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Abstract
Habitat destruction and land use change are making the world in which natural populations

live increasingly fragmented, often leading to local extinctions. Although local populations

might undergo extinction, a metapopulation may still be viable as long as patches of suitable

habitat are connected by dispersal, so that empty patches can be recolonized. Thus far,

metapopulations models have either taken a mean-field approach, or have modeled empiri-

cally-based, realistic landscapes. Here we show that an intermediate level of complexity be-

tween these two extremes is to consider random landscapes, in which the patches of

suitable habitat are randomly arranged in an area (or volume). Using methods borrowed

from the mathematics of Random Geometric Graphs and Euclidean RandomMatrices, we

derive a simple, analytic criterion for the persistence of the metapopulation in random frag-

mented landscapes. Our results show how the density of patches, the variability in their

value, the shape of the dispersal kernel, and the dimensionality of the landscape all contrib-

ute to determining the fate of the metapopulation. Using this framework, we derive sufficient

conditions for the population to be spatially localized, such that spatially confined clusters of

patches act as a source of dispersal for the whole landscape. Finally, we show that a regular

arrangement of the patches is always detrimental for persistence, compared to the random

arrangement of the patches. Given the strong parallel between metapopulation models and

contact processes, our results are also applicable to models of disease spread on

spatial networks.

Author Summary

Like the hundreds of paintings of water lilies by Monet, any two landscapes in which a
metapopulation dwells are different, as the size, shape and location of the patches of suit-
able habitat (the lilies), distributed over a inhospitable background (the water) vary among
landscapes. Yet, as all the paintings depict the same pond in Giverny, different fragmented
landscapes could have the same value to a metapopulation. Here we ask what are the key
features we should measure to predict persistence of metapopulations inhabiting frag-
mented landscapes, and show that few quantities determine the fate of metapopulations—
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so that two very different-looking landscapes could lead to the same likelihood of persis-
tence. We also show that regular arrangements of the patches in space are detrimental for
persistence, and that the typical behavior of metapopulations close to extinction is to be
mostly localized in a confined region of the landscape.

Introduction
In an increasingly fragmented and patchy world [1], species survival critically depends on dis-
persal, as local populations at high risk of extinction could be rescued by immigration from
neighboring populations [2]. This intuition forms the core of metapopulation theory: even
though local populations occupying patches of suitable habitat might undergo extinction, per-
sistence can be achieved at the metapopulation level—rather than in each patch—as long as in-
dividuals can disperse between patches and thus recolonize empty ones [1].

It was Levins [2] who first proposed a species occupancy model (where the goal is to mea-
sure the presence/absence of a species in a patch) which assumed infinitely many patches of
suitable habitat, all mutually reachable from any other. His work highlighted one of the main
features common also to more complex models, namely that persistence is achieved when the
colonization rate exceeds the extinction rate (S1 Text).

Hanski & Ovaskainen [3] extended this formulation to realistic landscapes, composed of
multiple patches, each having a different “value” (e.g., size, or density of resources), connected
by dispersal whose strength depends on the distance between patches. This effectively defines
the landscape as a network in which the nodes are the patches, and the weighted edges express
the colonization rates [3–7].

When developing a general theory of persistence in fragmented landscapes, we are faced
with the problem that no two landscapes are alike. The situation is reminiscent of complex net-
work theory, in which any two food webs, transportation, or gene-regulation networks are dif-
ferent, making it difficult to pinpoint the salient features of each system. In these cases, much
progress has been made by contrasting empirical networks with those generated by simple
models such as the Erdős-Rényi random graph or the Barabási-Albert model [8]. Our main
goal is to propose and study a reference model for metapopulations dispersing in
fragmented landscapes.

One could be tempted to simply take the Erdős-Rényi model and apply it to metapopula-
tions [7]. However, this model lacks a fundamental feature of real dispersal networks: two
patches close in space are more likely to exchange individuals than two that are far away. A
more fruitful avenue is to take N patches, distribute them randomly in space, and connect any
two patches that are closer than some threshold distance [9]. This defines a so-called Random
Geometric Graph [10–12], for which it has been shown that the number of edges per node re-
quired to make the graph connected (i.e., the graph is composed of just one “piece”) is much
higher than that for Erdős-Rényi graphs, with the two converging for high-dimensional land-
scapes [13]. However, natural populations exist in low-dimensional environments, with species
endemic to the dunes of Lake Michigan [14] experiencing what is effectively a one-dimensional
space, and birds nesting in fragmented forests living in a two-dimensional landscape. As such,
Erdős-Rényi random graphs are inadequate descriptors of natural dispersal networks [7].

Random Geometric Graphs can be generalized even further. Instead of treating the connect-
edness of two patches in an “either/or”manner, we may think of it as a smooth function of dis-
tance. This function is what we refer to as the “dispersal kernel”. Such networks have been
introduced in the physics of disordered systems [15] and are called Euclidean Random
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Matrices (S1 Text). In fact, a Random Geometric Graph is but one special case, in which the
dispersal kernel is rectangular (Fig 1, top row), yielding a dispersal rate of either 0 or 1, while
generic Euclidean RandomMatrices cover the broad spectrum of intermediate cases where dis-
persal rates vary smoothly with distance (Fig 1, bottom two rows).

Here we use Euclidean RandomMatrices to study metapopulations dispersing in random
fragmented landscapes. For simplicity, we treat the case of patches that are uniformly distribut-
ed in space, and with patch values independently sampled from a random distribution. We de-
rive a condition for metapopulation persistence analytically, highlighting that number of
spatial dimensions, number of patches, shape of the dispersal kernel, and the variability in
patch value are all key to determining persistence. We also show that a metapopulation can
persist in two different regimes, localized and nonlocalized, giving rise to completely different
responses to habitat loss. We finally show that arranging the patches in a perfect grid (as often
considered in the design of protected areas [16–18]) yields a lower likelihood of persistence
compared to the case in which we distribute the patches randomly.

Methods

Metapopulation and Susceptible-Infected-Susceptible models
Take N patches of suitable habitat, positioned in a landscape. Each patch can be either occupied
or unoccupied by the species of interest at time t. Empty patches can be colonized through dis-
persal from occupied patches; occupied patches can become empty following a local extinction
event. For simplicity, we assume that both colonization and extinction are independent Poisson
processes in continuous time.

Then, the dynamics of the system can be described exactly through a continuous-time Mar-
kov process with 2N configurations [19], ranging from all patches being empty to all being oc-
cupied. In the absence of external input, the Markov process has only one absorbing state, the
one in which the metapopulation is extinct and all patches are empty. Despite the fact that this
is the ultimately absorbing state, the dynamics are dominated for a long time by a quasi-stable
state, in which a characteristic proportion of patches are occupied. This quasi-stable state is the
focus of our work.

Because such large Markov processes are difficult to treat analytically, researchers have
sought ways to approximate the dynamics using simpler models. Interestingly, the same class
of models originated in two distinct scientific communities: one interested in metapopulations
and conservation biology [3, 20, 21], the other interested in the spread of infectious diseases in
a social network [19, 22, 23]. In fact, a metapopulation model can be turned into a Susceptible-
Infected-Susceptible (SIS) model by relabeling “patches” as “individuals”, “dispersal” as “infec-
tion”, and “extinction” as “recovery”. Though the two scientific communities have opposite
goals (preservation of metapopulations versus eradication of diseases), their models are identi-
cal, so results in one area directly translate into the other.

In particular, both communities studied an approximation in which the system is modeled
by N differential equations, each tracking the probability that a certain patch is occupied/indi-
vidual is infected. Besides simplifying calculations, this approximation has the added benefit
that the quasi-stable state of the Markov process becomes the steady-state of the differential
equation model. Here we follow the formulation found in the SIS literature [23, 24], which
might be new to readers more familiar with the metapopulation literature. Doing so highlights
the critical step made to approximate the dynamics as well as the strong connection between
metapopulation dynamics and disease spread.

We have N patches/individuals Si(t), each taking value 1 or 0 (i.e., each being a Bernoulli
random variable) at time t, depending on whether the given patch is occupied / individual is

Metapopulation Persistence in Random Fragmented Landscapes

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004251 May 20, 2015 3 / 13



Fig 1. Fragmented landscapes as networks.Different rows represent different dispersal kernels (top to bottom: Rectangular, Gaussian and Exponential,
as depicted in the panel insets). Columns represent increasing values of the dispersal length ξ. The size of the points stands for the patch value Ai, while their
color measures the probability of occupancy pi (gray! low probability, red! high probability). The color of the edges measures their strength (white to blue).
In all the panels δ = 0.9λ, where λ is the metapopulation capacity, and δ is the background extinction rate (see Eq 3).

doi:10.1371/journal.pcbi.1004251.g001
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infected. Let δi be the probability per unit time of patch i going extinct / individual i recovering.
Let Dij be the probability per unit time that, given that patch j is occupied while patch i is
empty, patch j is going to colonize patch i (individual j is infected while individual i is uninfect-
ed, individual j is going to infect individual i). Assuming that both colonization and extinction
(infection and recovery) are Poisson processes, one can write a system of ordinary differential
equations tracking the dynamics of the expectations E[Si(t)] in time:

dE½SiðtÞ�
dt

¼ �diE½SiðtÞ� þ
X
j 6¼i

DijE½SjðtÞ� �
X
j 6¼i

DijE½SiðtÞSjðtÞ� ð1Þ

Assuming independence, one can write E[Si(t)Sj(t)] = E[Si(t)]E[Sj(t)], thus obtaining the
Hanski-Ovaskainen model in metapopulation theory [3, 20, 21] or the so-called NIMFA model
in the SIS literature [23]:

dE½SiðtÞ�
dt

¼ �diE½SiðtÞ� þ ð1� E½SiðtÞ�Þ
X
j 6¼i

DijE½SjðtÞ� ð2Þ

In general, the variables Si(t) and Sj(t) will be correlated. However, it has recently been prov-
en that if extinction/cure and colonization/transmission are Poisson processes, the correlation
can only be positive [25]. This means that the above equation necessarily overestimates the
growth of the probability that patches are occupied/individuals are infected. In our setting, this
turns out to guarantee that our estimate of the persistence threshold of the metapopulation is
always conservative [19]. Moreover, in the disease literature a treatment of the second-order
approximation (accounting for pairwise correlations, but foregoing third-order ones) has ap-
peared [24].

The Hanski-Ovaskainen model
Here we generalize the model proposed by Hanski & Ovaskainen [3] starting from Eq (2). The
N patches of suitable habitat are positioned in a d-dimensional landscape [26]. Each patch is
characterized by a position xi (a vector of length d), and by a patch value Ai, expressing for ex-
ample the carrying capacity of the patch. The extinction rate in patch i is given by a general ex-
tinction rate δ (a property of the species in question and of the landscape as a whole), whose
effect is mitigated in patches of high value: δi = δ/Ai. Individuals can disperse between patches
with a rate that depends on the distance between the two patches, a dispersal kernel function,
and the value of the patch from which individuals disperse: Dij = Aj f(jxi−xjj/ξ), where f is the
dispersal kernel function, jxi−xjj is the Euclidean distance between patches i and j, and ξ is the
typical dispersal length for individuals of the species of interest.

Taking Eq (2), writing pi(t) instead of E[Si(t)], and substituting in the above expressions, we
obtain the model:

dpiðtÞ
dt

¼ ð1� piðtÞÞ
X
j6¼i

f
jxi � xjj

x

� �
AjpjðtÞ �

d
Ai

piðtÞ : ð3Þ

where pi(t) is the probability of finding the species of interest in patch i at time t, and the contri-
bution of each patch j to the probability of finding the species in i is weighted by the dispersal
kernel f, the patch value Aj and the probability of occurrence in patch j, pj(t). The extinction
rate δ is mitigated in patches of high value.

This system of equations has at least one equilibrium p, and the metapopulation is persistent
when ∑i pi > 0. Interestingly, if the equilibrium p is strictly positive, then it is also stable [20].
Although one cannot analytically solve for the equilibrium, all the information needed to
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calculate the persistence of the system is enclosed in the so-called dispersal matrixM, whose di-
agonal entries are zero, and off-diagonal are defined asMij =Mji = Ai Aj f(jxi−xjj/ξ).

The leading eigenvalue ofM, λ (“metapopulation capacity” [3]), determines the persistence
of the metapopulation. Specifically, the metapopulation can be persistent if and only if λ> δ
[3, 21]. As such, probing the dependence of λ on different factors is crucial to predicting persis-
tence. If the leading eigenvalue determines persistence, the corresponding eigenvector wi quan-
tifies the relative importance of patches [20, 27] and, when δ� λ, it is related to the stationary
solution p itself [20] (S1 Text).

Habitat destruction (i.e., the removal of patches) lowers the metapopulation capacity. Math-
ematically, patch removal is carried out removing a row and the corresponding column from
the matrixM. The removal of a single patch has a negative effect on λ, but the magnitude of the
effect depends on patch identity. The relationship between the eigenvalue and the eigenvector
[27] quantifies the effect of the removal of patch i on the metapopulation capacity:

l� l�i
l

¼ Dli

l
� w2

i ; ð4Þ

where λ is the metapopulation capacity before removal, l�i is the metapopulation capacity after
the removal of patch i, and w is the normalized (

P
iw

2
i ¼ 1) dominant eigenvector ofM (before

removal). Thus, the components of the eigenvector quantify patch importance, as typically
found in the realm of complex networks when measuring eigenvector centrality [28].

Random fragmented landscapes
Here we study the model in Eq (3) when patches are randomly distributed in the landscape.
We take a large number of patches N randomly positioned in a d-dimensional cube by sam-
pling their positions from a uniform distribution. The cube has sides of length L (with L� ξ to
avoid dealing with edge effects).

Although in principle patch values could be correlated (e.g., high-value patches being close
to each other), for simplicity we sample the Ai independently from a distribution with mean
one and variance σ2.

We examine different kernel functions (Hanski & Ovaskainen considered only one), and we
stress that, unless specified, our results hold for any kernel function, including those that are
not monotonically decreasing (S1 Text). For illustration, we use the Exponential, Gaussian and
Rectangular kernel functions (Fig 1).

Results

Will a metapopulation in a random landscape be persistent?
Knowing the number of dimensions (d) and size (L) of the landscape, the number of patches
N, the dispersal kernel f(jxi−xjj/ξ), and the distribution of the values of the patches (σ2), we
want to approximate λ, the metapopulation capacity.

The matrixM is nonnegative (Mij � 0) and symmetric (Mij =Mji), therefore λ is bounded
by the average row sum from below [29].

Take the patch values to be one for all patches, and assume a rectangular kernel (Random
Geometric Graph). Then, the average row sum is simply the average number of neighbors each
patch has (the average degree of the network). When using another kernel (Euclidean Random
Matrix), the row sum can be interpreted as the average number of “effective neighbors”, ne,
meaning that patches that are closer contribute more to the sum than those that are far away.
As such, when all patches have value one, λ� ne. When the patch values are sampled from a
distribution with mean one and variance σ2, assuming N large, we obtain λ� ne(1+σ

2) (S1
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Text). This provides a conservative criterion for metapopulation persistence:

neð1þ s2Þ > d : ð5Þ

Next, we want to approximate ne for different parameterizations. In fact, ne is influenced by
the dispersal kernel, the dispersal length, the number of dimensions, the number of patches,
and the size of the landscape. The formula, in the limit L� ξ, reads

ne �
N
Ld

Gf ðdÞxd ð6Þ

(S1 Text), where the first term measures the patch density, obtained by dividing the number of
patches N by the volume Ld (area if d = 2, or length if d = 1), while the second term (Gf(d)ξ

d)
measures the typical volume accessible via dispersal from a patch. Their product ne represents
therefore the typical number of patches accessible via dispersal. The numerical factor Gf(d) de-
pends on the functional form of the dispersal kernel and on d. For example, Gf(d) = (2π)d/2 for
the Gaussian kernel (S1 Text). Note that although we kept ξ and L distinct, we could have mea-
sured one in units of the other, as what matters for the metapopulation capacity is their ratio.

Fig 2 shows that λ depends on all the factors that are needed to estimate ne: the number of
patches N, the kernel f, the dispersal length ξ, and the number of dimensions d. Moreover, λ de-
pends on the probability distribution function for the value of the patches. However, when
plotting λ versus ne(1+σ

2), where σ2 is the variance of the distribution, all curves collapse into
the same one, meaning that two very different fragmented landscapes, or with different

Fig 2. Dependence of the metapopulation capacity on various factors. The four panels on the left show the metapopulation capacity λ vs. the dispersal
length ξ. λ depends on the number of dimensions d (1, 2, 3), the number of patchesN (500, 1000, 2500, 5000), the dispersal kernel f (Gaussian, Exponential
and Rectangular), and the heterogeneity of patch value σ (varied between 0 and 1). Different symbols correspond to different combinations of f and d, while
different colors correspond to different values of N. The color scale from blue to light blue refers to different values of σ. The right panel shows the collapsing
of the various curves into a single one. The dependence on all the parameters (namely d, N, ξ, f and σ) is amalgamated in ne(1+σ

2), where ne is a simple
function of all the parameters (computed via Monte Carlo integration, see S1 Text). The region of largest discrepancy (small ne(1+σ

2)) corresponds to the
localized case, where only few patches contribute to the persistence of the metapopulation (S1 Text). Without loss of generality, we set L = 1 in
all simulations.

doi:10.1371/journal.pcbi.1004251.g002
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distribution of patch values but the same value of ne(1+σ
2), have approximately the same meta-

population capacity (S1 Text).

A regular arrangement of the patches decreases persistence
In the previous section, we derived a persistence criterion for the case in which the patches are
randomly distributed in a d-dimensional cube. This random arrangement is among the most
“disordered” possible. We now examine how a more regular arrangement of patches would
affect persistence.

We arrange the patches in a regular grid spanning the d-dimensional cube. We then perturb
this regular arrangement by jiggling the patch positions described by the parameter η. When η
= 0 the patches are perfectly arranged in a grid, and when η = 1, the patches are distributed at
random (S1 Text). Tuning η, we can explore the effect of intermediate states between the fully
regular and fully random.

If the patches are arranged in a regular grid,M has a particularly simple structure. In fact, if
the space had no edges (as in a d-dimensional torus), all the rows ofM would sum to exactly
the same constant λgrid, the leading eigenvalue ofM. For a sufficiently large number of patches,
approximately the same is found when the space is bounded. As mentioned before, λ is larger
than or equal to the average row sum ofM, but since here all rows have the same sum, we ob-
tain equality (S1 Text). This means that λgrid is always lower than the corresponding λrand,
found for a system with the exact same average row sum, but with random patch positions.
Simulations show that—all other things being equal—increasing η always increases the leading
eigenvalue (S1 Text), so that the likelihood of persistence is increased by disordered
patch arrangements.

Both in the grid and in the random arrangements, the metapopulation capacity grows line-
arly with the number of patches (Fig 3; see also Eq 6), and we always find λgrid < λrand.

Fig 3. Effect of patch arrangement on persistence: grid vs. random. Blue lines refer to patches arranged in a perfect grid spanning the landscape, while
red lines refer to random positions. The metapopulation capacity vs. the number of patchesN (top). The right and left columns refer to two values of δ
(dashed lines), yielding a different profile for the average number of occupied patches pi ¼

P
ipi=N vs. N (bottom). In both cases, the eigenvalue scales

linearly with the number of patchesN (see Eq 6), but it is always larger for the case of randomly arranged patches. Similarly, a random arrangement leads to
a higher average occupancy. The simulations are performed for a Gaussian kernel, d = 2, L = 1, ξ = 0.05.

doi:10.1371/journal.pcbi.1004251.g003
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Similarly, when we take the average patch occupancy pi, measuring the proportion of occupied
patches, we find that randomly distributing the patches leads to a higher (when λrand > δ) or
equal (when both λrand and λgrid are lower than δ, and thus pi ¼ 0) proportion of occupied
patches (Fig 3).

So far, we have considered monotonically decreasing dispersal kernels, in which the prover-
bial seed never falls far from the tree. This type of kernel was the first being studied [3], and is
frequently encountered in empirical analyses [30]. However, trees have strategies to disperse
their seeds (e.g., fruits for seed-dispersers, wind dispersal), while seeds falling close to the tree
could be disproportionally consumed by predators (Janzen-Connell hypothesis), giving rise to
more complex shapes for the dispersal kernel [31].

In the case of monotonically decreasing dispersal kernels (such as exponential or Gaussian
ones), it is possible to demonstrate analytically that λgrid < λrand (S1 Text). In the case of non-
monotonically decreasing, hump-shaped dispersal kernels, the same proof does not hold in
general. Despite this however, numerical simulations (S1 Text) show that, even if the kernel is
fine-tuned to peak around the nearest neighbor in a grid, the metapopulation capacity is still
larger for a random assembly of patches than a regular arrangement. This is a counterintuitive
result, since in principle we can always imagine a kernel which is zero everywhere except in an
infinitely narrow band around the nearest neighbor distance. Then the slightest perturbation
away from a perfect grid structure would immediately reduce the metapopulation capacity to
zero. Based on this extreme case scenario, one may justifiably think that slightly relaxing the as-
sumption of an infinitely sharp peak in the kernel will still result in a grid arrangement being
more beneficial than a random one. Our results show that this is not so: even a very slight
smearing of the kernel from the extreme-peaked case leads in practice to a random arrange-
ment of patches having a higher metapopulation capacity than the grid arrangement.

Spatial localization in metapopulations close to extinction
In network theory, the leading eigenvector measures nodes’ importance, with applications in
many different areas [32–34], including metapopulation theory [3, 20, 27].

Given that the leading eigenvalue ofM determines the persistence of the metapopulation,
naturally its value decreases when patches are removed, and it can be shown [27] that when
patch i is removed, the relative change of the eigenvalue is approximately equal to w2

i , where wi

is the i-th component of the eigenvector w (Eq 4).
If we assume that every patch is equally connected to every other patch, as in Levins’s model

[2], all the patches have the same importance. Our model predicts a radically different scenario,
in which the importance of the different patches can be extremely heterogeneous (Fig 4).

To quantify heterogeneity, we introduceC, a measure related to the variance of w2
i (S1

Text).C is zero if all the patches have the same importance, and is one if only a single patch
contributes to the leading eigenvector, i.e., all but one component of the eigenvector are zero.
C depends both on ne and σ

2. As the variance of patch values σ2 increases,C increases (S1
Text). The dependence on ne is more subtle and interesting: for large values of ne,C is close to
zero, while, as ne decreases,C remains close to zero up to a critical value, at which point it sud-
denly increases (S1 Text). This critical value corresponds to a transition from a system where
all patches have more or less the same importance for metapopulation persistence to one
where a few patches, localized in space, contribute disproportionately to the eigenvector (Fig
4).

We emphasize that this result holds for any value of the extinction rate δ. In addition, in the
λ� δ limit, i.e., when the metapopulation is close to the extinction threshold, the eigenvector is
also related to the stationary solution p (S1 Text). Close to the extinction threshold the
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persistent patches are spatially localized, i.e., the patches with high likelihood of persistence are
all close in space.

In the previous section, we showed that the leading eigenvalue ofM for a landscape in
which patches are arranged in a grid is always smaller than that obtained for randomly distrib-
uted patches. A similar pattern holds also for the eigenvector: the variance of the eigenvector
components of a perfect grid is always zero (S1 Text), as all the patches have the same impor-
tance. However, when we disturb the arrangement, we find that, for ne(1+σ

2) small, the vari-
ance in the importance of patchesC increases rapidly (S1 Text). The important patches, i.e.,
the patches associated with a large eigenvector component, are not uniformly distributed in
space, but rather they are spatially clustered (S1 Text). As such, not only the eigenvector is lo-
calized (largeC), but the localization is spatial, with all the important patches enclosed in a
small region of the landscape (Fig 4).

Fig 4. Spatial localization of metapopulations close to extinction. The metapopulation can persist in two different regimes: for small ne(1+σ
2), and

therefore small λ, the leading eigenvector (i.e., that associated with λ) is highly heterogeneous (highΨ, top left), while for large ne(1+σ
2), all patches have

roughly the same eigenvector component (lowΨ, bottom left). When the metapopulation is close to extinction (middle column, λ� δ), the equilibrium values
pi are well approximated by the eigenvector componentwi. When the eigenvector is heterogeneous, the metapopulation is maintained by few patches with
high probability of persistence (those with highwi). The interesting feature is that these patches are spatially localized, so that a small region of the landscape
contributes disproportionately to persistence. This is not the case when λ� δ, in which case multiple eigenvectors influence p, resulting in an almost uniform
distribution of the pi (right column).

doi:10.1371/journal.pcbi.1004251.g004
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Discussion
By modeling fragmented landscapes as networks [4, 6] in which the nodes are patches and the
weighted edges represent dispersal, we have shown that metapopulation persistence can be
studied analytically for the case in which patches are randomly distributed in the landscape,
and patch values are independently sampled from some distribution.

The derivation highlights that a few key quantities determine the metapopulation capacity:
the density of the patches, with denser landscapes yielding a higher probability of persistence;
the shape of the dispersal kernel; the number of dimensions; and the variability in patch value,
with higher variance being beneficial.

Our analysis provides a null model for metapopulation persistence. For a given empirical
landscape, in which the patches positions are not necessarily described by a uniform distribu-
tion and patch values are not independent of patch position [7, 26], the effect of these features
on persistence can be disentangled from the effects of other factors by contrasting the metapo-
pulation capacity of the empirical landscape with what is expected according to
our framework.

Interestingly, we found that even a very small amount of disorder and variation are benefi-
cial for persistence. First, the variance in patch values has a very strong positive effect on the
metapopulation capacity, meaning that highly heterogeneous patch values yield higher λ than
homogeneous ones. Second, we found that more “disordered” arrangements of the patches in-
crease both the metapopulation capacity and the expected proportion of occupied patches.
This is especially relevant when metapopulations are close to extinction, as localization be-
comes key for maintaining the metapopulation viable, albeit in a spatially confined region.
Note that these analytic results shed light on previous simulations suggesting that unequal
spacing between the patches is beneficial for populations close to extinction [18], and are con-
sistent with what was found when considering stochastic dynamics [35].

The development in the study of metapopulation models is paralleled by that of contact pro-
cesses in infectious diseases. Our results could find applications in the case of diseases spread-
ing on a “geographic” network (e.g., agricultural pests). Similarly, the fact that variance in
patch value increases the metapopulation capacity would suggest that adding individual vari-
ability to the recovery time and infectiousness would lead to faster transmission and an in-
creased chance of epidemic outbreaks.

Although we have examined the case of randomly distributed patches using a uniform dis-
tribution, the same approach holds when the distribution is not uniform [26]. For example, ri-
parian plants in a landscape crossed by a river will be concentrated in the vicinity of the water,
leading to a non-uniform distribution. Fortunately, in the limit of many patches, any distribu-
tion can be taken into account, by evaluating analytically or numerically the integral defining
ne in the general case (S1 Text). Similarly, we accounted for an integer number of dimensions,
but a fractional d (e.g., in a fractal-like river basin) would not alter the framework. Finally, we
assumed that species can disperse equally in all directions, with no preference. When there is a
clear preferential direction of dispersal (e.g., wind-dispersal of seeds, or fish larvae dispersing
in a river), the theory of Euclidean RandomMatrices can be extended to account for this lack
of symmetry [36]. There are indeed several ways to generalize this work. One can consider a
scenario where extintion and colonization have a different dependence on patch values or in-
clude a dependence on the latter in the dispersal kernel. These complications can all be viewed
as generalizations of our approach, where new correlations are introduced between the ele-
ments of the random matrix.

The derivation of a criterion for metapopulation persistence bears a striking resemblance to
the derivation of stability criteria for large ecological communities [37, 38], as in both cases the
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use of random matrix theory led to the identification of the few basic parameters responsible
for the large-scale behavior of the systems. The advantage of this approach is that, once the
modeling of the matrices is in place, the derivation of the results requires only elementary alge-
bra. Random matrix theory is currently experiencing an impressive growth [39], greatly ex-
panding the potential for biological applications.

Supporting Information
S1 Text. Supplementary Methods and Results. Background on Species Occupancy Models
(SPOMs); approximations of the stationary state; derivation of the persistence criterion; sup-
plementary results on nonmonotonic kernels.
(PDF)
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