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APC = activated protein C; EC = endothelial cell; ecNOS = endothelial constitutive nitric oxide synthase; ICAM = intercellular adhesion molecule;
ICU = intensive care unit; LPS = lipopolysaccharide; NO = nitric oxide; PC = protein C; PGI2 = prostacyclin; TF = tissue factor; TFPI = tissue
factor pathway inhibitor TM = thrombomodulin; vWF = von Willebrand factor.
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The vascular endothelium regulates the flow of nutrient sub-
stances, diverse biologically active molecules and the blood
cells themselves. This role of endothelium is achieved through
the presence of membrane-bound receptors for numerous mol-
ecules, including proteins, lipid transporting particles, metabo-
lites and hormones, as well as through specific junction
proteins and receptors that govern cell–cell and cell–matrix
interactions [1,2]. Endothelial dysfunction and/or injury with
subendothelium exposure facilitates leucocyte and platelet
aggregation, and aggravation of coagulopathy. Therefore,
endothelial dysfunction and/or injury should favour impaired
perfusion, tissue hypoxia and subsequent organ dysfunction.

The present review describes, within the context of sepsis,
why altered endothelial properties may be suspected to be
involved in organ failure (Table 1).

Endothelial injury
Endothelial injury describes a state in which microscopically
visible endothelial cell (EC) shape change or injury can be
identified, as well as defects in endothelial lining or elevated

soluble markers of endothelial injury [3]. Anatomical damage
to the endothelium during septic shock has been assessed in
several studies [4–6]. A single injection of bacterial
lipopolysaccharide (LPS) has long been demonstrated to be
a nonmechanical technique for removing endothelium [5]. In
endotoxic rabbits, observations tend to demonstrate that EC
surface modification occurs easily and rapidly [5,6], with ECs
being detached from the internal elastic lamina with an indica-
tion of subendothelial oedema. As early as 15 min after LPS
injection [7] cellular injuries are apparent, with nuclear vac-
uolization, cytoplasmic swelling and protrusion, cytoplasmic
fragmentation, and various degrees of detachment of the
endothelium from its underlying layer. This can also be
observed 10 hours after the onset of sepsis in a caecal liga-
tion and puncture rat model [8]. Proinflammatory cytokines
increase permeability of the ECs, and this is manifested
approximately 6 hours after inflammation is triggered and
becomes maximal over 12–24 hours as the combination of
cytokines exert potentiating effects [8,9]. Endothelial physical
disruption allows inflammatory fluid and cells to shift from the
blood into the interstitial space.
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Abstract

During the past decade a unifying hypothesis has been developed to explain the vascular changes that
occur in septic shock on the basis of the effect of inflammatory mediators on the vascular endothelium.
The vascular endothelium plays a central role in the control of microvascular flow, and it has been
proposed that widespread vascular endothelial activation, dysfunction and eventually injury occurs in
septic shock, ultimately resulting in multiorgan failure. This has been characterized in various models of
experimental septic shock. Now, direct and indirect evidence for endothelial cell alteration in humans
during septic shock is emerging. The present review details recently published literature on this rapidly
evolving topic.
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Plasma levels of thrombomodulin (TM), intercellular adhesion
molecule (ICAM)-1 and E-selectin may be measured in order
to assess EC injury [10,11]. von Willebrand factor (vWF) and
its propeptide can also be measured as circulating blood pro-
teins to assess endothelial injury. It has been demonstrated
that the half-life of mature vWF and that of its propeptide
differ fourfold to fivefold [12]. The molar ratio of the propep-
tide to mature vWF can serve as a tool with which to assess
the extent of EC injury and to distinguish between acute and
chronic disease [13]. In patients with diabetes mellitus
propeptide levels are only slightly elevated, whereas vWF
levels are elevated twofold to threefold. In acute sepsis, both
vWF and propeptide are elevated several fold. High levels of
TM, ICAM-1 and vWF have been reported in several inflam-
matory diseases, sepsis and acute lung injury in patients with
nonpulmonary sepsis, in which endothelial damage is thought
to be important [11,14,15].

In a recent report, Mutunga et al. [16] developed a method
for detecting circulating ECs that provides direct evidence of
EC shedding in human sepsis. Blood samples were subse-
quently taken from 11 healthy volunteers, nine ventilated
intensive care unit (ICU) control patients without sepsis, eight
patients with sepsis but without shock, and 15 patients with
septic shock. EC were identified by indirect immunofluores-
cence, using antibodies to vWF and the vascular endothelial
growth factor receptor EGFR. vWF-positive EC counts per
millilitre were significantly greater in patients with sepsis
(16.1 ± 2.7 [mean ± SEM]) and septic shock (30.1 ± 3.3) than
in healthy (1.9 ± 0.5) or ICU control individuals (2.6 ± 0.6).
EGFR-positive EC counts per ongoing EC lesions were also
significantly higher in patients with sepsis (4.2 ± 1.1) and
septic shock (10.4 ± 1.2) than in healthy (0.7 ± 0.3) or ICU
control individuals (0.5 ± 0.2). Cell counts measured using
anti-vWF antibody were consistently higher than those mea-
sured using anti-EGFR antibody, but correlation between the
two counts was high (r2 = 0.93). The number of circulating
EGFR-positive ECs per millilitre was significantly higher in
patients who died of septic shock than in survivors

(12.0 ± 1.6 versus 7.1 ± 1.2; P = 0.026). An increase in circu-
lating ECs can therefore be identified during sepsis and
septic shock. That study was among the first to support the
hypothesis that endothelial damage occurs in human sepsis.

An important point is that EC injury is sustained over time. In
an endotoxic rabbit model, we demonstrated that endothelium
denudation is present at the level of the abdominal aorta as
early as after several hours following injury and persisted for at
least 5 days afterward [6,17]. After 21 days we observed that
the endothelial surface had recovered. The de-endothelialized
surface accounted for approximately 25% of the total surface.
Similarly, in 12 human volunteers receiving 4ng/kg
Escherichia coli LPS by intravenous injection, Taylor and
coworkers [18] showed that the immediate symptomatic
inflammatory stage (0–8 hours after LPS injection) was fol-
lowed after 12 hours by an asymptomatic noninflammatory
stage (volunteers were back at work). The latter stage was
characterized by decreased tumour necrosis factor,
interleukin-10, thrombin–antithrombin and plasmin–antiplas-
min complexes, and levels of TM peaked at 24 hours, suggest-
ing ongoing EC lesions. Increased TM was associated with a
level of tissue factor (TF) that was still increasing at 48 hours,
suggesting risk for activated coagulation. Indeed, TF is the
principal activator of the extrinsic coagulation pathway, and as
such is responsible for an intravascular procoagulant state.
Taylor and coworkers concluded that sustained injury to the
vascular endothelium secondary to reperfusion of the
microvasculature occurred in those asymptomatic individuals.
In our endotoxic model, we also demonstrated that at 5 days
the rabbits had maximal monocyte TF expression, which coin-
cided with maximal endothelial injury [6,17]. This, together
with altered coagulation modulation properties, may ultimately
result in intravascular microthrombosis.

Endothelial injury associated abnormal
coagulation and fibrinolysis
The outer membrane of ECs normally expresses various
membrane-associated components with anticoagulant prop-

Table 1

Physiology and pathophysiology of endothelial cells

Properties of ECs In sepsis

Surface area: 1–7 m2 ECs become injured, prothrombotic and antifibrinolytic

Weight: 1 kg/70 kg body weight They promote platelet adhesion

Number: 1–6 × 1013 cells They promote leucocyte adhesion and inhibit vasodilation

They line vessels in every organ: ‘gate keeping role’

They favour vasodilatation

They promote antithrombosis and profibrinolysis

They inhibit platelet adhesion and leucocyte adhesion

Shown are key endothelial cell (EC) functions that are altered in inflammation or sepsis.
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erties, among which are cell surface heparin-like molecules.
These molecules accelerate inactivation of coagulation pro-
teases by antithrombin and represent a TF pathway inhibitor
(TFPI) reserve [19]. The EC surface thrombin-binding protein
TM is responsible for inhibition of thrombin activity. TM, when
bound to thrombin, forms a potent protein C (PC) activator
complex (Fig. 1). Whereas unperturbed ECs confer anticoag-
ulant properties (Fig. 2), exposure to inflammatory and/or
septic stimuli rapidly lead to procoagulant behaviour (Figs 1
and 3). Moreover, the profibrinolytic property of ECs is
blunted, because of decreased release of tissue plasminogen
activator. This occurs within the context of increased release
of plasminogen activator inhibitor-1. During sepsis the proco-
agulant activity of TF increases, with transcriptional upregula-
tion of its expression on monocytes and ECs among other
cell types, whereas levels of endothelium anticoagulant mem-
brane components decrease, with internalization of TM [20]
and release of inactive TM into the bloodstream (Fig. 3). Loss
of TM and associated PC activation represents a key event,
namely decreased endothelial coagulation modulation ability.
Cleavage of TM by neutrophil elastase and other proteases
certainly participate in the reduced expression of TM.

In severe meningococcal sepsis, Faust and coworkers [21]
recently demonstrated that PC activation is impaired – a
finding that is consistent with downregulation of the endothe-
lial TM–endothelial PC receptor pathway. In 21 children
(median age 41 months) with purpura fulminans (meningo-
coccal sepsis), purpuric lesion skin biopsies exhibited
decreased expression of endothelial TM and of the endothe-

lial PC receptor as compared with control specimens, both in
vessels with and in those without thrombosis. Plasma TM
levels in the children with meningococcal sepsis (median
6.4 ng/l) were higher than those in the controls (median
3.6 ng/l; P = 0.002). Plasma levels of PC antigen, protein S
antigen and antithrombin antigen were lower than those in the
controls. In two patients treated with unactivated PC concen-
trate, activated PC (APC) was undetectable at the time of
admission, and plasma levels remained low.

Activation of coagulation concomitant with impaired fibrinoly-
sis is associated with fibrin deposition, tissue ischaemia and
tissue necrosis [22], and in critically ill patients with increased
risk for death [23,24]. Conversely, inhibition of coagulation is
associated with prevention of organ dysfunction [25,26].
Three therapeutic strategies that employ coagulation modula-
tion – TFPI, antithrombin and APC – were recently proposed
to reduce organ dysfunction and mortality in septic shock. It
has clearly been shown in various animal models of septic
shock that these treatments reduce organ dysfunction and
mortality [27,28]. This was associated with a reduction in
cytokine production [25,26,29]. With APC, it was further
demonstrated that leucocyte–endothelial interactions were
reduced [30]. Of note is the demonstration that APC was
also able to improve fibrinolysis by inhibiting plasminogen
activator inhibitor-1 [31]. Clinical phase II trials suggested
that mortality might be reduced by using these coagulation
modulators in critically ill septic patients [32–35]. Three
phase III trials of antithrombin, TFPI and APC were subse-
quently performed and recently completed in large popula-
tions of patients with severe sepsis, the net effect being an
overall lack of efficacy with antithrombin [36] and TFPI
(unpublished results), and a 19.43% reduction in relative risk
for death with APC [37].

Figure 1

Thrombomodulin and protein C activation at the microcirculatory level.
The endothelial cell surface thrombin (Th)-binding protein
thrombomodulin (TM) is responsible for inhibition of thrombin activity.
TM, when bound to Th, forms a potent protein C activator complex.
Loss of TM and/or internalization results in Th–thrombin receptor (TR)
interaction. Loss of TM and associated protein C activation represents
the key event of decreased endothelial coagulation modulation ability
and increased inflammation pathways. Adapted from Iba and
coworkers [88]. ATIII, antithrombin III; NF-κ, nuclear factor-κB; PAI,
plasminogen activator inhibitor.
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Figure 2

Coagulation and fibrinolysis pathways. Unperturbed endothelial cells
(ECs) provide anticoagulant (tissue factor pathway inhibitor [TFPI],
protein C [PC], protein S [PS], thrombomodulin [TM], heparan
sulphate [HS]) and fibrinolytic (tissue plasminogen activator [tPA])
properties. ATIII, antithrombin III; FXa, coagulation factor Xa; M,
activated monocyte; PAI, plasminogen activator inhibitor; SMC,
smooth muscle cell; TF, tissue factor.
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Although ECs probably have an important role in dissemi-
nated intravascular coagulation, there is also some evidence
favouring a major role for monocytes in the cellular mecha-
nisms of coagulation activation. We recently assessed the
relative impact of endothelial injury and monocyte activation
on coagulation disorders in our rabbit endotoxic shock model.
L-arginine and the angiotensin-converting enzyme inhibitor
perindopril were tested in that model for their demonstrated
ability to treat endothelial injury [38,39]. We found that both
L-arginine supplementation and perindopril could prevent
septic-shock-associated deterioration in endothelium-depen-
dent relaxation [40,41]. However, this preventive effect was
not associated with any reduction in TF expression, suggest-
ing that these two sepsis-associated abnormalities are not
strictly linked. In a subsequent study [42] we used an antigly-
coprotein IIb/IIIa, which attenuated endotoxin-induced mono-
cyte TF expression through decreased platelet activation.
This was associated with marked reduction in endothelial
injury, increased endothelium-derived relaxation and improved
survival rates in the treated animals. Those findings suggest
that monocyte activation and TF expression may be of impor-
tance in sepsis-associated injuries, and that coagulation acti-
vation may itself contribute to the EC injury observed during
sepsis.

Endothelial injury, in turn, exacerbates sepsis-induced coagu-
lation abnormalities. Indeed, release of endothelium-derived
factors such as nitric oxide (NO) and prostacyclin (PGI2) is
impaired. Because NO and PGI2 not only control vascular
tone but also have antiadhesive and tissue plasminogen acti-
vator-like properties, loss of NO and PGI2 release facilitates
leucocyte and platelet aggregation, and aggravation of coag-
ulopathy. Furthermore, when ECs generate adhesion mole-
cules during endotoxaemia that bind leucocytes and

monocytes, they favour enhancement in local procoagulant
reactions. The relationship between activation of innate immu-
nity and coagulation is phylogenetically ancient [43,44].
Localized activation of the coagulation system, as with the
innate immune response, serves to protect against a discrete
traumatic injury [43]. However, generalized intravascular
coagulation, as a generalized inflammatory response, is detri-
mental to the host, favouring widespread fibrin deposition and
altered tissue perfusion.

Endothelial activation
As a prelude to their migration into tissues, monocytes and
leucocytes must adhere to endothelium. Both adhesion to
and migration across endothelium are governed by the inter-
action of complementary adhesion molecules on the poly-
morphonuclear cells and endothelium [45]. The surface
expression, adhesion avidity and surface modulation of these
molecules are highly regulated by biological mediators such
as cytokines. Local synthesis of platelet-activating factor and
EC-derived cytokines such as interleukin-8, along with
tumour necrosis factor and interleukin-1, are important in
promoting neutrophil–EC interactions. ‘Endothelial activa-
tion’ refers to increased expression or release of endothelial
adhesion molecules.

The first step in migration consists of a ‘rolling’ of leucocytes
on endothelium, which involves the selectin family. Selectins
are molecules expressed on leucocytes (L-selectin), or even
on platelets (P-selectin) and on ECs (E-selectin); these act as
receptors that permit loose binding, which in turn facilitates
rolling. Selectins allow leucocytes to roll in the direction of
flow into the proximity of activating signals exhibited by ECs.

The second step involves receptors from the integrin family
(β2-integrin) and immunoglobulin-like receptors. These recep-
tors allow leucocyte arrest and adhesion strengthening. Three
heterodimers of β2-integrin are present on the outer cell mem-
brane of activated leucocytes and are collectively termed the
CD11/CD18 complex. Stimulation of ECs induces expression
of cell surface adhesion molecules, which are members of the
immunoglobulin superfamily. Monoclonal antibodies to these
molecules have been shown to block leucocyte–EC interac-
tions and to improve sepsis-associated organ dysfunction
[46,47]. Endothelial adhesion molecules include ICAMs,
endothelial leucocyte adhesion molecules (E-selectins),
platelet EC adhesion molecules, and vascular cell adhesion
molecules.

In the third step, activated leucocytes migrate to the borders
of ECs to interact with ICAMs, endothelial leucocyte adhe-
sion molecules, platelet EC adhesion molecules or vascular
cell adhesion molecules (for review [48]). A large number of
experimental studies have documented the consequences of
inhibition of adhesion molecules. Inhibition of neutrophil
adherence to the ECs exerts significant protective effects in
these conditions [46,49].
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Figure 3

Sepsis and coagulation–fibrinolysis pathways. Exposure to
inflammatory and/or septic stimuli rapidly leads to procoagulant
behaviour. The profibrinolytic property of endothelial cells (ECs) is
blunted, due to decreased release of tissue plasminogen activator.
This occurs in a context of increased plasminogen activator inhibitor
(PAI)-1 release with antifibrinolysis. LPS, lipopolysaccharide; M,
activated monocyte; SMC, smooth muscle cell; TF, tissue factor; TM,
thrombomodulin.
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Interestingly, decreased reactive hyperaemia (suggesting
modified endothelial-derived relaxation) was also demon-
strated to coexist with increased leucocyte aggregation and
ICAM-1 levels [50]. It is also important to emphasize that
recent evidence suggested that adhesion can occur inde-
pendent of adhesion molecules in organs such as lung or
liver. This led to the hypothesis that stimulus-induced
increases in actin-containing stress fibres (such as LPS) at
the cell periphery lead to decreased deformability, prevent-
ing neutrophils from trafficking through the capillary bed and
therefore increasing their sequestration at sites of inflamma-
tion [51].

Sessler and coworkers [52] measured blood level of the
adhesion molecule ICAM-1 as a potential marker of EC acti-
vation in septic adults and healthy volunteers. Those investi-
gators established a relationship between increased ICAM-1
levels and consequences of sepsis (i.e. multiple organ failure
and death). Watanabe and coworkers [53] prevented endo-
toxin shock in rabbits by administering a specific monoclonal
antibody against CD18 (integrin β2). In a mouse lethal septic
shock model, Xu and coworkers [54] observed that animals
deficient in ICAM-1 were markedly protected against death.
Whereas 80% of wild-type animals died within 48 hours
after receiving 40 mg/kg LPS, more than 90% of ICAM-1-
deficient animals survived for longer than 4 days. Interest-
ingly, EC dysfunction was found to involve a
CD18-dependent neutrophil adherent mechanism. Consis-
tently, Matsukawa and coworkers [55] recently provided evi-
dence on the contributions of E-selectin and P-selectin to
lethality in septic peritonitis. Mice that genetically lacked
endothelial selectins were shown to be resistant. The experi-
ments demonstrated that endothelial selectin mediated leu-
cocyte rolling impacts on mouse survival by influencing the
serum level of cytokines and by preventing renal dysfunction
– a potential cause of death in that context.

Endothelial dysfunction
The term ‘endothelial dysfunction’ refers to decreased
endothelial-dependent vascular relaxation or NO release, and
decreased expression or activity of endothelial constitutive
NO synthase (ecNOS). Endothelium-derived relaxation
and/or production of endothelium-derived NO from the amino
acid L-arginine by ecNOS may be used as an indicator of EC
function. For example, the relaxing response of in vitro iso-
lated vascular rings to picomolar concentrations of acetyl-
choline is dependent on the presence and integrity of ECs
[56]. In vivo endothelial function can be determined by mea-
surement of forearm blood flow responses to intra-arterial
infusions of endothelium-dependent (i.e. acetylcholine) and
endothelium-independent vasodilators (i.e. sodium nitroprus-
side). Drugs are infused at a constant rate (1 ml/min) with an
infusion pump. Forearm blood flow is recorded for 10 s at
15-s intervals during the last 3 min of the drug and saline infu-
sion period using venous occlusion plethysmography com-
bined with a rapid cuff inflator [57–59].

Abnormal endothelial-dependent vascular relaxation has been
recognized in multiple sepsis conditions. Several investiga-
tions, including our own [17,60,61], have demonstrated
attenuated acetylcholine-induced relaxation in vascular rings
isolated from large arteries. Apart from anatomical injuries,
such abnormalities observed in these vessels may result from
several mechanisms: alteration in EC surface receptors; mod-
ified signal transduction pathways (receptor–ecNOS cou-
pling); altered function and/or density of the ecNOS;
changes in pathways that lead to release of NO; and/or
changes in mechanisms that participate in subsequent degra-
dation of NO.

In healthy volunteers, even brief exposure to endotoxin or
certain cytokines impairs endothelium-dependent relaxation
for many days [62,63]. This effect has been termed ‘endothe-
lial stunning’. After recovery from the acute insult, the
endothelium may remain dysfunctional (‘stunned’) for a long
period of time before full recovery. Hingorani and coworkers
[59] also demonstrated that a mild inflammatory response,
such as that generated by Salmonella typhi vaccine, is asso-
ciated with temporary but profound dysfunction of arterial
endothelium in both resistance and conduit vessels following
application of both physical and pharmacological dilator
stimuli. According to the concept of intrinsic metabolic regu-
lation, vasodilatation in tissues with relatively high metabolic
rates competes with sympathetic vasoconstrictor tone,
thereby adjusting the balance between local tissue oxygen
supply and demand. Although the nature of the oxygen-sensi-
tive structures that act at the local tissue level is not com-
pletely understood, ECs in direct contact with blood have a
number of properties that render them effective sensors. The
endothelium and smooth muscle of arteries and arterioles
appear to be coupled both structurally and functionally.
Sensing involves local depolarization/hyperpolarization of the
capillary EC, and communication is achieved by electronic
spread via endothelium/smooth muscle cell–cell gap junc-
tions [2,64]. During an hypoxic challenge, the ability of a
tissue to extract oxygen – and to minimize shunting through
areas with a high rate of perfusion relative to their oxygen
uptake – may therefore be considered an integrative test of
endothelial function and microcirculatory coordination [65].

We investigated the role of the endothelium in regulating the
balance between oxygen demand and supply within an indi-
vidual organ in an in vivo model of endothelial stripping in the
dog hind limb [66]. The hind limb vascular endothelium was
removed by injecting deoxycholate into the perfusing artery
before ischaemic challenge. Deoxycholate – a detergent
used to remove endothelium in in vitro studies – removes vas-
cular endothelium within arteries, arterioles, capillaries and
veins. It achieves this without causing apparent damage to
either the vascular smooth muscle layer or the skeletal muscle
parenchyma, as assessed by in vitro and in vivo studies of
pharmacological vascular reactivity, tissue histology and elec-
tron microscopy. Hind limb oedema or capillary plugging by
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endothelial fragments was not observed. During progressive
limitation of oxygen supply to the limb, a profound and signifi-
cant impairment in limb oxygen extraction ability (41.7%
versus 81% in controls) at critical oxygen delivery (at which
oxygen uptake begins to decrease) was observed. We con-
cluded that this severe limitation in the increase in oxygen
extraction capabilities during ischaemia suggested that vas-
cular endothelium plays an important role in matching oxygen
supply to demand.

In order to test the role of the endothelial-derived relaxing
factors NO and PGI2, we investigated, in a third group of
dogs, the influence of a combination of NG-nitro-L-arginine
methyl ester (an inhibitor of NO synthesis) and indomethacin
(an inhibitor of PGI2 synthesis) [66]. In these dogs treated
with indomethacin plus NG-nitro-L-arginine methyl ester, the
severity of the oxygen extraction defect was lower than that
observed in the deoxycholate-treated dogs, suggesting that
other mediators and/or mechanisms may be involved in
microcirculatory control during hypoxia. As suggested above,
one of these mediators or mechanisms could be related to
hyperpolarization. Membrane potential is an important deter-
minant of vascular smooth muscle tone through its influence
on calcium influx via voltage-gated calcium channels. Hyper-
polarization (as well as depolarization) has been shown to be
a means of cell–cell communication in upstream vasodilatation
and microcirculatory coordination [67]. It is important to
emphasize that intercell coupling exclusively involves ECs.
Interestingly, it was recently shown that sepsis, a situation that
is characterized by impaired tissue perfusion and abnormal
oxygen extraction, is associated with abnormal inter-EC cou-
pling and reduction in the arteriolar conducted response [68].

An intra-organ defect in blood flow related to abnormal vascu-
lar reactivity, cell adhesion and coagulopathy may account for
impaired organ oxygen regulation and function. If specific
classes of microvessels must or must not be perfused to
achieve efficient oxygen extraction during limitation in oxygen
delivery, then impaired vascular reactivity and vessel injury
might produce a pathological limitation in supply. In sepsis,
the inflammatory response profoundly alters circulatory
homeostasis, and this has been referred to as a ‘malignant
intravascular inflammation’ that alters vasomotor tone and the
distribution of blood flow among and within organs [69].
These mechanisms might coexist with other types of sepsis-
associated cell dysfunction. For example, data suggest that
endotoxin directly impairs oxygen uptake in ECs and indicate
the importance of endothelium respiration in maintaining vas-
cular homeostasis under conditions of sepsis [70].

Abnormal oxygen extraction is a key feature of severe sepsis
and septic shock. In an experimental study in dogs, an
ablated reactive hyperaemia was associated with endotox-
aemia-induced impaired oxygen extraction at the level of the
gastrointestinal tract [71]. Nevière and coworkers [72]
showed that reactive hyperaemia is attenuated in critically ill

patients with septic shock, despite normal or elevated whole-
body oxygen delivery. Proposed mechanisms to explain
blunted hyperaemia in septic patients might include impaired
vascular reactivity and/or microvascular obstruction that limits
the number of recruitable capillaries. In critically ill patients with
sepsis, it has been shown that decreased reactive hyperaemia
coexists with increased leucocyte adhesion and increased
release in surrogate markers of endothelium injury [50,73].

Thus, assessment of reactive hyperaemia might be used in
the near future to evaluate the effects of treatments aimed at
restoring endothelial function and tissue perfusion, such as
coagulation modulators or leucocyte adhesion antagonists.

Conclusion
How do all of these altered properties contribute to altered
perfusion and organ dysfunction? The combining effect of
altered vascular relaxation, altered blood flow distribution,
increased leucocyte adhesion and decreased coagulation
modulation should significantly contribute to microcirculatory
heterogeneity and lowered perfusion. Studies in the isolated
perfused rabbit heart [74], autoperfused rat cremaster [75]
and rat mesentery [76,77] suggested that these mechanisms
are operative in the microvasculature. On an intravital
microscopy extensor digitorum longus muscle model in rats
with peritonitis [78], it was shown that sepsis is associated
with a reduction in tissue perfused capillary density of up to
36%, increased perfusion heterogeneity and mean intercapil-
lary distance, contributing to functional shunting. In another
study [79], endotoxin administration resulted in a significant
enhancement in leucocyte–EC interaction, as indicated by
transiently increased number of leucocytes firmly attaching to
the microvascular endothelium of arterioles and venules [79].
Microvascular injury and/or the appearance of greater hetero-
geneity of microvascular distribution of oxygen supply with
respect to oxygen demand in endotoxin-treated animals is
consistent with the observation that endotoxin impairs oxygen
extraction [80–82]. The direct relationship between hetero-
geneity, decreased oxygen extraction and tissue acidosis was
recently confirmed in a pig model of endotoxic shock [83].

Consistent with the hypothesis that alteration in endothelium
plays a major in the pathophysiology of sepsis, it was
observed that chronic ecNOS overexpression in the endothe-
lium of mice resulted in resistance to LPS-induced hypoten-
sion, lung injury and death [84]. This observation was
confirmed by another group of investigators, who used trans-
genic mice overexpressing adrenomedullin [85] – a vasodilat-
ing peptide that acts at least in part via an NO-dependent
pathway. They demonstrated resistance of these animals to
LPS-induced shock, and lesser declines in blood pressure
and less severe organ damage than occurred in the control
animals. It might therefore be of importance to favour ecNOS
expression and function during sepsis. The recent negative
results obtained with therapeutic strategies aimed at blocking
inducible NOS with the nonselective NOS inhibitor NG-
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monomethyl-L-arginine in human septic shock [86] further
confirm the overall importance of favoring vessel dilatation. In
contrast, positive results obtained with corticosteroids [87]
and APC [37] suggest that improving haemodynamics while
decreasing vasopressor agents (corticosteroids) and limiting
coagulation activation are logical strategies that may greatly
favour tissue perfusion and improved oxygen delivery.
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