task. We can observe that
each target sensor shows characteristic temporal patterns, and
for each case, our system output traces the target sensory time
series more precisely than the LR system and the ESN that
has 200 computational nodes (see also Supplementary
Fig. S5 and Supplementary Video S2).

Figure 5A shows the results of NMSEtotal according to s.
The measure NMSEtotal is a sum of the NMSE calculated for
the case of all the 10 targeted sensors, and it represents the
overall performance of the system with the given s (see
Supplementary Data). First of all, we can clearly confirm that
our system outperforms the LR system and the ESNs that have
10 and 200 computational nodes in all the settings of s. In
general, NMSEtotal has a tendency to decrease by increasing
the value of s (especially when s gets larger than 12). Note that
because the target sensory time series changes according to s,
even if the system construction is not related to s, the per-
formance of the LR system and the ESN can change ac-
cordingly. This suggests that the target sensory time series are
becoming easy to predict in general, according to the increase
of parameter s. For the case of s¼ 11, the NMSEtotal of our
system shows higher value together with that of the ESNs that
have 10 and 200 computational nodes, implying that the target
sensory time series themselves are more difficult to predict.

Next, for each case of the target sensor, we analyzed the
effective degrees of freedom of the reservoir constructed by
the rest of the sensory time series (Fig. 5B). Interestingly, for
some target sensors, the effective degrees of freedom in-
crease according to the increase of the value s, but for some
target sensors, such as s6, the effective degrees of freedom do
not increase accordingly. This implies that even if the value

A B C

FIG. 5. Performance analyses for the sensory time series prediction task. (A) The averaged NMSEtotal of each s setting is
plotted (see Supplementary Table S1 for details). The performances of the LR system, ESN10, and ESN200 in terms of the
averaged NMSEtotal are also plotted for comparison. Note that the y-axis is in logarithmic scale. (B) The averaged effective
degrees of freedom analyzed for the prediction tasks according to the target sensor number are shown. The results for all the
experimental s settings are overlaid. (C) The averaged NMSE according to the target sensor number is plotted. The results
for s¼ 5� 10 are overlaid in the left diagram, and those for s¼ 11� 20 are overlaid in the right diagram. In both plots, the
y-axes are in logarithmic scale with the same range.
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of s increases and the computational nodes increase accord-
ingly, the useful information for the prediction of the target
sensory time series was not included in the rest of the sensory
time series. This result not only characterizes the structure of
the reservoir when each target sensor was set but also reveals
the relationship between the target sensor and the rest of the
sensors in terms of predictability. Note, however, that the
results for the effective degrees of freedom and the task
performance do not always correspond (e.g., it is easy to
imagine, depending on the type of task, the same perfor-
mance is achievable with reservoirs having different degrees
of freedom).

Figure 5C plots the averaged NMSE by varying the target
sensor number for each setting of s. We can see that some
sensors are relatively easy to predict and others are very
difficult. Furthermore, the prediction of some sensors can be
more accurate by increasing the value of s (e.g., for s4, s5, and
s7 when s is around 5–10 or for s9 and s10 when s is around
11–20), but others were not influenced by the increase of
s (e.g., for s3 when s is around 5–10 or for s6 and s8 across all
the experimented s). We can also confirm that the high value
of NMSEtotal at s¼ 11 is mainly due to the bad prediction
performance of the target sensor s5. See also Supplementary
Figure S6 for details.

In summary, our results suggest that to predict the target
sensory time series of the soft body, it is more effective to
exploit the rest of the sensory time series, which are already
present, as a computational resource than to construct a
predictive model from scratch using the target input/output
relationship. This suggests that the useful information of
some sensory time series for prediction is flowing into the
other sensors using the physical soft body dynamics through
time (similar observations were reported in Ref.29). By in-
creasing the value of s, not only are the sensory time series
used as a computational resource but also the target sensory
time series are changed; therefore, we can speculate that the
balancing of several factors is important to characterize the
prediction performance.

Conclusion

In this article, we have demonstrated that the dynamics of
the soft silicone arm itself are readily available when im-
plementing temporal machine learning, which was shown
through two benchmark tasks and a sensory time series pre-
diction task. This is realized by introducing different time-
scales for the input–output and for the physical body
dynamics using parameter s and by subsequently applying
the multiplexing technique, which allows us to effectively
boost the computational power by increasing the number of
computational nodes.

Our approach outsources the computational load, which is
usually executed within the for-loop in the program, to the
physical dynamics of the soft material. This can be inter-
preted as a massive parallel computation executed through
the natural soft dynamics, and we can expect energy effi-
ciency as a result. In greater detail, the outsourcing happens
in the recruitment of nonlinear kernels that can be linearly
combined to estimate a nonlinear dynamical system, and the
advantage comes in the ability of the soft arm to encode them
with arbitrary memory spans. Furthermore, according to the
specific morphology of the physical materials and the specific

way of actuation, this scheme can induce significantly high
computational power for certain tasks. This suggests that
each material has its own computational preference (some
material dynamics are good for some tasks but not for other
tasks). It would be beneficial to investigate in future how the
morphology, material property, actuation patterns, and en-
vironmental conditions affect the information processing
capability of the system.

Recently, many soft technologies have been developed.
For example, in Ref.,30 a microfluidic logic regulating on-
board fluid flow was introduced to generate autonomous
actuation in soft robots. Furthermore, an energetically au-
tonomous soft robot, which acquires energy from an aquatic
environment using a soft robotic feeding mechanism, was
proposed in Ref.31 In terms of soft sensing, many types of
flexible sensors have been proposed that do not influence or
damage the natural dynamics of the soft body.32 In addition,
the body morphology can be designed and manufactured
using a novel three-dimensional printing technique, designed
to work especially with soft materials.33,34 By integrating
these soft technologies, we expect that our approach pre-
sented in this study will further exert its potential to generate
novel application domains that strongly interface with in-
formation science, including machine learning and artificial
intelligence, material science, and physical science.

The dynamical perspective and its exploitation for compu-
tation are, in essence, two sides of the same coin. The most
standard way of doing computation is by using a modern silicon
chip as a computational resource, which can be very conve-
niently programmed using standard programming languages.
The physical resource is the silicon chip itself, which has, like
any physical system, particular dynamics. By forcing a ‘‘high-
gain regime’’ onto the chip (the voltages), which gives it its
digital characteristics, the dynamics are exploited in par-
ticular ways that are directly related to computation.

In the area of analog computing, the physical character-
istics of the medium are exploited, which makes it poten-
tially fast and cheap but subject to error. Another approach
to exploiting the physical properties of chips for computa-
tion is field-programmable gate arrays (FPGAs), which are
particularly suited for highly specialized applications. The
reason they are very fast is that the electronic circuits are
configured rather than simulated digitally. In other words,
the analog electronic circuits represent the physical dy-
namics used for computation. Mechanical computing sys-
tems like ancient calculators are subject to yet a different
kind of dynamics (but that is nevertheless exploited for
computing). Thus, the idea to search for different kinds of
materials, such as soft materials, that might be suitable for
certain types of computation and develop ways in which
their dynamics can be exploited is, in fact, very natural.
However, the idea leads to radically different ways of
viewing computation and its relation to materials, and it
opens up novel theoretical developments and practical ap-
plications.
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12. Maass W, Natschläger T, Markram H. Real-time computing
without stable states: a new framework for neural computation
based on perturbations. Neural Comput 2002;14:2531–2560.

13. Verstraeten D, Schrauwen B, D’Haene M, Stroobandt D.
An experimental unification of reservoir computing meth-
ods. Neural Netw 2007;20:391–403.

14. Nakajima K, Li T, Hauser H, Pfeifer R. Exploiting short-
term memory in soft body dynamics as a computational
resource. J R Soc Interface 2014;11:20140437.

15. Nakajima K, Hauser H, Li T, Pfeifer R. Information pro-
cessing via physical soft body. Sci Rep 2015;5:10487.

16. Cianchetti M, Arienti A, Follador M, Mazzolai B, Dario P,
Laschi C. Design concept and validation of a robotic arm
inspired by the octopus. Mater Sci Eng C 2011;31:12301239.

17. Calisti M, Giorelli M, Levy G, Mazzolai B, Hochner B, Laschi
C, et al. An octopus-bioinspired solution to movement and
manipulation for soft robots. Bioinsp Biomim 2011;6:036002.

18. Martinez RV, Branch JL, Fish CR, Jin L, Shepherd RF,
Nunes R, et al. Robotic tentacles with three dimensional
mobility based on flexible elastomers. Adv Mater 2013;25:
205212.

19. Sfakiotakis M, Kazakidi A, Pateromichelakis N, Tsakiris
DP. Octopus-inspired eight-arm robotic swimming by scul-
ling movements. In: Proceedings of 2013 IEEE International
Conference on Robotics and Automation (ICRA), Karlsruhe,
Germany, 2013, pp. 5135–5141.

20. Appeltant L, Soriano MC, Van der Sande G, Danckaert J,
Massar S, Dambre J, et al. Information processing using a
single dynamical node as complex system. Nat Commun
2011;2:468.

21. Nakajima K, Hauser H, Kang R, Guglielmino E, Caldwell
DG, Pfeifer R. Computing with a muscular-hydrostat sys-
tem. In: Proceedings of 2013 IEEE International Conference
on Robotics and Automation (ICRA), Karlsruhe, Germany,
2013, pp. 1496–1503.

22. Fujii K, Nakajima K. Harnessing disordered-ensemble quan-
tum dynamics for machine learning. Phys Rev Appl 2017;
8:024030.

23. Atiya AF, Parlos AG. New results on recurrent network
training: unifying the algorithms and accelerating conver-
gence. IEEE Trans Neural Netw 2000;11:697.
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