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Node centrality measures are among the most commonly used analytical techniques for

networks. They have long helped analysts to identify “important” nodes that hold power

in a social context, where damages could have dire consequences for transportation

applications, or who should be a focus for prevention in epidemiology. Given the

ubiquity of network data, new measures have been proposed, occasionally motivated

by emerging applications or by the ability to interpolate existing measures. Before

analysts use these measures and interpret results, the fundamental question is: are

these measures likely to complete within the time window allotted to the analysis? In this

paper, we comprehensively examine how the time necessary to run 18 new measures

(introduced from 2005 to 2020) scales as a function of the number of nodes in the

network. Our focus is on giving analysts a simple and practical estimate for sparse

networks. As the time consumption depends on the properties in the network, we nuance

our analysis by considering whether the network is scale-free, small-world, or random.

Our results identify that several metrics run in the order of O(nlogn) and could scale to

large networks, whereas others can requireO(n2) orO(n3) andmay become prime targets

in future works for approximation algorithms or distributed implementations.

Keywords: empirical study, node centrality, scale-free, small-world, synthetic graph generation

1. INTRODUCTION

Since its emergence in the second half of the twentieth century, measuring node centrality has
become one of the core tasks of network analysis. A plethora of measurements have been proposed,
to reflect different notions of “importance” for a node in a network. For example, a node may
be more central if its removal would have a noticeable impact on a network characteristic [i.e., a
“vitality centrality” approach as shown by Koschützki et al. (2005)] selected by the analyst given the
research context (e.g., number of components, diameter). Alternatively, a node can be deemedmore
essential if it is more often traversed [i.e., the “walk structure perspective” discussed in Borgatti
and Everett (2020) or “Path-Based Measures” used by Saxena and Jadeja (2022)]. This leads to
many specific measures based on how traversals are aggregated [e.g., summing them in closeness
centrality introduced in Beauchamp (1965) or taking the maximum shortest path in eccentricity
centrality as proposed by Hage and Harary (1995)], and whether all paths are counted [e.g., as
in Katz centrality from Katz (1953)] or only those of the shortest length [e.g., as in betweenness
centrality from Freeman (1977)]. Such node centrality measures have been applied across a wide
range of domains, ranging from the identification of prominent actors in social networks [also
known as “ego networks” in Everett and Borgatti (2005)] to the position of services and goods
within cities (Baniukiewicz et al., 2018). Applications have shown that the initial definitions
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and algorithms of certain centrality measures needed to be
adapted to cope with large network sizes, leading to a wealth
of research in parallel algorithms (Jamour et al., 2017) and
approximation algorithms (Matta et al., 2019). Node centrality
measures such as betweenness have thus reached a mature status:
we know when the cost of the original algorithm may not
be feasible for a given analysis, and we can then switch to
a parallel/approximation approach or a different measure that
captures similar aspects (Singh, 2022).

In contrast to the established measures introduced in the
twentieth century, there is a paucity of research regarding
the scaling behavior of many of centrality methods created in
since the 2000’s. As shown in online repositories of centrality
measures such as CentiServer (https://www.centiserver.org/
centrality/list/), 23measures were created prior to 2000 and about
380 have been proposed since then. The growing number of
measures has even accelerated in the recent years, from 10 to 20
new measures annually in the early 2010’s to almost 40 in 2017
and 2018, and 63 just in 2019. Recent works continue to propose
such general measures (Fronzetti Colladon andNaldi, 2020). This
number only accounts for the measures listed on the repository,
hence it is possible that the actual list is even longer. The lack
of information on the scalability of these new measures has three
related consequences. First, it creates a limitation when analyzing
large networks, such as biological and social networks formed of
billions of nodes (Joyce et al., 2010; Ugander et al., 2011). Indeed,
analysts may refrain from using a metric without knowing how
long it will take, or whether the analysis would finish within a
given time period. This creates a gap between the growing set
of available measures and the much smaller set of options with
a guaranteed computational cost. Second, there is an impact on
the research landscape: if we knew that certain node centrality
measures do no scale well for current applications, then we would
be able to propose parallel and/or approximation algorithms to
put them within reach of analysts. This is exemplified by recent
works in which the realization that a new centrality measures
do not scale well “beyond hundreds of thousands of vertices” is
soon followed by the emergence of algorithms that are orders of
magnitude faster (van der Grinten et al., 2021). More globally,
efforts are underway in the network science community to use
performance-oriented algorithmic techniques that allow for an
efficient computation of newer node centrality measures on big
network datasets (van der Grinten et al., 2020). Third, there is a
growing interest in creating “integrative” measures that combine
a basket of centrality measures (Salavaty et al., 2020; Keng et al.,
2021). If analysts knew that the overall cost was driven by a few
specific measures, the combination could be trimmed to remain
informational while computing significantly faster.

To guide these efforts and equip analysts with measures
that they can use, this paper performs an assessment of several
measures introduced from 2003 to 2020. Specifically, our goal
is to identify measures that may not scale well in practice. On
the one hand, the worst case scenario may be much higher than
cases encountered by analysts, thus enabling the processing of
larger networks in practice than under a theoretical upper bound.
On the other hand, an estimate based on random networks
may turn out to be inaccurate, thus leaving analysts in the dark

for the actual resource needs of the algorithm. Consequently,
our empirical measures are performed on the three structural
archetypes most commonly cited (Lofdahl et al., 2015; Wang
et al., 2019): small-world (i.e., high clustering and low average
distance), random, and scale-free networks (i.e., power-law
degree distribution). By identifying scaling bottlenecks for recent
measures across these three sparse networks, our empirical
analysis provides a list of algorithms that are prime candidates
for approximation or parallelization in future studies.

The remainder of this paper is organized as follows. In
Section 2, we provide a brief summary of the 18 centrality
measures empirically assessed in this paper. The equation for
each measure is provided in our Supplementary Material. Since
we need to generate networks with set properties to perform
each measurement, the background section also covers the
fundamentals of synthetic network generation. Then, Section 3
explains how we generated the networks, performed the
measurements, and obtained the scaling behaviors. These scaling
behaviors form the key results of this paper and are provided in
Section 4, before the final discussion in Section 5.

2. BACKGROUND

2.1. Recent Centrality Metrics
We selected a sample of measures with a broad applicability,
developed since the mid 2000’s, thus following the dichotomy of
Mnasri et al. (2021) who differentiate “classic” algorithms from
the “latest” ones. Consequently, we did not include measures that
are highly specific to applications such as brain networks (Crofts
and Higham, 2009; Joyce et al., 2010), protein-protein interaction
networks (Tew et al., 2007), clinical psychology (Jones et al.,
2021), or other particular domains (Zarghami and Gunawan,
2019). Indeed, analysts already have access to guidance on the
use of such measures via several dedicated reviews (Jalili et al.,
2016; Ashtiani et al., 2018; Das et al., 2018; Bringmann et al.,
2019). Our objective is thus closer to the recent work of Oldham
et al., which examined the behavior of 17 centrality metrics across
a variety of networks (Oldham et al., 2019). While their work
informs analysts on redundancy across measures (i.e., correlation
of measures), our selection seeks to reveal the cost of measures
before analysts embark on computing them.

The 18 measures used in this study are listed in Table 1

together with their reference and a succinct description. A
complementary and deeper description is provided in our
Supplementary Material, where the equation is also stated for
each measure.

Many of these studies (e.g., Coreness, Decay, Geodesic k-
path, LeaderRank, Local Bridging, DMNC, Subgraph, Wiener
Index) do not report the time complexity or execution speed of
the algorithm. This observation should not be interpreted as
a negative point for such studies, as they may have focused
on the theoretical properties of the measure or the existence
of a new measure “in between” existing ones, rather than
emphasizing scalability. However, it means that analysts have
limited indications about execution speed if they wish to apply
these measures. To understand the cost structures provided
by some of the algorithms, we use the following notation:
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TABLE 1 | The 18 centrality measures used in this study.

Centrality name Year References Based on

Subgraph 2005 Estrada and Rodriguez-Velazquez,

2005

Eigenvalues to count close walks

Geodesic K-Path 2006 Borgatti and Everett, 2006 Number of nodes reachable via shortest path of

bounded length

Maximum neighborhood component 2008 Lin et al., 2008 Size of the largest connected component within the

direct neighbors of a given node

Density of maximum neighborhood component Lin et al., 2008 Ratio of edges to nodes within the largest connected

component between a node’s neighbors

Decay Jackson, 2010 Proximity between a given node and every other node,

weighted by a decay rate

Topological coefficient 2009 Zhuge and Zhang, 2009 Average number of neighbors of a given node that are

also neighbors to a different node

Lobby Index Campiteli et al., 2013 Largest integer k such that the node has at least k

neighbors with a degree of at least k.

Coreness 2010 Kitsak et al., 2010 Sum of k-shell indexes of a given node’s neighbors

Leverage Joyce et al., 2010 Degree of a node relative to its neighbors

Group Narayanam and Narahari, 2010 Game theory, to measure the marginal increase in group

influence

Wiener Index 2011 Caporossi et al., 2012 Average distance from a given node to all other nodes

K-Path Alahakoon et al., 2011 Number of random paths of length k from all nodes that

include a given node

Diffusion Degree Kundu et al., 2011 Degree contribution of a node and its neighbors,

weighted by a propagation probability

LeaderRank Lü et al., 2011 Convergence of a random walk

Laplacian Gutman and Zhou, 2006 Degrees of a node and its neighbors. Equivalent to using

eigenvalues in the Laplacian

Local Bridging 2016 Macker, 2016 Ratio of shortest paths going through a node, modulated

by its degree and degree of neighbors

VoteRank Zhang et al., 2016 Spreading ability, measuring by the convergence of an

election process between neighbors.

Heatmap 2020 Durón, 2020 Sum of distance from a node to all others (i.e., farness)

and average farness of the neighbors.

Divisions in the table emphasize publication years.

n and m are the number of nodes and edges, respectively,
1 is the maximum degree, r is the number of nodes for
which the centrality would be computed (generally used in an
algorithm that seeks to find the “top r”), and K is a user-defined
number of iterations or repetitions. Several of the measures
have complex cost structures, which may be difficult to apply
for analysts. This includes VoteRank which runs in O(m +

rlog(n) + rm2

n2
), Group centrality which takes O(t(n + m)K +

nlog(n) + rn + rKm) (t is a polynomial), or k − path which
performs an approximation in O(k3 × n2−2α × ln(n)) (where
α is an approximation parameter and k is a function of m and
n). Several measures report a simpler time complexity, such
as O(n + m) for diffusion degree, O(m + n × 12) for the
Laplacian, or O(K × (n + m)) for Topological. However, these
costs may assume different underlying data structures for the
network [e.g., adjacency/incidence matrix, adjacency/incidence
list, compressed representations as in Besta et al. (2018)]. This
is particularly the case to access a node’s neighbor, which is the
primary operation involved in several centrality measures (e.g.,
Diffusion, Leverage, LobbyIndex, MNC/DMNC). Consequently,

costs may be different when using the representation offered by a
common network library such as NetworkX .

The difficulty of obtaining or applying the time complexity
of the algorithms is compounded by the challenge of comparing
their performances empirically. Indeed, none of the eight studies
employing empirical networks had a network in common
(Table 2), and studies are performed using differen hardware
configurations (which may not resemble today’s workstations).
These challenges motivate the objective of this paper to provide
one estimate based on practical differences between networks
(small-world, scale-free, random), based on one experimental
set-up. The next sub-section details why the estimate is provided
as a function of the number of nodes.

2.2. The Sparsity of Complex Networks
Several of the studies listed in Table 1 followed their introduction
of a new centrality measure by its empirical evaluation on
a variety of networks, primarily to confirm that “important”
nodes are identified. The networks used are summarized in
Table 2. The density is defined as the ratio of edges in the
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TABLE 2 | Density of networks used in previous experimental assesssments of centrality measures.

Centrality Network Number of nodes n Number of edges m Density

Group Centrality Western States Power Grid 4,940 6,594 undirected 0.0005

Collaborations in astrophysics 16,705 121,251 undirected 0.0008

K-Path Kazaa file sharing 2,424 13,354 undirected 0.0045

SciMet citations 2,729 10,416 undirected 0.0027

Co-authorships in condensed matter 23,133 186,936 undirected 0.0007

Citations (Cit-HepPh) 34,546 421,578 directed 0.0007

Company emails at Enron 36,692 367,662 undirected 0.0005

Social (Epinions1) 75,879 508,837 directed 0.00008

Social (Slashdot0922) 82,168 948,464 directed 0.00014

Heatmap University emails in Spain 1,133 5,451 undirected 0.0085

Hyperlinks in US political blogs 1,222 16,714 undirected 0.0224

US Airline Flights in 2010 1,572 17,214 undirected 0.0139

Facebook from UC Irvine students 1,893 13,835 undirected 0.0077

Laplacian Terrorist network mapped by Krebs 37 170 directed 0.1276

LeaderRank Users of delicious.com in May 2008 1,675,008 169,378 undirected 0.0000001

Subgraph Protein–protein interaction (yeast) 2,224 6,608 undirected 0.0026

Protein–protein interaction (bacterium) 710 1,396 undirected 0.0055

Words in Roget’s Thesaurus of English 994 3,640 undirected 0.0073

Words in Online Dict. of Library & Info. Science 2,898 16,376 undirected 0.0039

Collaborations in computational geometry 3,621 9,461 undirected 0.0014

Citations of papers on graph drawing 249 635 undirected 0.0205

Internet at the autonomous system (1997) 3,015 5,156 undirected 0.0011

Internet at the autonomous system (1998) 3,522 6,324 undirected 0.0010

Topological DBLP research database 664,188 79,128 directed 0.0000001

VoteRank Friendships of Youtube users 1,134,890 2,987,624 undirected 0.000004

Co-authorship in condensed matters (arXiv) 23,133 93,497 undirected 0.0003

Hyperlinks in Berkeley/Stanford webpages 685,230 7,600,595 directed 0.00001

Hyperlinks in U. Notre Dame webpages 325,729 1,497,134 directed 0.00001

Note that density is calculated as m
n×(n−1)/2 for undirected networks and m

n×(n−1) for directed networks.

network (m) over the number of potential edges if all nodes
were connected (which depend on whether the network is
directed or undirected). We observe that the density is very
low for all networks used in experimental studies of centrality
measures. Networks with such low density measures are known
as sparse. Sparse networks are thus common when applying
centrality measures, which motivates the focus of our paper on
sparse networks.

For a network to be sparse, it means that the number of
existing edges will always be relatively low. The range of possible
number of edges is even narrower when considering scale-
free networks based on the preferential attachment mechanism
(Del Genio et al., 2011). Intuitively, the power-law degree
distribution of scale-free networks signifies that a few nodes
are very “rich” in social capital/ties, while most of the network
is order of magnitudes “poorer.” If the number of edges is
increased across the network, then the wealth of most nodes
rises and it gradually blurs the distinction with the “rich” nodes.
For this reason, scale-free networks are often studied in a
narrow range of densities, occasionally called the “appropriate
connection density” (Yang et al., 2013). This range is exemplified

by the experiments of Duron who examined heatmap centrality
on scale-free networks with a density ranging from 0.002 to
0.02 (Durón, 2020). As the number of edges is small, analysts
often estimate the time consumption of a centrality algorithm
solely by the number of nodes. For instance, Zhang et al.
(2016) reported that “the CPU running time is 28.25 min [...]
to find top-30 important nodes in network with 1,589 nodes”
using another algorithm, which motivated the introduction
of their proposed VoteRank centrality. Consequently, the
present manuscript focuses on reporting our running time
as a function of the number of nodes. Note that future
examinations may also include the number of edges, as
emerging results and generators are examining dense networks
(c.f. Section 5).

2.3. Generating Networks for
Benchmarking
Network algorithms are eventually destined to be applied onto
real-world networks, leveraging certain properties to achieve
goals such as community detection or identification of important
elements via centrality measures. Despite the ubiquity of large
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network data (e.g., via Facebook or Twitter), there are at least
three reasons for which we also employ network models to
generate synthetic networks (Ali et al., 2014). First, applying
algorithms on a set of common real-world networks helps to get
an estimate of performances and compare with other solutions,
but synthetic network generators allow to more comprehensively
characterize an algorithm’s effectiveness (e.g., accuracy of the
answer) and efficiency (e.g., runtime) (Kanovsky, 2010). As
summarized by Rossetti in the context of community detection
algorithms, “the main rationale behind the adoption of network
generators as benchmarks while analyzing the performances of
a [network] algorithm lies in the ability to produce datasets that
allow controlled environment testing.” (Rossetti, 2017) This need
for benchmarking often motivated the development of synthetic
generators, particularly in fields where real-world instances were
scarce (Giabbanelli, 2010; Sahraeian and Yoon, 2012; Pasta and
Zaidi, 2018). Second, snapshots of large real-world networks
are often only samples, hence they miss links that were not
expressed within a specific time window or happen between two
entities in one network instead of another (Lofdahl et al., 2015).
Third, highly detailed network data destined for applications
such as agent-based modeling (e.g., spread of word-of-mouth
based on social ties and personal characteristics) may face privacy
concern at the point of access (Qin et al., 2017) (e.g., retrieving
and assembling contact lists across cellphone users) or include
sensitive information, which can be difficult to anonymize
(Lofdahl et al., 2015).

Synthetic networks should capture the relevant structural
properties of the real-world networks for which the algorithm
is intended to be used, such as a certain degree distribution or
clustering. At the same time, the network generators need to
conserve a sufficient degree of freedom to generate networks
based on properties that are unknown to algorithms’ developers
and may impact effectiveness or efficiency. For example, the
ability to generate networks of various sizes (i.e., number of
nodes) can help to identify how the runtime depends on network
size (i.e., time complexity), hence assessing the scalability of an
algorithm (Rossetti, 2017). In addition, the research community
often favors generators that are relatively simple, based on only
a few rules (Mei and Stefa, 2009; Sahraeian and Yoon, 2012;
Wang et al., 2019). Indeed, “a simple method for generating
complex networks that have specific properties of a real system
is of significant importance (Wang et al., 2019).”

Competing demands are thus placed onto network generators:
they need to be sufficiently flexible, such that “algorithms may
be tested and compared in different conditions” (Kanovsky,
2010), but they also need to specifically capture a set of desired
properties. As a result, generators are unable to generate certain
combinations (e.g., some network sizes cannot be obtained)
or only yield a subset of the target networks with the desired
property. For example, consider hierarchical network generators
in which the next iteration of a network consists of making k
copies and adding new edges (Ravasz and Barabási, 2003; Barriere
et al., 2016). A generatorAmay use a network of |A0| = 50 nodes
as a start, and duplicate it at every iteration. Another generator B
may start with |B0| = 256 nodes and make five copies. A user of
Amay thus only be able to generate networks of sizes 50, 100, 150,

etc., while users of B will have 256, 1, 280, 6, 400, etc., nodes. This
is not usually a major limitation: a user interested in determining
the time complexity of a network algorithm needs to perform a
few measurements on networks of different sizes, rather than a
measurement for every network size. In other words, if a network
of a specific size cannot be generated, that may be unimportant
(that size may not have been needed) or tolerable (a similar size
may suffice). A problem arises when several generators are used.
For the generators A and B, a user who needs matching network
sizes can only obtain the first one at |A7| = |B2| = 6, 400, which
may be much larger than needed in an application context. The
problem of limited and incompatible networks across generators
is particularly salient in application areas such as simulations
(Amblard et al., 2015). The number of nodes and average degree
may need to match the population size and average contacts,
and various network generators are used due to the uncertainty
in the nature of the social ties (e.g., due to unknown mobility
patterns in the population) (Giabbanelli et al., 2014). If each
generator yields an even slightly different virtual population in
size or average degree, then simulation results would hardly
be comparable.

3. MATERIALS AND METHODS

3.1. Overview
In our experimental approach, the scaling behavior of 18 node
centrality metrics is computed on scale-free networks, small-
world networks, and an equivalent randomized network serving
as a comparison case. We primarily study scaling (i.e., wall-clock
time) in relation to network size (n).We start with small networks
of size n = 100 and progressively increase the network size
until we reach 16, 000. We noticed in early experiments that wall-
clock times for small networks (n = 100, 200, . . . , 3, 200) tended
to be too similar across centrality metrics, since algorithms
often run very quickly for such instances. We thus sweep the
range of small networks quickly (by doubling in size from n =
100 up to n = 3, 200) and then devote more measurements
to larger networks (by increasing in size by 1, 600 i.e., n =
4, 800, 6, 400, 8, 000, . . . , 14, 400, 16, 000). This leads to a total of
14 network sizes. To account for variation in network structure,
we generate enough instances of each network type at each size to
achieve a 95% confidence interval in the average wall-clock time.
Given the network size (x-axis) and associated wall-clock time of
a centrality measure (y-axis), we then use curve fittingmethods to
identify the relationship (i.e., the scaling behavior of the centrality
algorithm).

Since the scaling behavior of node centrality measures also
depends on the number of edges, we focus on sparse graphs
and ensure that network instances match in edge density across
different network types. For example, at size n = 800, all
instances of small-world, scale-free, and random networks will
have a comparable number of edges within the limitations of
their respective network generators. Since big network data is
often processed in the cloud or on high-performance computing
clusters (HPC), we measure the computation time on an HPC
with dual Intel Xeon Gold 6126 processors.
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3.2. Network Generation
3.2.1. Generators, Goals, and Constraints

A small-world generator creates a network with low average
distance and high clustering, thus capturing the notion that
individuals form groups and that a few individuals belonging
to different groups act as shortcuts. The Watts-Strogatz (WS)
generator starts with a cycle of n nodes, each connected to its k
nearest neighbor (thus providing high clustering), then rewires
edges with probability p to create shortcuts (hence lowering
distances). Given the rewiring process, the graph may no longer
be fully connected. A scale-free network has a power-law degree
distribution, hence most nodes have a regular number of social
ties while a few nodes (potentially acting as “hubs”) have a
much larger number of ties. The emergence of these networks
is explained by growth and preferential attachment, which are
the core mechanisms of many scale-free network generators in
which n nodes are added to the graph and wired preferentially
to high degree nodes. We use the method by Bollobás et al.
(2003) to create directed scale-free networks, which is governed
by several parameters: the number of nodes n, the probabilities
that a new node connects to an existing one based on its in-
degree (α) or out-degree (γ ), and the probability β for existing
nodes to become connected. The generator is constrained such
that α + β + γ = 1.

A simple random network exhibits neither of these properties:
the clustering is low (hence not small-world) and the degree
distribution is not a power-law (it may be either Poisson or
binomial depending on network size). Such networks may be
straightforwardly generated using the Erdős-Rényi model, in
which there is a probability p to connect pairs of (distinct)
nodes chosen among n. Although these models simple, we select
them as representative generators due to their widespread use,
including as the building blocks of synthetic graphs in recent
works (Goyal et al., 2020).

The basic requirements for benchmarking or simulation is
that all networks must be connected and contain no self-loops
(edges between a node and itself). To ensure connectivity, we
use the variation by Newman and Watts on the WS model, in
which edges are added instead of being rewired (Newman and
Watts, 1999). To generate the connected random network, we
start by connecting the n nodes to form a path and then add
the remaining edges as in the Erdős-Rényi model. The scale-free
network being obtained by adding edges to existing nodes, it is
necessarily connected. Self-loops can simply be removed after a
network is created.

Our objective is to ensure that, for a given network size,
networks generated across all three generators are also similar in
edge density (the number of edges present out of the total possible
number of edges). The network size and edge densities are two
key characteristics that can impact the effectiveness/efficiency
of algorithms and they are also often core network metrics in
simulation applications.

For a given size n, the random network generator can
straightforwardly be made to create an instance with a desired
network density, by tuning the probability p. Given this
flexibility, this generator can be used last. In contrast, the

scale-free generator requires a fine tuning of three parameters
(α, β , γ ). It is also limited in the density that it can achieve,
as a very dense network would also become small-world (which
is not allowed by the generator) due to falling distances and a
rising clustering. The abilities and limitations of each generator
thus play a role in determining the order in which they should be
triggered, and how to tune the next generator accordingly.

3.2.2. Procedure

The edge density of a network can be measured easily, yet it is
difficult to enforce consistent density across generators.While the
small-world and random network generators allow parameters
to control the number of edges, the scale-free generator does
not. Subsequently, we solve this challenge at each network size
through three key steps. First, we sample the edge density that can
be produced by the most restrictive generator (scale-free). Then,
we tune the next generator (small-world) by establishing the
maximum number of neighbors k for each node and probability p
of additional edges, without exceeding the average from the scale-
free generator. Finally, we create the random network by using a
probability p that produces the required density.

Our overall procedure is shown in Algorithm 1. We start by
generating the i instances of a scale-free network required by the
user and we track the number of edges across these instances.
If i is too small, the estimated number of edges may not be
reliable hence additional samples are generated to achieve a 95%
Confidence Interval. In order to obtain a conservative estimate
of the duration needed for our computations on a shared cluster,
we set the base number of instances i to 100. The estimated
output from the scale-free generator is used to shape the input to
the small-world generator (parameters k and p) and the random
network, which starts with a path (to ensure connectivity) before
adding the random edges.

4. RESULTS

To support transparency and replicability of this work, we first
explain where key results can be obtained by the readers (Section
4.1). We then confirm that comparable synthetic networks were
generated across the three properties targeted in this paper
(Section 4.2) and present our key results on time consumption
as a function of network size (Section 4.3). Table 4 summarizes
the results.

4.1. Access to Results
Our main results are provided on the third party Open Science
Framework at https://osf.io/4wy5c/. The timing results consist of
the time and density for each centrality measure, each network
type, each size, and each network instance. This produced
864, 000 measurements. The measurements were then visualized
in Tableau through an extensive collection of plots; some of
these visualizations are presented and discussed here. For full
transparency, we also included each of the generated network
instances on which we performed the measurements.

Frontiers in Big Data | www.frontiersin.org 6 February 2022 | Volume 5 | Article 797584

https://osf.io/4wy5c/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Freund and Giabbanelli Scalability of Recent Node Centralities

Algorithm 1: Generate comparable scale-free, small-world, and random networks for the desired sizes

Input: List of network sizes, number of instances i, and network generators
foreach size ∈ networkSizes do

totalEdges← 0 // tracks the running sum of edges across networks
do

foreach instance ∈ {1, . . . , i} // generate a sample of i scale-free networks
do

sf← scaleFreeNetwork(size,α,β , γ ) // create one instance using Bollobás generator
sf← sf \ loops(sf) // remove eventual self-loops
totalEdges← totalEdges+|E(sf)| // update running sum of edges

end

avgEdges←
totalEdges

100 // update estimated average across SF networks
while the estimated avgEdges has not reached a 95% Confidence Interval
foreach instance ∈ {1, . . . , i} // generate i small-world networks
do

k← 2⌊
avgEdges

size ⌋ // compute nearest neighbors for each node

p←
avgEdges

size − ⌊
avgEdges

size ⌋ // compute probability of additional edges
sw← smallWorld(size, k, p) // using Newman-Watts generator
sw← sw \ loops(sw)

end

foreach instance ∈ {1, . . . , i} // generate i random networks
do

rm← G = (V = {1, . . . , size},E = {(1, 2), . . . , (i, i+ 1), . . . , (size− 1, size)}

p←
avgEdges−|E(rm)|

( size2 −1)|E(rm)|
// adjust probability after using size− 1 edges in path

forall the u, v ∈ V(rm), u 6= v, (u, v) 6∈ E(rm) do
if U(0, 1) < p then

E(rm)← E(rm) ∪ (u, v) // for each node pair, add edge based on p

end

end

end

TABLE 3 | Average edge densities of simulated network types for a sample of the

sizes considered.

Network Type

Network size Scale-Free Small-world Random St. Dev.

100 0.03600 0.03593 0.03576 0.00010

200 0.01903 0.01900 0.01893 0.00005

400 0.01017 0.01031 0.01017 0.00006

800 0.00530 0.00558 0.00530 0.00013

1,600 0.00283 0.00316 0.00284 0.00015

3,200 0.00148 0.00170 0.00147 0.00011

6,400 0.00078 0.00093 0.00078 0.00007

12,800 0.00041 0.00050 0.00041 0.00004

4.2. Validation of our Network Generation
Procedure
To ensure that networks were similar in terms of edge density
across types (random, scale-free, small-world), we measured the

average and standard deviation of density at various network
sizes. Table 3 confirms that our procedure for generating
synthetic networks is valid, as it produced graphs with similar
edge density for each network size. Although some variations
are expected when using stochastic generators, the low standard
deviation suggests that the edge density was similar across
instances from each generator. We performed an (optional)
search for the highest density, which was obtained for α =

0.07, β = 0.86, γ = 0.07. We note that an exhaustive search
coupled with a large number of instances started to impose
a noticeable computational load, thus this process required a
high-performance computing cluster.

4.3. Computational Performance
After collecting all centrality timing results from the High
Performance Cluster, we computed the mean CPU time for each
centrality metric on each metric type (across 100 instances).
For each centrality metric and network type, the experimental
data thus records the mean CPU time (y-axis) as a function of
network size (x-axis). To identify the scaling relationship, we
established which complexity function had the best fit among
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TABLE 4 | Experimental time complexities of 18 node centrality metrics on 3

network types.

Metric Network type

Scale-free Small-world Random

Subgraph O(n2) O(n2) O(n2 log(n))

Geodesic K-Path O(n2 log(n)) O(n2) O(n2 log(n))

MNC O(nlog(n)) O(n2) O(nlog(n))

DMNC O(nlog(n)) O(n2) O(nlog(n))

Decay O(n2 log(n)) O(n2 log(n)) O(n2 log(n))

Topological O(n2 log(n)) O(nlog(n)) O(n)

Lobby index O(nlog(n)) O(n2) O(n2)

Coreness O(nlog(n)) O(n2) O(n3)

Leverage O(nlog(n)) O(nlog(n)) O(nlog(n))

Group O(nlog(n)) O(nlog(n)) O(nlog(n))

Wiener Index O(n2) O(n2 log(n)) O(n2 log(n))

K-Path O(nlog(n)) O(nlog(n)) O(nlog(n))

Diffusion degree O(nlog(n)) O(n2) O(nlog(n))

LeaderRank O(n2) O(n2) O(n3)

Laplacian O(nlog(n)) O(n2) O(nlog(n))

Local bridging O(nlog(n)) O(nlog(n)) O(nlog(n))

VoteRank O(n2) O(n3) O(n2 log(n))

HeatMap O(n2 log(n)) O(n2 log(n)) O(n2 log(n))

Situations with good scaling behaviors are shown in green while those with a quickly rising

cost are shown in red.

log(n), n, nlog(n), n2, n2log(n), and n3. Results across measures
and network types are shown in Table 4.

To further illustrate the approximation of time complexity,
we also show how the function fits the empirical data for six
measures. These illustration examples are divided based on
scaling due to the wide difference on the scale of the y-axis. The
group of measures that scale slowly (Figure 1) includes coreness,
k-path, and the lobby index. The group of measures with a
pronounced increased in CPU time (Figure 2) includes heatmap,
topological, and voter rank.

5. DISCUSSION

Beyond the classic measures such as betweenness or closeness,
a plethora of measures continue to be proposed, fueled by the
need to identify elements that bear particular importance in
a given network type (e.g., brain networks) or as a means to
complement existing measures. The time complexity to compute
many of the classic centrality metrics is well-established, with
known O(nm) solutions for betweenness and PageRank and
O(n + m) for closeness and harmonic centrality. In contrast,
the time complexity for many recent measures is less well
understood, which may preclude their application to big network
data, in which scalability is essential. Although estimating the
worst case time complexity is feasible for several algorithms, their
performance on real-world big network data may be drastically
different from their theoretical worst case analysis. Consequently,
our aim was to characterize the computational time necessary to

perform 18 recent node centrality measures on large networks
with commonly encountered properties such as scale-free or
small-world.

Our results show that several centrality measures can cope
with large network-sizes (Table 4–green), which makes them
suitable for big network data as well as potential inclusion
for composite measures or “centrality hybridization” (Singh
et al., 2020). Under the current algorithm and implementation,
several other measures (Table 4–red) would be limited to smaller
networks, which makes them a prime target for follow-up studies
using either distributed and/or approximation algorithms to
deliver computational improvements. Such studies have a rich
history in network science and continue to deliver improvements
for well-known algorithms, as exemplified by ongoing works on
parallel algorithms for degree or betweenness centrality (García
and Carriegos, 2019), and approximation algorithms for Katz
centrality (Lin et al., 2021). Our work thus provides the research
community with a potential roadmap to improve emerging
centrality measures by leveraging existing techniques. A possible
starting point would be to map these emerging measures to the
most closely related classic centrality metrics, and then assess
whether established techniques for scalability can be reused with
only minimal adjustments. Intuitively, we could expect that such
a mapping may be facilitated by the wealth of empirical studies
that employ several classic centrality metrics alongside a handful
of newer metrics and show correlations either between centrality
measures (Lavin et al., 2018) or with an application-dependent
variable (Baniukiewicz et al., 2018). That is, researchers would
be able to see that a newer metric is highly correlated with
classic ones, and then attempt to reuse scalability techniques that
worked on the classic measures. However, such correlation plots
occasionally show that new metrics form isolated clusters, which
bear no relation with classic measures (Zanghieri et al., 2021).
Similar results were found using the less common approach of
comparing measures via benchmarks: classic measures behaved
similarly, whereas newer measures formed their own group (Bao
and Zhang, 2021). The matter of re-using techniques for scalable
implementations by relating newer measures to older ones is thus
an open problem of its own.

We also briefly note that there is a strong research interest
in GPU graphs analytics. The abundance of GPUs and their
potential to speed up centrality measures was already noted
over 10 years ago by Sharma et al. (2011). GPUs demonstrated
their potential as hardware accelerators for classic metrics such
as betweenness centrality (McLaughlin and Bader, 2018) or
Eigenvector centrality (Sharma et al., 2011). More recently, this
potential has been confirmed in the case of relatively newer
measures such as the lobby index (Xiao et al., 2020).

We note that the cost of these centrality metrics is not solely
a function of the number of nodes, but also of the structure
of the network. This effect can be seen within a single metric,
for example Coreness is in O(n3) on random networks but
faster on small-world networks and even more on scale-free
networks. One network type is not systematically worst than
another for performances. For instance, topological centrality
is more expensive than VoteRank on a scale-free network, but
noticeably more efficient on small-world networks (O(nlog(n))
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FIGURE 1 | Sample of our experimental results on Coreness, K-Path, and Lobby Index for three network types (scale-free, small-world, random) of comparable

network edges at varying network sizes (n = 100, 200, . . ., 16,000). Scaling is obtained by fitting on each column, for each network type.

vs. O(n3). This shows that while network size has a predictable
effect on centrality cost, and the only uncertainty is its magnitude,
network type is far less predictable, and can even have opposite
effects on a pair of metrics. In some cases, we found network
type is so significant that it vastly exceeds the effect of network
size on centrality performance. For example, the mean cost of K-
Path Centralit in a Scale-Free Network of 3, 200 nodes is higher
than the mean cost in a Small-World Network of 12, 800 nodes.
Our results thus suggest that network type should be a common
factor provided alongside time complexity for research involving
centrality, as we have shown it is capable of having an equivalent
effect on performance as network size.

Identifying whether a network exhibits certain common
properties, such as Scale-Free or Small-World, is generally
feasible for large networks (Barabasi, 2014), and even attainable
in linear time for variations of these properties (Li et al., 2005;
Humphries and Gurney, 2008; Zhou et al., 2020). In addition,
analysts may already know whether their networks have certain

properties, given the domain of application or familiarity with
similar datasets. Our results thus enable researchers to identify
metrics that have desired scaling behaviors given a target network
size and type.

There are two main limitations to this research. First, our
article is devoted to sparse complex networks. As shown in
Table 2, all networks used in experimental studies for the
centrality metrics considered here are sparse. However, this may
have reflected a historical view of network science regarding
scale-free networks, which were thought to all be sparse
(Del Genio et al., 2011) and were usually generated using a
preferential attachment mechanism. However, there is increased
theoretical (Ma et al., 2020) and empirical evidence (Courtney
and Bianconi, 2018) (e.g., from online social networks and
brain networks) that scale-free networks can be dense. Several
generators have thus been recently proposed to create dense
scale-free networks (Courtney and Bianconi, 2018; Haruna and
Gunji, 2019, 2020). It is thus possible that the next wave
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FIGURE 2 | Sample of our experimental results on Heatmap, Topological, and VoteRank for three network types (scale-free, small-world, random) of comparable

network edges at varying network sizes (n = 100, 200, . . ., 16,000). Scaling is obtained by fitting on each column, for each network type.

of centrality measures will be evaluated on a broader set of
networks, including both sparse and dense cases. Consequently,
their execution time may not be solely expressed as a function
of the number of nodes, as done here for the case of sparse
networks. Experiments on scalability could thus use the newer
generators to produce scale-free graphs for a broad range of
number of nodes and number of edges. Small-world generators
and random generators can already produce such networks. Such
updated experimental procedure will allow to report scalability as
a function of the number of nodes and edges.

Second, we focused on three common archetypes of networks:
small-world, scale-free, and random. In practice, there is a
multiplicity of other network types. For example, networks may
be polarized (Lofdahl et al., 2015), hierarchical (Giabbanelli,
2011), planar (Giabbanelli, 2010), or dynamic. This diversity
is exemplified in generators of dynamic networks, which use
methods as varied as stochastic blockmodels (Kim et al., 2018),
graph neural networks (Skardinga et al., 2021), or event models

(Fritz et al., 2020). A potential follow-up study could thus extend
our approach by including network properties to assess whether
they have pronounced effects on the cost of computing various
measures. In turn, this may require the identification of suitable
network generators and the development of a coherent procedure
to create comparable networks across diverse generators.
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