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Predicting the rate of inbreeding in populations undergoing  
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Objective: A formula is needed that is practical for current livestock breeding methods 
and that predicts the approximate rate of inbreeding (∆F) in populations where selection is 
performed according to four-path programs (sires to breed sons, sires to breed daughters, 
dams to breed sons, and dams to breed daughters). The formula widely used to predict 
inbreeding neglects selection, we need to develop a new formula that can be applied with 
or without selection.
Methods: The core of the prediction is to incorporate the long-tern genetic influence of 
the selected parents in four-selection paths executed as sires to breed sons, sires to breed 
daughters, dams to breed sons, and dams to breed daughters. The rate of inbreeding was 
computed as the magnitude that is proportional to the sum of squared long-term genetic 
contributions of the parents of four-selection paths to the selected offspring.
Results: We developed a formula to predict the rate of inbreeding in populations undergoing 
four-path selection on genomically enhanced breeding values and with discrete generations. 
The new formula can be applied with or without selection. Neglecting the effects of selection 
led to underestimation of the rate of inbreeding by 40% to 45%. 
Conclusion: The formula we developed here would be highly useful as a practical method 
for predicting the approximate rate of inbreeding (ΔF) in populations where selection is 
performed according to four-path programs.
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Long-time Genetic Contribution; Rates of Inbreeding; Selective Advantage

INTRODUCTION 

Deterministic predictions of response to multi-trait genomic selection in a single genera-
tion in a population with four-path programs, was developed [1,2]. That is, the selection 
paths in four-path programs are sires to breed sires (SS), sires to breed dams (SD), dams 
to breed sires (DS), and dams to breed dams (DD). However, when creating formulas for 
calculating the asymptotic response to index or single-trait selection in four-path selec-
tion programs rather than in a single generation, the initial genetic response in generation 
0 overestimated the asymptotic response due to the decrease in equilibrium genetic vari-
ance from generation 0 onwards [3]. Consequently, to safeguard the genetic variation of 
the population over the long term, the rate of inbreeding needs to be restricted to an ac-
ceptable level. Therefore, one needs to know the expected rate of inbreeding as well as the 
equilibrium genetic response before choosing a breeding scheme.
  A population with discrete generations under mass selection in a four-path selection 
program is modeled to predict the rate of inbreeding in the long term. When sires in the 
SS path are used with constant selection intensity and in equal number throughout the 
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usage period of several years, every SS sire belongs to a sin-
gle or exclusive category. Similarly, SD, DS, and DD parents 
each belong to a single or exclusive category when they are 
used with constant selection intensity and in equal numbers 
over several years. Consequently generations can be regard-
ed as discrete rather than overlapping. A formula is needed 
that is practical for current livestock breeding methods and 
that predicts the approximate rate of inbreeding (ΔF) in pop-
ulations where selection is performed according to four-path 
programs. 
  The rate of inbreeding is proportional to the sum of squared 
long-term genetic contributions [4]. General predictions of 
expected genetic contributions were developed by Wool-
liams et al [5] by using equilibrium genetic variances instead 
of second-generation genetic variances. Methods were devel-
oped by Bijma and Woolliams [6] to predict rates of inbreeding 
in populations selected on breeding values according to best 
linear unbiased prediction (BLUP) [7]. A formula was devel-
oped for predicting the rate of inbreeding in four-selection 
path programs [8]; however, this formula ignored the effect 
of selection. The purpose of the current study was to develop 
a formula for predicting the rate of inbreeding in four-path 
selection programs that incorporated the effect of selection 
and was practical for use under real-life conditions of cattle 
breeding.

MATERIALS AND METHODS 

Prediction of expected long-term genetic contributions
Our prediction method is based on the concept of long-term 
genetic contributions. The long-term genetic contribution of 
individual i (ri) in generation t1 is defined as the proportion 
of genes from individual i that are present in individuals in 
generation t2 deriving by descent from individual i, where 
(t2-t1) →∞ [5]. That is, after several generations, the genetic 
contributions of ancestors stabilize and become equal for all 
descendants, i.e., the ultimate proportional contribution of 
an ancestor to its descendants is reached.
  Selection is performed in four categories of selection path 
(SS, SD, DS, and DD). Rates of inbreeding can be expressed 
in terms of the expected contributions of these categories [6, 
9-11]:

 

5 
 

populations selected on breeding values according to best linear unbiased prediction (BLUP) [7]. 88 

A formula was developed for predicting the rate of inbreeding in four-selection path programs 89 

[8]; however, this formula ignored the effect of selection. The purpose of the current study was 90 

to develop a formula for predicting the rate of inbreeding in four-path selection programs that 91 

incorporated the effect of selection and was practical for use under real-life conditions of cattle 92 

breeding. 93 

  94 

MATERIALS AND METHODS  95 

 96 

Prediction of expected long-term genetic contributions 97 

Our prediction method is based on the concept of long-term genetic contributions. The 98 

long-term genetic contribution of individual i (𝑟𝑟�) in generation t1 is defined as the proportion of 99 

genes from individual i that are present in individuals in generation t2 deriving by descent from 100 

individual i, where (t2�t1) →∞ [5]. That is, after several generations, the genetic contributions 101 

of ancestors stabilize and become equal for all descendants, i.e., the ultimate proportional 102 

contribution of an ancestor to its descendants is reached. 103 

Selection is performed in four categories of selection path (SS, SD, DS, and DD). Rates of 104 

inbreeding can be expressed in terms of the expected contributions of these categories [6,9-11]: 105 

 106 

E (ΔF) = �� 𝟏𝟏�𝐍𝐍E�𝒖𝒖�� � �
� 𝟏𝟏𝟏𝟏𝟏𝟏𝟏,  107 

 108 

where 𝟏𝟏� � �1 1 1 1�,𝐍𝐍 is a 4×4 diagonal matrix containing the number of selected parents for 109 

element (i, i) as Ni,i, N1,1 is the number of sires in SS and is referred to as 𝑁𝑁��, N2,2 is the 110 

number of sires in SD and is referred to as 𝑁𝑁��, N3,3 is the number of dams in DS and is 111 

referred to as 𝑁𝑁��, and N4,4 is the number of dams in DD and is referred to as 𝑁𝑁��. In addition, 112 

𝒖𝒖� � �𝑢𝑢�,���  𝑢𝑢�,���  𝑢𝑢�,���  𝑢𝑢�,��� � , where 𝑢𝑢�,��  is the expected lifetime long-term genetic 113 

, 

where 

5 
 

populations selected on breeding values according to best linear unbiased prediction (BLUP) [7]. 88 

A formula was developed for predicting the rate of inbreeding in four-selection path programs 89 

[8]; however, this formula ignored the effect of selection. The purpose of the current study was 90 

to develop a formula for predicting the rate of inbreeding in four-path selection programs that 91 

incorporated the effect of selection and was practical for use under real-life conditions of cattle 92 

breeding. 93 

  94 

MATERIALS AND METHODS  95 

 96 

Prediction of expected long-term genetic contributions 97 

Our prediction method is based on the concept of long-term genetic contributions. The 98 

long-term genetic contribution of individual i (𝑟𝑟�) in generation t1 is defined as the proportion of 99 

genes from individual i that are present in individuals in generation t2 deriving by descent from 100 

individual i, where (t2�t1) →∞ [5]. That is, after several generations, the genetic contributions 101 

of ancestors stabilize and become equal for all descendants, i.e., the ultimate proportional 102 

contribution of an ancestor to its descendants is reached. 103 

Selection is performed in four categories of selection path (SS, SD, DS, and DD). Rates of 104 

inbreeding can be expressed in terms of the expected contributions of these categories [6,9-11]: 105 

 106 

E (ΔF) = �� 𝟏𝟏�𝐍𝐍E�𝒖𝒖�� � �
� 𝟏𝟏𝟏𝟏𝟏𝟏𝟏,  107 

 108 

where 𝟏𝟏� � �1 1 1 1�,𝐍𝐍 is a 4×4 diagonal matrix containing the number of selected parents for 109 

element (i, i) as Ni,i, N1,1 is the number of sires in SS and is referred to as 𝑁𝑁��, N2,2 is the 110 

number of sires in SD and is referred to as 𝑁𝑁��, N3,3 is the number of dams in DS and is 111 

referred to as 𝑁𝑁��, and N4,4 is the number of dams in DD and is referred to as 𝑁𝑁��. In addition, 112 

𝒖𝒖� � �𝑢𝑢�,���  𝑢𝑢�,���  𝑢𝑢�,���  𝑢𝑢�,��� � , where 𝑢𝑢�,��  is the expected lifetime long-term genetic 113 

 is a 4×4 diagonal matrix contain-
ing the number of selected parents for element (i, i) as Ni,i, 
N1,1 is the number of sires in SS and is referred to as 

5 
 

populations selected on breeding values according to best linear unbiased prediction (BLUP) [7]. 88 

A formula was developed for predicting the rate of inbreeding in four-selection path programs 89 

[8]; however, this formula ignored the effect of selection. The purpose of the current study was 90 

to develop a formula for predicting the rate of inbreeding in four-path selection programs that 91 

incorporated the effect of selection and was practical for use under real-life conditions of cattle 92 

breeding. 93 

  94 

MATERIALS AND METHODS  95 

 96 

Prediction of expected long-term genetic contributions 97 

Our prediction method is based on the concept of long-term genetic contributions. The 98 

long-term genetic contribution of individual i (𝑟𝑟�) in generation t1 is defined as the proportion of 99 

genes from individual i that are present in individuals in generation t2 deriving by descent from 100 

individual i, where (t2�t1) →∞ [5]. That is, after several generations, the genetic contributions 101 

of ancestors stabilize and become equal for all descendants, i.e., the ultimate proportional 102 

contribution of an ancestor to its descendants is reached. 103 

Selection is performed in four categories of selection path (SS, SD, DS, and DD). Rates of 104 

inbreeding can be expressed in terms of the expected contributions of these categories [6,9-11]: 105 

 106 

E (ΔF) = �� 𝟏𝟏�𝐍𝐍E�𝒖𝒖�� � �
� 𝟏𝟏𝟏𝟏𝟏𝟏𝟏,  107 

 108 

where 𝟏𝟏� � �1 1 1 1�,𝐍𝐍 is a 4×4 diagonal matrix containing the number of selected parents for 109 

element (i, i) as Ni,i, N1,1 is the number of sires in SS and is referred to as 𝑁𝑁��, N2,2 is the 110 

number of sires in SD and is referred to as 𝑁𝑁��, N3,3 is the number of dams in DS and is 111 

referred to as 𝑁𝑁��, and N4,4 is the number of dams in DD and is referred to as 𝑁𝑁��. In addition, 112 

𝒖𝒖� � �𝑢𝑢�,���  𝑢𝑢�,���  𝑢𝑢�,���  𝑢𝑢�,��� � , where 𝑢𝑢�,��  is the expected lifetime long-term genetic 113 

 
is the number of sires in SD and is referred to as 

5 
 

populations selected on breeding values according to best linear unbiased prediction (BLUP) [7]. 88 

A formula was developed for predicting the rate of inbreeding in four-selection path programs 89 

[8]; however, this formula ignored the effect of selection. The purpose of the current study was 90 

to develop a formula for predicting the rate of inbreeding in four-path selection programs that 91 

incorporated the effect of selection and was practical for use under real-life conditions of cattle 92 

breeding. 93 

  94 

MATERIALS AND METHODS  95 

 96 

Prediction of expected long-term genetic contributions 97 

Our prediction method is based on the concept of long-term genetic contributions. The 98 

long-term genetic contribution of individual i (𝑟𝑟�) in generation t1 is defined as the proportion of 99 

genes from individual i that are present in individuals in generation t2 deriving by descent from 100 

individual i, where (t2�t1) →∞ [5]. That is, after several generations, the genetic contributions 101 

of ancestors stabilize and become equal for all descendants, i.e., the ultimate proportional 102 

contribution of an ancestor to its descendants is reached. 103 

Selection is performed in four categories of selection path (SS, SD, DS, and DD). Rates of 104 

inbreeding can be expressed in terms of the expected contributions of these categories [6,9-11]: 105 

 106 

E (ΔF) = �� 𝟏𝟏�𝐍𝐍E�𝒖𝒖�� � �
� 𝟏𝟏𝟏𝟏𝟏𝟏𝟏,  107 

 108 

where 𝟏𝟏� � �1 1 1 1�,𝐍𝐍 is a 4×4 diagonal matrix containing the number of selected parents for 109 

element (i, i) as Ni,i, N1,1 is the number of sires in SS and is referred to as 𝑁𝑁��, N2,2 is the 110 

number of sires in SD and is referred to as 𝑁𝑁��, N3,3 is the number of dams in DS and is 111 

referred to as 𝑁𝑁��, and N4,4 is the number of dams in DD and is referred to as 𝑁𝑁��. In addition, 112 

𝒖𝒖� � �𝑢𝑢�,���  𝑢𝑢�,���  𝑢𝑢�,���  𝑢𝑢�,��� � , where 𝑢𝑢�,��  is the expected lifetime long-term genetic 113 

 is 
the number of dams in DS and is referred to as NDS, and N4,4 
is the number of dams in DD and is referred to as NDD. In 

addition, 

5 
 

populations selected on breeding values according to best linear unbiased prediction (BLUP) [7]. 88 

A formula was developed for predicting the rate of inbreeding in four-selection path programs 89 

[8]; however, this formula ignored the effect of selection. The purpose of the current study was 90 

to develop a formula for predicting the rate of inbreeding in four-path selection programs that 91 

incorporated the effect of selection and was practical for use under real-life conditions of cattle 92 

breeding. 93 

  94 

MATERIALS AND METHODS  95 

 96 

Prediction of expected long-term genetic contributions 97 

Our prediction method is based on the concept of long-term genetic contributions. The 98 

long-term genetic contribution of individual i (𝑟𝑟�) in generation t1 is defined as the proportion of 99 

genes from individual i that are present in individuals in generation t2 deriving by descent from 100 

individual i, where (t2�t1) →∞ [5]. That is, after several generations, the genetic contributions 101 

of ancestors stabilize and become equal for all descendants, i.e., the ultimate proportional 102 

contribution of an ancestor to its descendants is reached. 103 

Selection is performed in four categories of selection path (SS, SD, DS, and DD). Rates of 104 

inbreeding can be expressed in terms of the expected contributions of these categories [6,9-11]: 105 

 106 

E (ΔF) = �� 𝟏𝟏�𝐍𝐍E�𝒖𝒖�� � �
� 𝟏𝟏𝟏𝟏𝟏𝟏𝟏,  107 

 108 

where 𝟏𝟏� � �1 1 1 1�,𝐍𝐍 is a 4×4 diagonal matrix containing the number of selected parents for 109 

element (i, i) as Ni,i, N1,1 is the number of sires in SS and is referred to as 𝑁𝑁��, N2,2 is the 110 

number of sires in SD and is referred to as 𝑁𝑁��, N3,3 is the number of dams in DS and is 111 

referred to as 𝑁𝑁��, and N4,4 is the number of dams in DD and is referred to as 𝑁𝑁��. In addition, 112 

𝒖𝒖� � �𝑢𝑢�,���  𝑢𝑢�,���  𝑢𝑢�,���  𝑢𝑢�,��� � , where 𝑢𝑢�,��  is the expected lifetime long-term genetic 113 , where ui,SS is the 
expected lifetime long-term genetic contribution of indi-
vidual i in category SS conditional on its selective advantage 
(which in mass selection is the genomically enhanced breed-
ing value [GEBV]), and 

6 
 

contribution of individual i in category SS conditional on its selective advantage (which in mass 114 

selection is the genomically enhanced breeding value [GEBV]), and 𝑢𝑢�,��,𝑢𝑢�,�� , and 𝑢𝑢�,�� are 115 

the expected lifetime long-term genetic contributions of individual i in categories SD, DS, and 116 

DD, respectively. Furthermore, 𝛅𝛅 � �δ�� δ�� δ�� δ���, where δ�� is the correction factor for 117 

deviations of the variance of family size from independent Poisson variances in the selected 118 

offspring from sires in SS; δ��, δ�� , and δ�� are corrections for deviations of the variance of 119 

the family size from independent Poisson variances in the selected offspring from parents in SD, 120 

DS, and DD, respectively. 121 

The selective advantage of the ith sire in SS (𝑠𝑠�,��� and in SD (𝑠𝑠�,��� in the linear model is: 122 

 123 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 124 

 125 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 126 

 127 

where 𝐴𝐴�,�� �� �� is the breeding value of sire i in SS or SD, 𝐴̅𝐴�,�� ��� �� is the average 128 

breeding value of dams mated to the ith sire in SS and SD, respectively; the dams mated to the ith 129 

sire in SS belong to the DS category, and the dams mated to the ith sire in SD belong to the DD 130 

category; and 𝐴̅𝐴��, 𝐴̅𝐴��, 𝐴̅𝐴��, and 𝐴̅𝐴�� are the average breeding values of the individuals in 131 

the SS, SD, DS, and DD categories. 132 

The selective advantage of the ith dam in DS (𝑠𝑠�,��� and in DD (𝑠𝑠�,��� in the linear model is:  133 

 134 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 135 

 136 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 137 

 138 

, and 

6 
 

contribution of individual i in category SS conditional on its selective advantage (which in mass 114 

selection is the genomically enhanced breeding value [GEBV]), and 𝑢𝑢�,��,𝑢𝑢�,�� , and 𝑢𝑢�,�� are 115 

the expected lifetime long-term genetic contributions of individual i in categories SD, DS, and 116 

DD, respectively. Furthermore, 𝛅𝛅 � �δ�� δ�� δ�� δ���, where δ�� is the correction factor for 117 

deviations of the variance of family size from independent Poisson variances in the selected 118 

offspring from sires in SS; δ��, δ�� , and δ�� are corrections for deviations of the variance of 119 

the family size from independent Poisson variances in the selected offspring from parents in SD, 120 

DS, and DD, respectively. 121 

The selective advantage of the ith sire in SS (𝑠𝑠�,��� and in SD (𝑠𝑠�,��� in the linear model is: 122 

 123 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 124 

 125 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 126 

 127 

where 𝐴𝐴�,�� �� �� is the breeding value of sire i in SS or SD, 𝐴̅𝐴�,�� ��� �� is the average 128 

breeding value of dams mated to the ith sire in SS and SD, respectively; the dams mated to the ith 129 

sire in SS belong to the DS category, and the dams mated to the ith sire in SD belong to the DD 130 

category; and 𝐴̅𝐴��, 𝐴̅𝐴��, 𝐴̅𝐴��, and 𝐴̅𝐴�� are the average breeding values of the individuals in 131 

the SS, SD, DS, and DD categories. 132 

The selective advantage of the ith dam in DS (𝑠𝑠�,��� and in DD (𝑠𝑠�,��� in the linear model is:  133 

 134 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 135 

 136 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 137 

 138 

 are the expected 
lifetime long-term genetic contributions of individual i in 
categories SD, DS, and DD, respectively. Furthermore, 

6 
 

contribution of individual i in category SS conditional on its selective advantage (which in mass 114 

selection is the genomically enhanced breeding value [GEBV]), and 𝑢𝑢�,��,𝑢𝑢�,�� , and 𝑢𝑢�,�� are 115 

the expected lifetime long-term genetic contributions of individual i in categories SD, DS, and 116 

DD, respectively. Furthermore, 𝛅𝛅 � �δ�� δ�� δ�� δ���, where δ�� is the correction factor for 117 

deviations of the variance of family size from independent Poisson variances in the selected 118 

offspring from sires in SS; δ��, δ�� , and δ�� are corrections for deviations of the variance of 119 

the family size from independent Poisson variances in the selected offspring from parents in SD, 120 

DS, and DD, respectively. 121 

The selective advantage of the ith sire in SS (𝑠𝑠�,��� and in SD (𝑠𝑠�,��� in the linear model is: 122 

 123 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 124 

 125 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 126 

 127 

where 𝐴𝐴�,�� �� �� is the breeding value of sire i in SS or SD, 𝐴̅𝐴�,�� ��� �� is the average 128 

breeding value of dams mated to the ith sire in SS and SD, respectively; the dams mated to the ith 129 

sire in SS belong to the DS category, and the dams mated to the ith sire in SD belong to the DD 130 

category; and 𝐴̅𝐴��, 𝐴̅𝐴��, 𝐴̅𝐴��, and 𝐴̅𝐴�� are the average breeding values of the individuals in 131 

the SS, SD, DS, and DD categories. 132 

The selective advantage of the ith dam in DS (𝑠𝑠�,��� and in DD (𝑠𝑠�,��� in the linear model is:  133 

 134 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 135 

 136 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 137 

 138 

, where 

6 
 

contribution of individual i in category SS conditional on its selective advantage (which in mass 114 

selection is the genomically enhanced breeding value [GEBV]), and 𝑢𝑢�,��,𝑢𝑢�,�� , and 𝑢𝑢�,�� are 115 

the expected lifetime long-term genetic contributions of individual i in categories SD, DS, and 116 

DD, respectively. Furthermore, 𝛅𝛅 � �δ�� δ�� δ�� δ���, where δ�� is the correction factor for 117 

deviations of the variance of family size from independent Poisson variances in the selected 118 

offspring from sires in SS; δ��, δ�� , and δ�� are corrections for deviations of the variance of 119 

the family size from independent Poisson variances in the selected offspring from parents in SD, 120 

DS, and DD, respectively. 121 

The selective advantage of the ith sire in SS (𝑠𝑠�,��� and in SD (𝑠𝑠�,��� in the linear model is: 122 

 123 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 124 

 125 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 126 

 127 

where 𝐴𝐴�,�� �� �� is the breeding value of sire i in SS or SD, 𝐴̅𝐴�,�� ��� �� is the average 128 

breeding value of dams mated to the ith sire in SS and SD, respectively; the dams mated to the ith 129 

sire in SS belong to the DS category, and the dams mated to the ith sire in SD belong to the DD 130 

category; and 𝐴̅𝐴��, 𝐴̅𝐴��, 𝐴̅𝐴��, and 𝐴̅𝐴�� are the average breeding values of the individuals in 131 

the SS, SD, DS, and DD categories. 132 

The selective advantage of the ith dam in DS (𝑠𝑠�,��� and in DD (𝑠𝑠�,��� in the linear model is:  133 

 134 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 135 

 136 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 137 

 138 

 is the correction factor 
for deviations of the variance of family size from indepen-
dent Poisson variances in the selected offspring from sires 
in SS; 

6 
 

contribution of individual i in category SS conditional on its selective advantage (which in mass 114 

selection is the genomically enhanced breeding value [GEBV]), and 𝑢𝑢�,��,𝑢𝑢�,�� , and 𝑢𝑢�,�� are 115 

the expected lifetime long-term genetic contributions of individual i in categories SD, DS, and 116 

DD, respectively. Furthermore, 𝛅𝛅 � �δ�� δ�� δ�� δ���, where δ�� is the correction factor for 117 

deviations of the variance of family size from independent Poisson variances in the selected 118 

offspring from sires in SS; δ��, δ�� , and δ�� are corrections for deviations of the variance of 119 

the family size from independent Poisson variances in the selected offspring from parents in SD, 120 

DS, and DD, respectively. 121 

The selective advantage of the ith sire in SS (𝑠𝑠�,��� and in SD (𝑠𝑠�,��� in the linear model is: 122 

 123 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 124 

 125 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 126 

 127 

where 𝐴𝐴�,�� �� �� is the breeding value of sire i in SS or SD, 𝐴̅𝐴�,�� ��� �� is the average 128 

breeding value of dams mated to the ith sire in SS and SD, respectively; the dams mated to the ith 129 

sire in SS belong to the DS category, and the dams mated to the ith sire in SD belong to the DD 130 

category; and 𝐴̅𝐴��, 𝐴̅𝐴��, 𝐴̅𝐴��, and 𝐴̅𝐴�� are the average breeding values of the individuals in 131 

the SS, SD, DS, and DD categories. 132 

The selective advantage of the ith dam in DS (𝑠𝑠�,��� and in DD (𝑠𝑠�,��� in the linear model is:  133 

 134 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 135 

 136 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 137 

 138 

 and 

6 
 

contribution of individual i in category SS conditional on its selective advantage (which in mass 114 

selection is the genomically enhanced breeding value [GEBV]), and 𝑢𝑢�,��,𝑢𝑢�,�� , and 𝑢𝑢�,�� are 115 

the expected lifetime long-term genetic contributions of individual i in categories SD, DS, and 116 

DD, respectively. Furthermore, 𝛅𝛅 � �δ�� δ�� δ�� δ���, where δ�� is the correction factor for 117 

deviations of the variance of family size from independent Poisson variances in the selected 118 

offspring from sires in SS; δ��, δ�� , and δ�� are corrections for deviations of the variance of 119 

the family size from independent Poisson variances in the selected offspring from parents in SD, 120 

DS, and DD, respectively. 121 

The selective advantage of the ith sire in SS (𝑠𝑠�,��� and in SD (𝑠𝑠�,��� in the linear model is: 122 

 123 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 124 

 125 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 126 

 127 

where 𝐴𝐴�,�� �� �� is the breeding value of sire i in SS or SD, 𝐴̅𝐴�,�� ��� �� is the average 128 

breeding value of dams mated to the ith sire in SS and SD, respectively; the dams mated to the ith 129 

sire in SS belong to the DS category, and the dams mated to the ith sire in SD belong to the DD 130 

category; and 𝐴̅𝐴��, 𝐴̅𝐴��, 𝐴̅𝐴��, and 𝐴̅𝐴�� are the average breeding values of the individuals in 131 

the SS, SD, DS, and DD categories. 132 

The selective advantage of the ith dam in DS (𝑠𝑠�,��� and in DD (𝑠𝑠�,��� in the linear model is:  133 

 134 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 135 

 136 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 137 

 138 

 are corrections for deviations of 
the variance of the family size from independent Poisson 
variances in the selected offspring from parents in SD, DS, 
and DD, respectively.
  The selective advantage of the ith sire in 

6 
 

contribution of individual i in category SS conditional on its selective advantage (which in mass 114 

selection is the genomically enhanced breeding value [GEBV]), and 𝑢𝑢�,��,𝑢𝑢�,�� , and 𝑢𝑢�,�� are 115 

the expected lifetime long-term genetic contributions of individual i in categories SD, DS, and 116 

DD, respectively. Furthermore, 𝛅𝛅 � �δ�� δ�� δ�� δ���, where δ�� is the correction factor for 117 

deviations of the variance of family size from independent Poisson variances in the selected 118 

offspring from sires in SS; δ��, δ�� , and δ�� are corrections for deviations of the variance of 119 

the family size from independent Poisson variances in the selected offspring from parents in SD, 120 

DS, and DD, respectively. 121 

The selective advantage of the ith sire in SS (𝑠𝑠�,��� and in SD (𝑠𝑠�,��� in the linear model is: 122 

 123 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 124 

 125 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 126 

 127 

where 𝐴𝐴�,�� �� �� is the breeding value of sire i in SS or SD, 𝐴̅𝐴�,�� ��� �� is the average 128 

breeding value of dams mated to the ith sire in SS and SD, respectively; the dams mated to the ith 129 

sire in SS belong to the DS category, and the dams mated to the ith sire in SD belong to the DD 130 

category; and 𝐴̅𝐴��, 𝐴̅𝐴��, 𝐴̅𝐴��, and 𝐴̅𝐴�� are the average breeding values of the individuals in 131 

the SS, SD, DS, and DD categories. 132 

The selective advantage of the ith dam in DS (𝑠𝑠�,��� and in DD (𝑠𝑠�,��� in the linear model is:  133 

 134 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 135 

 136 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 137 

 138 

 and in 

6 
 

contribution of individual i in category SS conditional on its selective advantage (which in mass 114 

selection is the genomically enhanced breeding value [GEBV]), and 𝑢𝑢�,��,𝑢𝑢�,�� , and 𝑢𝑢�,�� are 115 

the expected lifetime long-term genetic contributions of individual i in categories SD, DS, and 116 

DD, respectively. Furthermore, 𝛅𝛅 � �δ�� δ�� δ�� δ���, where δ�� is the correction factor for 117 

deviations of the variance of family size from independent Poisson variances in the selected 118 

offspring from sires in SS; δ��, δ�� , and δ�� are corrections for deviations of the variance of 119 

the family size from independent Poisson variances in the selected offspring from parents in SD, 120 

DS, and DD, respectively. 121 

The selective advantage of the ith sire in SS (𝑠𝑠�,��� and in SD (𝑠𝑠�,��� in the linear model is: 122 

 123 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 124 

 125 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 126 

 127 

where 𝐴𝐴�,�� �� �� is the breeding value of sire i in SS or SD, 𝐴̅𝐴�,�� ��� �� is the average 128 

breeding value of dams mated to the ith sire in SS and SD, respectively; the dams mated to the ith 129 

sire in SS belong to the DS category, and the dams mated to the ith sire in SD belong to the DD 130 

category; and 𝐴̅𝐴��, 𝐴̅𝐴��, 𝐴̅𝐴��, and 𝐴̅𝐴�� are the average breeding values of the individuals in 131 

the SS, SD, DS, and DD categories. 132 

The selective advantage of the ith dam in DS (𝑠𝑠�,��� and in DD (𝑠𝑠�,��� in the linear model is:  133 

 134 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 135 

 136 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 137 

 138 

 in the linear model is:

 

6 
 

contribution of individual i in category SS conditional on its selective advantage (which in mass 114 

selection is the genomically enhanced breeding value [GEBV]), and 𝑢𝑢�,��,𝑢𝑢�,�� , and 𝑢𝑢�,�� are 115 

the expected lifetime long-term genetic contributions of individual i in categories SD, DS, and 116 

DD, respectively. Furthermore, 𝛅𝛅 � �δ�� δ�� δ�� δ���, where δ�� is the correction factor for 117 

deviations of the variance of family size from independent Poisson variances in the selected 118 

offspring from sires in SS; δ��, δ�� , and δ�� are corrections for deviations of the variance of 119 

the family size from independent Poisson variances in the selected offspring from parents in SD, 120 

DS, and DD, respectively. 121 

The selective advantage of the ith sire in SS (𝑠𝑠�,��� and in SD (𝑠𝑠�,��� in the linear model is: 122 

 123 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 124 

 125 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 126 

 127 

where 𝐴𝐴�,�� �� �� is the breeding value of sire i in SS or SD, 𝐴̅𝐴�,�� ��� �� is the average 128 

breeding value of dams mated to the ith sire in SS and SD, respectively; the dams mated to the ith 129 

sire in SS belong to the DS category, and the dams mated to the ith sire in SD belong to the DD 130 

category; and 𝐴̅𝐴��, 𝐴̅𝐴��, 𝐴̅𝐴��, and 𝐴̅𝐴�� are the average breeding values of the individuals in 131 

the SS, SD, DS, and DD categories. 132 

The selective advantage of the ith dam in DS (𝑠𝑠�,��� and in DD (𝑠𝑠�,��� in the linear model is:  133 

 134 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 135 

 136 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 137 

 138 

 and

 

6 
 

contribution of individual i in category SS conditional on its selective advantage (which in mass 114 

selection is the genomically enhanced breeding value [GEBV]), and 𝑢𝑢�,��,𝑢𝑢�,�� , and 𝑢𝑢�,�� are 115 

the expected lifetime long-term genetic contributions of individual i in categories SD, DS, and 116 

DD, respectively. Furthermore, 𝛅𝛅 � �δ�� δ�� δ�� δ���, where δ�� is the correction factor for 117 

deviations of the variance of family size from independent Poisson variances in the selected 118 

offspring from sires in SS; δ��, δ�� , and δ�� are corrections for deviations of the variance of 119 

the family size from independent Poisson variances in the selected offspring from parents in SD, 120 

DS, and DD, respectively. 121 

The selective advantage of the ith sire in SS (𝑠𝑠�,��� and in SD (𝑠𝑠�,��� in the linear model is: 122 

 123 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 124 

 125 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 126 

 127 

where 𝐴𝐴�,�� �� �� is the breeding value of sire i in SS or SD, 𝐴̅𝐴�,�� ��� �� is the average 128 

breeding value of dams mated to the ith sire in SS and SD, respectively; the dams mated to the ith 129 

sire in SS belong to the DS category, and the dams mated to the ith sire in SD belong to the DD 130 

category; and 𝐴̅𝐴��, 𝐴̅𝐴��, 𝐴̅𝐴��, and 𝐴̅𝐴�� are the average breeding values of the individuals in 131 

the SS, SD, DS, and DD categories. 132 

The selective advantage of the ith dam in DS (𝑠𝑠�,��� and in DD (𝑠𝑠�,��� in the linear model is:  133 

 134 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 135 

 136 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 137 

 138 

, respectively,

where 

6 
 

contribution of individual i in category SS conditional on its selective advantage (which in mass 114 

selection is the genomically enhanced breeding value [GEBV]), and 𝑢𝑢�,��,𝑢𝑢�,�� , and 𝑢𝑢�,�� are 115 

the expected lifetime long-term genetic contributions of individual i in categories SD, DS, and 116 

DD, respectively. Furthermore, 𝛅𝛅 � �δ�� δ�� δ�� δ���, where δ�� is the correction factor for 117 

deviations of the variance of family size from independent Poisson variances in the selected 118 

offspring from sires in SS; δ��, δ�� , and δ�� are corrections for deviations of the variance of 119 

the family size from independent Poisson variances in the selected offspring from parents in SD, 120 

DS, and DD, respectively. 121 

The selective advantage of the ith sire in SS (𝑠𝑠�,��� and in SD (𝑠𝑠�,��� in the linear model is: 122 

 123 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 124 

 125 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 126 

 127 

where 𝐴𝐴�,�� �� �� is the breeding value of sire i in SS or SD, 𝐴̅𝐴�,�� ��� �� is the average 128 

breeding value of dams mated to the ith sire in SS and SD, respectively; the dams mated to the ith 129 

sire in SS belong to the DS category, and the dams mated to the ith sire in SD belong to the DD 130 

category; and 𝐴̅𝐴��, 𝐴̅𝐴��, 𝐴̅𝐴��, and 𝐴̅𝐴�� are the average breeding values of the individuals in 131 

the SS, SD, DS, and DD categories. 132 

The selective advantage of the ith dam in DS (𝑠𝑠�,��� and in DD (𝑠𝑠�,��� in the linear model is:  133 

 134 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 135 

 136 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 137 

 138 

 is the breeding value of sire i in SS or SD, 

6 
 

contribution of individual i in category SS conditional on its selective advantage (which in mass 114 

selection is the genomically enhanced breeding value [GEBV]), and 𝑢𝑢�,��,𝑢𝑢�,�� , and 𝑢𝑢�,�� are 115 

the expected lifetime long-term genetic contributions of individual i in categories SD, DS, and 116 

DD, respectively. Furthermore, 𝛅𝛅 � �δ�� δ�� δ�� δ���, where δ�� is the correction factor for 117 

deviations of the variance of family size from independent Poisson variances in the selected 118 

offspring from sires in SS; δ��, δ�� , and δ�� are corrections for deviations of the variance of 119 

the family size from independent Poisson variances in the selected offspring from parents in SD, 120 

DS, and DD, respectively. 121 

The selective advantage of the ith sire in SS (𝑠𝑠�,��� and in SD (𝑠𝑠�,��� in the linear model is: 122 

 123 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 124 

 125 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 126 

 127 

where 𝐴𝐴�,�� �� �� is the breeding value of sire i in SS or SD, 𝐴̅𝐴�,�� ��� �� is the average 128 

breeding value of dams mated to the ith sire in SS and SD, respectively; the dams mated to the ith 129 

sire in SS belong to the DS category, and the dams mated to the ith sire in SD belong to the DD 130 

category; and 𝐴̅𝐴��, 𝐴̅𝐴��, 𝐴̅𝐴��, and 𝐴̅𝐴�� are the average breeding values of the individuals in 131 

the SS, SD, DS, and DD categories. 132 

The selective advantage of the ith dam in DS (𝑠𝑠�,��� and in DD (𝑠𝑠�,��� in the linear model is:  133 

 134 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 135 

 136 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 137 

 138 

 is the average breeding value of dams mated to 
the ith sire in SS and SD, respectively; the dams mated to the 
ith sire in SS belong to the DS category, and the dams mated 
to the ith sire in SD belong to the DD category; and 

6 
 

contribution of individual i in category SS conditional on its selective advantage (which in mass 114 

selection is the genomically enhanced breeding value [GEBV]), and 𝑢𝑢�,��,𝑢𝑢�,�� , and 𝑢𝑢�,�� are 115 

the expected lifetime long-term genetic contributions of individual i in categories SD, DS, and 116 

DD, respectively. Furthermore, 𝛅𝛅 � �δ�� δ�� δ�� δ���, where δ�� is the correction factor for 117 

deviations of the variance of family size from independent Poisson variances in the selected 118 

offspring from sires in SS; δ��, δ�� , and δ�� are corrections for deviations of the variance of 119 

the family size from independent Poisson variances in the selected offspring from parents in SD, 120 

DS, and DD, respectively. 121 

The selective advantage of the ith sire in SS (𝑠𝑠�,��� and in SD (𝑠𝑠�,��� in the linear model is: 122 

 123 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 124 

 125 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 126 

 127 

where 𝐴𝐴�,�� �� �� is the breeding value of sire i in SS or SD, 𝐴̅𝐴�,�� ��� �� is the average 128 

breeding value of dams mated to the ith sire in SS and SD, respectively; the dams mated to the ith 129 

sire in SS belong to the DS category, and the dams mated to the ith sire in SD belong to the DD 130 

category; and 𝐴̅𝐴��, 𝐴̅𝐴��, 𝐴̅𝐴��, and 𝐴̅𝐴�� are the average breeding values of the individuals in 131 

the SS, SD, DS, and DD categories. 132 

The selective advantage of the ith dam in DS (𝑠𝑠�,��� and in DD (𝑠𝑠�,��� in the linear model is:  133 

 134 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 135 

 136 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 137 

 138 

6 
 

contribution of individual i in category SS conditional on its selective advantage (which in mass 114 

selection is the genomically enhanced breeding value [GEBV]), and 𝑢𝑢�,��,𝑢𝑢�,�� , and 𝑢𝑢�,�� are 115 

the expected lifetime long-term genetic contributions of individual i in categories SD, DS, and 116 

DD, respectively. Furthermore, 𝛅𝛅 � �δ�� δ�� δ�� δ���, where δ�� is the correction factor for 117 

deviations of the variance of family size from independent Poisson variances in the selected 118 

offspring from sires in SS; δ��, δ�� , and δ�� are corrections for deviations of the variance of 119 

the family size from independent Poisson variances in the selected offspring from parents in SD, 120 

DS, and DD, respectively. 121 

The selective advantage of the ith sire in SS (𝑠𝑠�,��� and in SD (𝑠𝑠�,��� in the linear model is: 122 

 123 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 124 

 125 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 126 

 127 

where 𝐴𝐴�,�� �� �� is the breeding value of sire i in SS or SD, 𝐴̅𝐴�,�� ��� �� is the average 128 

breeding value of dams mated to the ith sire in SS and SD, respectively; the dams mated to the ith 129 

sire in SS belong to the DS category, and the dams mated to the ith sire in SD belong to the DD 130 

category; and 𝐴̅𝐴��, 𝐴̅𝐴��, 𝐴̅𝐴��, and 𝐴̅𝐴�� are the average breeding values of the individuals in 131 

the SS, SD, DS, and DD categories. 132 

The selective advantage of the ith dam in DS (𝑠𝑠�,��� and in DD (𝑠𝑠�,��� in the linear model is:  133 

 134 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 135 

 136 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 137 

 138 

 and 

6 
 

contribution of individual i in category SS conditional on its selective advantage (which in mass 114 

selection is the genomically enhanced breeding value [GEBV]), and 𝑢𝑢�,��,𝑢𝑢�,�� , and 𝑢𝑢�,�� are 115 

the expected lifetime long-term genetic contributions of individual i in categories SD, DS, and 116 

DD, respectively. Furthermore, 𝛅𝛅 � �δ�� δ�� δ�� δ���, where δ�� is the correction factor for 117 

deviations of the variance of family size from independent Poisson variances in the selected 118 

offspring from sires in SS; δ��, δ�� , and δ�� are corrections for deviations of the variance of 119 

the family size from independent Poisson variances in the selected offspring from parents in SD, 120 

DS, and DD, respectively. 121 

The selective advantage of the ith sire in SS (𝑠𝑠�,��� and in SD (𝑠𝑠�,��� in the linear model is: 122 

 123 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 124 

 125 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 126 

 127 

where 𝐴𝐴�,�� �� �� is the breeding value of sire i in SS or SD, 𝐴̅𝐴�,�� ��� �� is the average 128 

breeding value of dams mated to the ith sire in SS and SD, respectively; the dams mated to the ith 129 

sire in SS belong to the DS category, and the dams mated to the ith sire in SD belong to the DD 130 

category; and 𝐴̅𝐴��, 𝐴̅𝐴��, 𝐴̅𝐴��, and 𝐴̅𝐴�� are the average breeding values of the individuals in 131 

the SS, SD, DS, and DD categories. 132 

The selective advantage of the ith dam in DS (𝑠𝑠�,��� and in DD (𝑠𝑠�,��� in the linear model is:  133 

 134 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 135 

 136 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 137 

 138 

 are the average breeding values of the 
individuals in the SS, SD, DS, and DD categories.
  The selective advantage of the ith dam in 

6 
 

contribution of individual i in category SS conditional on its selective advantage (which in mass 114 

selection is the genomically enhanced breeding value [GEBV]), and 𝑢𝑢�,��,𝑢𝑢�,�� , and 𝑢𝑢�,�� are 115 

the expected lifetime long-term genetic contributions of individual i in categories SD, DS, and 116 

DD, respectively. Furthermore, 𝛅𝛅 � �δ�� δ�� δ�� δ���, where δ�� is the correction factor for 117 

deviations of the variance of family size from independent Poisson variances in the selected 118 

offspring from sires in SS; δ��, δ�� , and δ�� are corrections for deviations of the variance of 119 

the family size from independent Poisson variances in the selected offspring from parents in SD, 120 

DS, and DD, respectively. 121 

The selective advantage of the ith sire in SS (𝑠𝑠�,��� and in SD (𝑠𝑠�,��� in the linear model is: 122 

 123 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 124 

 125 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 126 

 127 

where 𝐴𝐴�,�� �� �� is the breeding value of sire i in SS or SD, 𝐴̅𝐴�,�� ��� �� is the average 128 

breeding value of dams mated to the ith sire in SS and SD, respectively; the dams mated to the ith 129 

sire in SS belong to the DS category, and the dams mated to the ith sire in SD belong to the DD 130 

category; and 𝐴̅𝐴��, 𝐴̅𝐴��, 𝐴̅𝐴��, and 𝐴̅𝐴�� are the average breeding values of the individuals in 131 

the SS, SD, DS, and DD categories. 132 

The selective advantage of the ith dam in DS (𝑠𝑠�,��� and in DD (𝑠𝑠�,��� in the linear model is:  133 

 134 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 135 

 136 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 137 

 138 

 and 
in 

6 
 

contribution of individual i in category SS conditional on its selective advantage (which in mass 114 

selection is the genomically enhanced breeding value [GEBV]), and 𝑢𝑢�,��,𝑢𝑢�,�� , and 𝑢𝑢�,�� are 115 

the expected lifetime long-term genetic contributions of individual i in categories SD, DS, and 116 

DD, respectively. Furthermore, 𝛅𝛅 � �δ�� δ�� δ�� δ���, where δ�� is the correction factor for 117 

deviations of the variance of family size from independent Poisson variances in the selected 118 

offspring from sires in SS; δ��, δ�� , and δ�� are corrections for deviations of the variance of 119 

the family size from independent Poisson variances in the selected offspring from parents in SD, 120 

DS, and DD, respectively. 121 

The selective advantage of the ith sire in SS (𝑠𝑠�,��� and in SD (𝑠𝑠�,��� in the linear model is: 122 

 123 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 124 

 125 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 126 

 127 

where 𝐴𝐴�,�� �� �� is the breeding value of sire i in SS or SD, 𝐴̅𝐴�,�� ��� �� is the average 128 

breeding value of dams mated to the ith sire in SS and SD, respectively; the dams mated to the ith 129 

sire in SS belong to the DS category, and the dams mated to the ith sire in SD belong to the DD 130 

category; and 𝐴̅𝐴��, 𝐴̅𝐴��, 𝐴̅𝐴��, and 𝐴̅𝐴�� are the average breeding values of the individuals in 131 

the SS, SD, DS, and DD categories. 132 

The selective advantage of the ith dam in DS (𝑠𝑠�,��� and in DD (𝑠𝑠�,��� in the linear model is:  133 

 134 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 135 

 136 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 137 

 138 

 in the linear model is: 

 

6 
 

contribution of individual i in category SS conditional on its selective advantage (which in mass 114 

selection is the genomically enhanced breeding value [GEBV]), and 𝑢𝑢�,��,𝑢𝑢�,�� , and 𝑢𝑢�,�� are 115 

the expected lifetime long-term genetic contributions of individual i in categories SD, DS, and 116 

DD, respectively. Furthermore, 𝛅𝛅 � �δ�� δ�� δ�� δ���, where δ�� is the correction factor for 117 

deviations of the variance of family size from independent Poisson variances in the selected 118 

offspring from sires in SS; δ��, δ�� , and δ�� are corrections for deviations of the variance of 119 

the family size from independent Poisson variances in the selected offspring from parents in SD, 120 

DS, and DD, respectively. 121 

The selective advantage of the ith sire in SS (𝑠𝑠�,��� and in SD (𝑠𝑠�,��� in the linear model is: 122 

 123 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 124 

 125 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 126 

 127 

where 𝐴𝐴�,�� �� �� is the breeding value of sire i in SS or SD, 𝐴̅𝐴�,�� ��� �� is the average 128 

breeding value of dams mated to the ith sire in SS and SD, respectively; the dams mated to the ith 129 

sire in SS belong to the DS category, and the dams mated to the ith sire in SD belong to the DD 130 

category; and 𝐴̅𝐴��, 𝐴̅𝐴��, 𝐴̅𝐴��, and 𝐴̅𝐴�� are the average breeding values of the individuals in 131 

the SS, SD, DS, and DD categories. 132 

The selective advantage of the ith dam in DS (𝑠𝑠�,��� and in DD (𝑠𝑠�,��� in the linear model is:  133 

 134 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 135 

 136 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 137 

 138 

 and

 

6 
 

contribution of individual i in category SS conditional on its selective advantage (which in mass 114 

selection is the genomically enhanced breeding value [GEBV]), and 𝑢𝑢�,��,𝑢𝑢�,�� , and 𝑢𝑢�,�� are 115 

the expected lifetime long-term genetic contributions of individual i in categories SD, DS, and 116 

DD, respectively. Furthermore, 𝛅𝛅 � �δ�� δ�� δ�� δ���, where δ�� is the correction factor for 117 

deviations of the variance of family size from independent Poisson variances in the selected 118 

offspring from sires in SS; δ��, δ�� , and δ�� are corrections for deviations of the variance of 119 

the family size from independent Poisson variances in the selected offspring from parents in SD, 120 

DS, and DD, respectively. 121 

The selective advantage of the ith sire in SS (𝑠𝑠�,��� and in SD (𝑠𝑠�,��� in the linear model is: 122 

 123 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 124 

 125 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴̅𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 126 

 127 

where 𝐴𝐴�,�� �� �� is the breeding value of sire i in SS or SD, 𝐴̅𝐴�,�� ��� �� is the average 128 

breeding value of dams mated to the ith sire in SS and SD, respectively; the dams mated to the ith 129 

sire in SS belong to the DS category, and the dams mated to the ith sire in SD belong to the DD 130 

category; and 𝐴̅𝐴��, 𝐴̅𝐴��, 𝐴̅𝐴��, and 𝐴̅𝐴�� are the average breeding values of the individuals in 131 

the SS, SD, DS, and DD categories. 132 

The selective advantage of the ith dam in DS (𝑠𝑠�,��� and in DD (𝑠𝑠�,��� in the linear model is:  133 

 134 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴��� and 135 

 136 

𝑠𝑠�,�� � 𝐴𝐴�,�� � 𝐴𝐴�,�� � �𝐴̅𝐴�� � 𝐴̅𝐴���, respectively, 137 

 138 

 respectively,

where 

7 
 

where 𝐴𝐴�,�� ��� �� is the breeding value of dam i in DS and DD, respectively; 𝐴𝐴�,�� ��� �� is 139 

the breeding value of a sire mated to the ith dam in DS and DD, respectively; the sires mated to 140 

the ith dam in DS belong to the SS category; and the sires mated to the ith dam in DD belong to 141 

the SD category. 142 

Expected contributions (𝑢𝑢�,��,��,��,�� ��� are predicted by linear regression on the selective 143 

advantage. That is, 144 

 145 

𝑢𝑢�,�= E (𝑟𝑟�|𝑠𝑠�,�) = α� � 𝛽𝛽�𝑠𝑠�,� , 𝑥𝑥 � SS, SD, DS, or DD, 146 

 147 

where α� is the expected contribution of an average parent in 𝑥𝑥, and 𝛽𝛽� is the regression 148 

coefficient of the contribution of i on its selective advantage (𝑠𝑠�,��. In addition, α� can be 149 

obtained according to Woolliams et al [9]:  150 

 151 

𝐍𝐍𝐍𝐍 � 𝐆𝐆�𝐍𝐍𝐍𝐍,  152 

 153 

where 𝐆𝐆 is a 4×4 matrix representing the parental origin of genes of selected offspring in the 154 

order of SS, SD, DS, and DD category, i.e., representing rows offspring and columns parental 155 

categories. That is, 156 

 157 

𝐆𝐆��� �
⎣
⎢⎢
⎢
⎡ 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 0.5 0 0.5 0
𝑆𝑆𝑆𝑆 0.5 0 0.5 0
𝐷𝐷𝐷𝐷 0 0.5 0 0.5
𝐷𝐷𝐷𝐷 0 0.5 0 0.5⎦

⎥⎥
⎥
⎤
. 158 

 159 

However, 160 

 161 

𝐍𝐍�𝐍𝐍 � 𝐍𝐍�𝐍𝐍𝐆𝐆, 162 

 is the breeding value of dam i in DS and 
DD, respectively; 

7 
 

where 𝐴𝐴�,�� ��� �� is the breeding value of dam i in DS and DD, respectively; 𝐴𝐴�,�� ��� �� is 139 

the breeding value of a sire mated to the ith dam in DS and DD, respectively; the sires mated to 140 

the ith dam in DS belong to the SS category; and the sires mated to the ith dam in DD belong to 141 

the SD category. 142 

Expected contributions (𝑢𝑢�,��,��,��,�� ��� are predicted by linear regression on the selective 143 

advantage. That is, 144 

 145 

𝑢𝑢�,�= E (𝑟𝑟�|𝑠𝑠�,�) = α� � 𝛽𝛽�𝑠𝑠�,� , 𝑥𝑥 � SS, SD, DS, or DD, 146 

 147 

where α� is the expected contribution of an average parent in 𝑥𝑥, and 𝛽𝛽� is the regression 148 

coefficient of the contribution of i on its selective advantage (𝑠𝑠�,��. In addition, α� can be 149 

obtained according to Woolliams et al [9]:  150 

 151 

𝐍𝐍𝐍𝐍 � 𝐆𝐆�𝐍𝐍𝐍𝐍,  152 

 153 

where 𝐆𝐆 is a 4×4 matrix representing the parental origin of genes of selected offspring in the 154 

order of SS, SD, DS, and DD category, i.e., representing rows offspring and columns parental 155 

categories. That is, 156 

 157 

𝐆𝐆��� �
⎣
⎢⎢
⎢
⎡ 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 0.5 0 0.5 0
𝑆𝑆𝑆𝑆 0.5 0 0.5 0
𝐷𝐷𝐷𝐷 0 0.5 0 0.5
𝐷𝐷𝐷𝐷 0 0.5 0 0.5⎦

⎥⎥
⎥
⎤
. 158 

 159 

However, 160 

 161 

𝐍𝐍�𝐍𝐍 � 𝐍𝐍�𝐍𝐍𝐆𝐆, 162 

 is the breeding value of a sire 
mated to the ith dam in DS and DD, respectively; the sires 
mated to the ith dam in DS belong to the SS category; and 
the sires mated to the ith dam in DD belong to the SD cate-
gory.
  Expected contributions 

7 
 

where 𝐴𝐴�,�� ��� �� is the breeding value of dam i in DS and DD, respectively; 𝐴𝐴�,�� ��� �� is 139 

the breeding value of a sire mated to the ith dam in DS and DD, respectively; the sires mated to 140 

the ith dam in DS belong to the SS category; and the sires mated to the ith dam in DD belong to 141 

the SD category. 142 

Expected contributions (𝑢𝑢�,��,��,��,�� ��� are predicted by linear regression on the selective 143 

advantage. That is, 144 

 145 

𝑢𝑢�,�= E (𝑟𝑟�|𝑠𝑠�,�) = α� � 𝛽𝛽�𝑠𝑠�,� , 𝑥𝑥 � SS, SD, DS, or DD, 146 

 147 

where α� is the expected contribution of an average parent in 𝑥𝑥, and 𝛽𝛽� is the regression 148 

coefficient of the contribution of i on its selective advantage (𝑠𝑠�,��. In addition, α� can be 149 

obtained according to Woolliams et al [9]:  150 

 151 

𝐍𝐍𝐍𝐍 � 𝐆𝐆�𝐍𝐍𝐍𝐍,  152 

 153 

where 𝐆𝐆 is a 4×4 matrix representing the parental origin of genes of selected offspring in the 154 

order of SS, SD, DS, and DD category, i.e., representing rows offspring and columns parental 155 

categories. That is, 156 

 157 

𝐆𝐆��� �
⎣
⎢⎢
⎢
⎡ 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 0.5 0 0.5 0
𝑆𝑆𝑆𝑆 0.5 0 0.5 0
𝐷𝐷𝐷𝐷 0 0.5 0 0.5
𝐷𝐷𝐷𝐷 0 0.5 0 0.5⎦

⎥⎥
⎥
⎤
. 158 

 159 

However, 160 

 161 

𝐍𝐍�𝐍𝐍 � 𝐍𝐍�𝐍𝐍𝐆𝐆, 162 

 are predicted 
by linear regression on the selective advantage. That is,

 

7 
 

where 𝐴𝐴�,�� ��� �� is the breeding value of dam i in DS and DD, respectively; 𝐴𝐴�,�� ��� �� is 139 

the breeding value of a sire mated to the ith dam in DS and DD, respectively; the sires mated to 140 

the ith dam in DS belong to the SS category; and the sires mated to the ith dam in DD belong to 141 

the SD category. 142 

Expected contributions (𝑢𝑢�,��,��,��,�� ��� are predicted by linear regression on the selective 143 

advantage. That is, 144 

 145 

𝑢𝑢�,�= E (𝑟𝑟�|𝑠𝑠�,�) = α� � 𝛽𝛽�𝑠𝑠�,� , 𝑥𝑥 � SS, SD, DS, or DD, 146 

 147 

where α� is the expected contribution of an average parent in 𝑥𝑥, and 𝛽𝛽� is the regression 148 

coefficient of the contribution of i on its selective advantage (𝑠𝑠�,��. In addition, α� can be 149 

obtained according to Woolliams et al [9]:  150 

 151 

𝐍𝐍𝐍𝐍 � 𝐆𝐆�𝐍𝐍𝐍𝐍,  152 

 153 

where 𝐆𝐆 is a 4×4 matrix representing the parental origin of genes of selected offspring in the 154 

order of SS, SD, DS, and DD category, i.e., representing rows offspring and columns parental 155 

categories. That is, 156 

 157 

𝐆𝐆��� �
⎣
⎢⎢
⎢
⎡ 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 0.5 0 0.5 0
𝑆𝑆𝑆𝑆 0.5 0 0.5 0
𝐷𝐷𝐷𝐷 0 0.5 0 0.5
𝐷𝐷𝐷𝐷 0 0.5 0 0.5⎦

⎥⎥
⎥
⎤
. 158 

 159 

However, 160 

 161 

𝐍𝐍�𝐍𝐍 � 𝐍𝐍�𝐍𝐍𝐆𝐆, 162 

where αx is the expected contribution of an average parent in 
x, and βx is the regression coefficient of the contribution of i 
on its selective advantage 

7 
 

where 𝐴𝐴�,�� ��� �� is the breeding value of dam i in DS and DD, respectively; 𝐴𝐴�,�� ��� �� is 139 

the breeding value of a sire mated to the ith dam in DS and DD, respectively; the sires mated to 140 

the ith dam in DS belong to the SS category; and the sires mated to the ith dam in DD belong to 141 

the SD category. 142 

Expected contributions (𝑢𝑢�,��,��,��,�� ��� are predicted by linear regression on the selective 143 

advantage. That is, 144 

 145 

𝑢𝑢�,�= E (𝑟𝑟�|𝑠𝑠�,�) = α� � 𝛽𝛽�𝑠𝑠�,� , 𝑥𝑥 � SS, SD, DS, or DD, 146 

 147 

where α� is the expected contribution of an average parent in 𝑥𝑥, and 𝛽𝛽� is the regression 148 

coefficient of the contribution of i on its selective advantage (𝑠𝑠�,��. In addition, α� can be 149 

obtained according to Woolliams et al [9]:  150 

 151 

𝐍𝐍𝐍𝐍 � 𝐆𝐆�𝐍𝐍𝐍𝐍,  152 

 153 

where 𝐆𝐆 is a 4×4 matrix representing the parental origin of genes of selected offspring in the 154 

order of SS, SD, DS, and DD category, i.e., representing rows offspring and columns parental 155 

categories. That is, 156 

 157 

𝐆𝐆��� �
⎣
⎢⎢
⎢
⎡ 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 0.5 0 0.5 0
𝑆𝑆𝑆𝑆 0.5 0 0.5 0
𝐷𝐷𝐷𝐷 0 0.5 0 0.5
𝐷𝐷𝐷𝐷 0 0.5 0 0.5⎦

⎥⎥
⎥
⎤
. 158 

 159 

However, 160 

 161 

𝐍𝐍�𝐍𝐍 � 𝐍𝐍�𝐍𝐍𝐆𝐆, 162 

. In addition, αx can be ob-
tained according to Woolliams et al [9]: 

 

7 
 

where 𝐴𝐴�,�� ��� �� is the breeding value of dam i in DS and DD, respectively; 𝐴𝐴�,�� ��� �� is 139 

the breeding value of a sire mated to the ith dam in DS and DD, respectively; the sires mated to 140 

the ith dam in DS belong to the SS category; and the sires mated to the ith dam in DD belong to 141 

the SD category. 142 

Expected contributions (𝑢𝑢�,��,��,��,�� ��� are predicted by linear regression on the selective 143 

advantage. That is, 144 

 145 

𝑢𝑢�,�= E (𝑟𝑟�|𝑠𝑠�,�) = α� � 𝛽𝛽�𝑠𝑠�,� , 𝑥𝑥 � SS, SD, DS, or DD, 146 

 147 

where α� is the expected contribution of an average parent in 𝑥𝑥, and 𝛽𝛽� is the regression 148 

coefficient of the contribution of i on its selective advantage (𝑠𝑠�,��. In addition, α� can be 149 

obtained according to Woolliams et al [9]:  150 

 151 

𝐍𝐍𝐍𝐍 � 𝐆𝐆�𝐍𝐍𝐍𝐍,  152 

 153 

where 𝐆𝐆 is a 4×4 matrix representing the parental origin of genes of selected offspring in the 154 

order of SS, SD, DS, and DD category, i.e., representing rows offspring and columns parental 155 

categories. That is, 156 

 157 

𝐆𝐆��� �
⎣
⎢⎢
⎢
⎡ 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 0.5 0 0.5 0
𝑆𝑆𝑆𝑆 0.5 0 0.5 0
𝐷𝐷𝐷𝐷 0 0.5 0 0.5
𝐷𝐷𝐷𝐷 0 0.5 0 0.5⎦

⎥⎥
⎥
⎤
. 158 

 159 

However, 160 

 161 

𝐍𝐍�𝐍𝐍 � 𝐍𝐍�𝐍𝐍𝐆𝐆, 162 

 



806  www.animbiosci.org

Togashi et al (2022) Anim Biosci 35:804-813

where G is a 4×4 matrix representing the parental origin of 
genes of selected offspring in the order of SS, SD, DS, and 
DD category, i.e., representing rows offspring and columns 
parental categories. That is,

 

7 
 

where 𝐴𝐴�,�� ��� �� is the breeding value of dam i in DS and DD, respectively; 𝐴𝐴�,�� ��� �� is 139 

the breeding value of a sire mated to the ith dam in DS and DD, respectively; the sires mated to 140 

the ith dam in DS belong to the SS category; and the sires mated to the ith dam in DD belong to 141 

the SD category. 142 

Expected contributions (𝑢𝑢�,��,��,��,�� ��� are predicted by linear regression on the selective 143 

advantage. That is, 144 

 145 

𝑢𝑢�,�= E (𝑟𝑟�|𝑠𝑠�,�) = α� � 𝛽𝛽�𝑠𝑠�,� , 𝑥𝑥 � SS, SD, DS, or DD, 146 

 147 

where α� is the expected contribution of an average parent in 𝑥𝑥, and 𝛽𝛽� is the regression 148 

coefficient of the contribution of i on its selective advantage (𝑠𝑠�,��. In addition, α� can be 149 

obtained according to Woolliams et al [9]:  150 

 151 

𝐍𝐍𝐍𝐍 � 𝐆𝐆�𝐍𝐍𝐍𝐍,  152 

 153 

where 𝐆𝐆 is a 4×4 matrix representing the parental origin of genes of selected offspring in the 154 

order of SS, SD, DS, and DD category, i.e., representing rows offspring and columns parental 155 

categories. That is, 156 

 157 

𝐆𝐆��� �
⎣
⎢⎢
⎢
⎡ 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 0.5 0 0.5 0
𝑆𝑆𝑆𝑆 0.5 0 0.5 0
𝐷𝐷𝐷𝐷 0 0.5 0 0.5
𝐷𝐷𝐷𝐷 0 0.5 0 0.5⎦

⎥⎥
⎥
⎤
. 158 

 159 

However, 160 

 161 

𝐍𝐍�𝐍𝐍 � 𝐍𝐍�𝐍𝐍𝐆𝐆, 162 

.

  However,

 

7 
 

where 𝐴𝐴�,�� ��� �� is the breeding value of dam i in DS and DD, respectively; 𝐴𝐴�,�� ��� �� is 139 

the breeding value of a sire mated to the ith dam in DS and DD, respectively; the sires mated to 140 

the ith dam in DS belong to the SS category; and the sires mated to the ith dam in DD belong to 141 

the SD category. 142 

Expected contributions (𝑢𝑢�,��,��,��,�� ��� are predicted by linear regression on the selective 143 

advantage. That is, 144 

 145 

𝑢𝑢�,�= E (𝑟𝑟�|𝑠𝑠�,�) = α� � 𝛽𝛽�𝑠𝑠�,� , 𝑥𝑥 � SS, SD, DS, or DD, 146 

 147 

where α� is the expected contribution of an average parent in 𝑥𝑥, and 𝛽𝛽� is the regression 148 

coefficient of the contribution of i on its selective advantage (𝑠𝑠�,��. In addition, α� can be 149 

obtained according to Woolliams et al [9]:  150 

 151 

𝐍𝐍𝐍𝐍 � 𝐆𝐆�𝐍𝐍𝐍𝐍,  152 

 153 

where 𝐆𝐆 is a 4×4 matrix representing the parental origin of genes of selected offspring in the 154 

order of SS, SD, DS, and DD category, i.e., representing rows offspring and columns parental 155 

categories. That is, 156 

 157 

𝐆𝐆��� �
⎣
⎢⎢
⎢
⎡ 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 0.5 0 0.5 0
𝑆𝑆𝑆𝑆 0.5 0 0.5 0
𝐷𝐷𝐷𝐷 0 0.5 0 0.5
𝐷𝐷𝐷𝐷 0 0.5 0 0.5⎦

⎥⎥
⎥
⎤
. 158 

 159 

However, 160 

 161 

𝐍𝐍�𝐍𝐍 � 𝐍𝐍�𝐍𝐍𝐆𝐆, 162 

where 

8 
 

 163 

where 𝛂𝛂𝛂𝛂𝛂 is the left eigenvector of G with eigenvalue 1; the left eigenvector is obtained 164 

according to [11] and is equal to (0.25 0.25 0.25 0.25). 165 

 166 

Therefore 𝛂𝛂� � � �
����  �

����  �
����  �

�����. 167 

 168 

Solutions for 𝛽𝛽� are obtained according to Woolliams et al [9]:  169 

 170 

�
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��

� � �𝐈𝐈� � �
�𝚷𝚷𝛂��� �

�
�  �𝛂 � �

𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��
�=�𝐈𝐈� � �

�𝚷𝚷𝛂��� �
�
�  �𝛂 �

⎣
⎢
⎢
⎢
⎢
⎡��
�
�
�
�
�
�⎦
⎥
⎥
⎥
⎥
⎤
,   (1) 171 

 172 

note that the right hand side of (1) is unaffected by the number of parents, so that 𝛽𝛽�  is 173 

inversely proportional to the number of parents (that is, �
��� , �

��� , �
��� and �

���),  where, 𝐈𝐈� is 174 

a 4×4 identity matrix,  𝚷𝚷  is a 4×4 matrix of regression coefficients with 𝜋𝜋��  being the 175 

regression coefficient of 𝑠𝑠�,� of a selected offspring i of category x (SS, SD, DS, DD) on 𝑠𝑠�,� 176 

of its parent j of category y (SS, SD, DS, DD). For example, 𝜋𝜋��,�� is the regression coefficient 177 

of 𝑠𝑠�,�� of a selected offspring i of SD on 𝑠𝑠�,�� of its parent j of SS. Given that SS is the sires 178 

to breed sons category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (1,1) 179 

and (2, 1), respectively. In the same way, since SD is the sires to breed daughters category, we 180 

have non-zero elements, 𝜋𝜋��,�� and 𝜋𝜋��,�� , in 𝚷𝚷 as elements (3,2) and (4,2), respectively. 181 

Because DS is the dams to breed sons category, we have non-zero elements, 𝜋𝜋��,��  and 182 

𝜋𝜋��,�� , in 𝚷𝚷 as elements (1,3) and (2,3), respectively. And given that DD is the dams to breed 183 

daughters category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (3,4) and 184 

 is the left eigenvector of G with eigenvalue 1; the 
left eigenvector is obtained according to Bijma and Woolliams 
[11] and is equal to (0.25 0.25 0.25 0.25).

  Therefore 

8 
 

 163 

where 𝛂𝛂𝛂𝛂𝛂 is the left eigenvector of G with eigenvalue 1; the left eigenvector is obtained 164 

according to [11] and is equal to (0.25 0.25 0.25 0.25). 165 

 166 

Therefore 𝛂𝛂� � � �
����  �

����  �
����  �

�����. 167 

 168 

Solutions for 𝛽𝛽� are obtained according to Woolliams et al [9]:  169 

 170 

�
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��

� � �𝐈𝐈� � �
�𝚷𝚷𝛂��� �

�
�  �𝛂 � �

𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��
�=�𝐈𝐈� � �

�𝚷𝚷𝛂��� �
�
�  �𝛂 �

⎣
⎢
⎢
⎢
⎢
⎡��
�
�
�
�
�
�⎦
⎥
⎥
⎥
⎥
⎤
,   (1) 171 

 172 

note that the right hand side of (1) is unaffected by the number of parents, so that 𝛽𝛽�  is 173 

inversely proportional to the number of parents (that is, �
��� , �

��� , �
��� and �

���),  where, 𝐈𝐈� is 174 

a 4×4 identity matrix,  𝚷𝚷  is a 4×4 matrix of regression coefficients with 𝜋𝜋��  being the 175 

regression coefficient of 𝑠𝑠�,� of a selected offspring i of category x (SS, SD, DS, DD) on 𝑠𝑠�,� 176 

of its parent j of category y (SS, SD, DS, DD). For example, 𝜋𝜋��,�� is the regression coefficient 177 

of 𝑠𝑠�,�� of a selected offspring i of SD on 𝑠𝑠�,�� of its parent j of SS. Given that SS is the sires 178 

to breed sons category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (1,1) 179 

and (2, 1), respectively. In the same way, since SD is the sires to breed daughters category, we 180 

have non-zero elements, 𝜋𝜋��,�� and 𝜋𝜋��,�� , in 𝚷𝚷 as elements (3,2) and (4,2), respectively. 181 

Because DS is the dams to breed sons category, we have non-zero elements, 𝜋𝜋��,��  and 182 

𝜋𝜋��,�� , in 𝚷𝚷 as elements (1,3) and (2,3), respectively. And given that DD is the dams to breed 183 

daughters category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (3,4) and 184 

.

  Solutions for βx are obtained according to Woolliams et al 
[9]: 

 

8 
 

 163 

where 𝛂𝛂𝛂𝛂𝛂 is the left eigenvector of G with eigenvalue 1; the left eigenvector is obtained 164 

according to [11] and is equal to (0.25 0.25 0.25 0.25). 165 

 166 

Therefore 𝛂𝛂� � � �
����  �

����  �
����  �

�����. 167 

 168 

Solutions for 𝛽𝛽� are obtained according to Woolliams et al [9]:  169 

 170 

�
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��

� � �𝐈𝐈� � �
�𝚷𝚷𝛂��� �

�
�  �𝛂 � �

𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��
�=�𝐈𝐈� � �

�𝚷𝚷𝛂��� �
�
�  �𝛂 �

⎣
⎢
⎢
⎢
⎢
⎡��
�
�
�
�
�
�⎦
⎥
⎥
⎥
⎥
⎤
,   (1) 171 

 172 

note that the right hand side of (1) is unaffected by the number of parents, so that 𝛽𝛽�  is 173 

inversely proportional to the number of parents (that is, �
��� , �

��� , �
��� and �

���),  where, 𝐈𝐈� is 174 

a 4×4 identity matrix,  𝚷𝚷  is a 4×4 matrix of regression coefficients with 𝜋𝜋��  being the 175 

regression coefficient of 𝑠𝑠�,� of a selected offspring i of category x (SS, SD, DS, DD) on 𝑠𝑠�,� 176 

of its parent j of category y (SS, SD, DS, DD). For example, 𝜋𝜋��,�� is the regression coefficient 177 

of 𝑠𝑠�,�� of a selected offspring i of SD on 𝑠𝑠�,�� of its parent j of SS. Given that SS is the sires 178 

to breed sons category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (1,1) 179 

and (2, 1), respectively. In the same way, since SD is the sires to breed daughters category, we 180 

have non-zero elements, 𝜋𝜋��,�� and 𝜋𝜋��,�� , in 𝚷𝚷 as elements (3,2) and (4,2), respectively. 181 

Because DS is the dams to breed sons category, we have non-zero elements, 𝜋𝜋��,��  and 182 

𝜋𝜋��,�� , in 𝚷𝚷 as elements (1,3) and (2,3), respectively. And given that DD is the dams to breed 183 

daughters category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (3,4) and 184 

          

8 
 

 163 

where 𝛂𝛂𝛂𝛂𝛂 is the left eigenvector of G with eigenvalue 1; the left eigenvector is obtained 164 

according to [11] and is equal to (0.25 0.25 0.25 0.25). 165 

 166 

Therefore 𝛂𝛂� � � �
����  �

����  �
����  �

�����. 167 

 168 

Solutions for 𝛽𝛽� are obtained according to Woolliams et al [9]:  169 

 170 

�
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��

� � �𝐈𝐈� � �
�𝚷𝚷𝛂��� �

�
�  �𝛂 � �

𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��
�=�𝐈𝐈� � �

�𝚷𝚷𝛂��� �
�
�  �𝛂 �

⎣
⎢
⎢
⎢
⎢
⎡��
�
�
�
�
�
�⎦
⎥
⎥
⎥
⎥
⎤
,   (1) 171 

 172 

note that the right hand side of (1) is unaffected by the number of parents, so that 𝛽𝛽�  is 173 

inversely proportional to the number of parents (that is, �
��� , �

��� , �
��� and �

���),  where, 𝐈𝐈� is 174 

a 4×4 identity matrix,  𝚷𝚷  is a 4×4 matrix of regression coefficients with 𝜋𝜋��  being the 175 

regression coefficient of 𝑠𝑠�,� of a selected offspring i of category x (SS, SD, DS, DD) on 𝑠𝑠�,� 176 

of its parent j of category y (SS, SD, DS, DD). For example, 𝜋𝜋��,�� is the regression coefficient 177 

of 𝑠𝑠�,�� of a selected offspring i of SD on 𝑠𝑠�,�� of its parent j of SS. Given that SS is the sires 178 

to breed sons category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (1,1) 179 

and (2, 1), respectively. In the same way, since SD is the sires to breed daughters category, we 180 

have non-zero elements, 𝜋𝜋��,�� and 𝜋𝜋��,�� , in 𝚷𝚷 as elements (3,2) and (4,2), respectively. 181 

Because DS is the dams to breed sons category, we have non-zero elements, 𝜋𝜋��,��  and 182 

𝜋𝜋��,�� , in 𝚷𝚷 as elements (1,3) and (2,3), respectively. And given that DD is the dams to breed 183 

daughters category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (3,4) and 184 

, 	 (1)

note that the right hand side of (1) is unaffected by the num-
ber of parents, so that βx is inversely proportional to the 

number of parents (that is, 

8 
 

 163 

where 𝛂𝛂𝛂𝛂𝛂 is the left eigenvector of G with eigenvalue 1; the left eigenvector is obtained 164 

according to [11] and is equal to (0.25 0.25 0.25 0.25). 165 

 166 

Therefore 𝛂𝛂� � � �
����  �

����  �
����  �

�����. 167 

 168 

Solutions for 𝛽𝛽� are obtained according to Woolliams et al [9]:  169 

 170 

�
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��

� � �𝐈𝐈� � �
�𝚷𝚷𝛂��� �

�
�  �𝛂 � �

𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��
�=�𝐈𝐈� � �

�𝚷𝚷𝛂��� �
�
�  �𝛂 �

⎣
⎢
⎢
⎢
⎢
⎡��
�
�
�
�
�
�⎦
⎥
⎥
⎥
⎥
⎤
,   (1) 171 

 172 

note that the right hand side of (1) is unaffected by the number of parents, so that 𝛽𝛽�  is 173 

inversely proportional to the number of parents (that is, �
��� , �

��� , �
��� and �

���),  where, 𝐈𝐈� is 174 

a 4×4 identity matrix,  𝚷𝚷  is a 4×4 matrix of regression coefficients with 𝜋𝜋��  being the 175 

regression coefficient of 𝑠𝑠�,� of a selected offspring i of category x (SS, SD, DS, DD) on 𝑠𝑠�,� 176 

of its parent j of category y (SS, SD, DS, DD). For example, 𝜋𝜋��,�� is the regression coefficient 177 

of 𝑠𝑠�,�� of a selected offspring i of SD on 𝑠𝑠�,�� of its parent j of SS. Given that SS is the sires 178 

to breed sons category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (1,1) 179 

and (2, 1), respectively. In the same way, since SD is the sires to breed daughters category, we 180 

have non-zero elements, 𝜋𝜋��,�� and 𝜋𝜋��,�� , in 𝚷𝚷 as elements (3,2) and (4,2), respectively. 181 

Because DS is the dams to breed sons category, we have non-zero elements, 𝜋𝜋��,��  and 182 

𝜋𝜋��,�� , in 𝚷𝚷 as elements (1,3) and (2,3), respectively. And given that DD is the dams to breed 183 

daughters category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (3,4) and 184 

 and 

8 
 

 163 

where 𝛂𝛂𝛂𝛂𝛂 is the left eigenvector of G with eigenvalue 1; the left eigenvector is obtained 164 

according to [11] and is equal to (0.25 0.25 0.25 0.25). 165 

 166 

Therefore 𝛂𝛂� � � �
����  �

����  �
����  �

�����. 167 

 168 

Solutions for 𝛽𝛽� are obtained according to Woolliams et al [9]:  169 

 170 

�
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��

� � �𝐈𝐈� � �
�𝚷𝚷𝛂��� �

�
�  �𝛂 � �

𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��
�=�𝐈𝐈� � �

�𝚷𝚷𝛂��� �
�
�  �𝛂 �

⎣
⎢
⎢
⎢
⎢
⎡��
�
�
�
�
�
�⎦
⎥
⎥
⎥
⎥
⎤
,   (1) 171 

 172 

note that the right hand side of (1) is unaffected by the number of parents, so that 𝛽𝛽�  is 173 

inversely proportional to the number of parents (that is, �
��� , �

��� , �
��� and �

���),  where, 𝐈𝐈� is 174 

a 4×4 identity matrix,  𝚷𝚷  is a 4×4 matrix of regression coefficients with 𝜋𝜋��  being the 175 

regression coefficient of 𝑠𝑠�,� of a selected offspring i of category x (SS, SD, DS, DD) on 𝑠𝑠�,� 176 

of its parent j of category y (SS, SD, DS, DD). For example, 𝜋𝜋��,�� is the regression coefficient 177 

of 𝑠𝑠�,�� of a selected offspring i of SD on 𝑠𝑠�,�� of its parent j of SS. Given that SS is the sires 178 

to breed sons category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (1,1) 179 

and (2, 1), respectively. In the same way, since SD is the sires to breed daughters category, we 180 

have non-zero elements, 𝜋𝜋��,�� and 𝜋𝜋��,�� , in 𝚷𝚷 as elements (3,2) and (4,2), respectively. 181 

Because DS is the dams to breed sons category, we have non-zero elements, 𝜋𝜋��,��  and 182 

𝜋𝜋��,�� , in 𝚷𝚷 as elements (1,3) and (2,3), respectively. And given that DD is the dams to breed 183 

daughters category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (3,4) and 184 

), where, 

8 
 

 163 

where 𝛂𝛂𝛂𝛂𝛂 is the left eigenvector of G with eigenvalue 1; the left eigenvector is obtained 164 

according to [11] and is equal to (0.25 0.25 0.25 0.25). 165 

 166 

Therefore 𝛂𝛂� � � �
����  �

����  �
����  �

�����. 167 

 168 

Solutions for 𝛽𝛽� are obtained according to Woolliams et al [9]:  169 

 170 

�
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��

� � �𝐈𝐈� � �
�𝚷𝚷𝛂��� �

�
�  �𝛂 � �

𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��
�=�𝐈𝐈� � �

�𝚷𝚷𝛂��� �
�
�  �𝛂 �

⎣
⎢
⎢
⎢
⎢
⎡��
�
�
�
�
�
�⎦
⎥
⎥
⎥
⎥
⎤
,   (1) 171 

 172 

note that the right hand side of (1) is unaffected by the number of parents, so that 𝛽𝛽�  is 173 

inversely proportional to the number of parents (that is, �
��� , �

��� , �
��� and �

���),  where, 𝐈𝐈� is 174 

a 4×4 identity matrix,  𝚷𝚷  is a 4×4 matrix of regression coefficients with 𝜋𝜋��  being the 175 

regression coefficient of 𝑠𝑠�,� of a selected offspring i of category x (SS, SD, DS, DD) on 𝑠𝑠�,� 176 

of its parent j of category y (SS, SD, DS, DD). For example, 𝜋𝜋��,�� is the regression coefficient 177 

of 𝑠𝑠�,�� of a selected offspring i of SD on 𝑠𝑠�,�� of its parent j of SS. Given that SS is the sires 178 

to breed sons category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (1,1) 179 

and (2, 1), respectively. In the same way, since SD is the sires to breed daughters category, we 180 

have non-zero elements, 𝜋𝜋��,�� and 𝜋𝜋��,�� , in 𝚷𝚷 as elements (3,2) and (4,2), respectively. 181 

Because DS is the dams to breed sons category, we have non-zero elements, 𝜋𝜋��,��  and 182 

𝜋𝜋��,�� , in 𝚷𝚷 as elements (1,3) and (2,3), respectively. And given that DD is the dams to breed 183 

daughters category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (3,4) and 184 

 is a 4×4 identity matrix, Π is a 4×4 matrix of regression 
coefficients with πxy being the regression coefficient of 

8 
 

 163 

where 𝛂𝛂𝛂𝛂𝛂 is the left eigenvector of G with eigenvalue 1; the left eigenvector is obtained 164 

according to [11] and is equal to (0.25 0.25 0.25 0.25). 165 

 166 

Therefore 𝛂𝛂� � � �
����  �

����  �
����  �

�����. 167 

 168 

Solutions for 𝛽𝛽� are obtained according to Woolliams et al [9]:  169 

 170 

�
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��

� � �𝐈𝐈� � �
�𝚷𝚷𝛂��� �

�
�  �𝛂 � �

𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��
�=�𝐈𝐈� � �

�𝚷𝚷𝛂��� �
�
�  �𝛂 �

⎣
⎢
⎢
⎢
⎢
⎡��
�
�
�
�
�
�⎦
⎥
⎥
⎥
⎥
⎤
,   (1) 171 

 172 

note that the right hand side of (1) is unaffected by the number of parents, so that 𝛽𝛽�  is 173 

inversely proportional to the number of parents (that is, �
��� , �

��� , �
��� and �

���),  where, 𝐈𝐈� is 174 

a 4×4 identity matrix,  𝚷𝚷  is a 4×4 matrix of regression coefficients with 𝜋𝜋��  being the 175 

regression coefficient of 𝑠𝑠�,� of a selected offspring i of category x (SS, SD, DS, DD) on 𝑠𝑠�,� 176 

of its parent j of category y (SS, SD, DS, DD). For example, 𝜋𝜋��,�� is the regression coefficient 177 

of 𝑠𝑠�,�� of a selected offspring i of SD on 𝑠𝑠�,�� of its parent j of SS. Given that SS is the sires 178 

to breed sons category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (1,1) 179 

and (2, 1), respectively. In the same way, since SD is the sires to breed daughters category, we 180 

have non-zero elements, 𝜋𝜋��,�� and 𝜋𝜋��,�� , in 𝚷𝚷 as elements (3,2) and (4,2), respectively. 181 

Because DS is the dams to breed sons category, we have non-zero elements, 𝜋𝜋��,��  and 182 

𝜋𝜋��,�� , in 𝚷𝚷 as elements (1,3) and (2,3), respectively. And given that DD is the dams to breed 183 

daughters category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (3,4) and 184 

 
of a selected offspring i of category x (SS, SD, DS, DD) on sj,y 
of its parent j of category y (SS, SD, DS, DD). For example, 

8 
 

 163 

where 𝛂𝛂𝛂𝛂𝛂 is the left eigenvector of G with eigenvalue 1; the left eigenvector is obtained 164 

according to [11] and is equal to (0.25 0.25 0.25 0.25). 165 

 166 

Therefore 𝛂𝛂� � � �
����  �

����  �
����  �

�����. 167 

 168 

Solutions for 𝛽𝛽� are obtained according to Woolliams et al [9]:  169 

 170 

�
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��

� � �𝐈𝐈� � �
�𝚷𝚷𝛂��� �

�
�  �𝛂 � �

𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��
�=�𝐈𝐈� � �

�𝚷𝚷𝛂��� �
�
�  �𝛂 �

⎣
⎢
⎢
⎢
⎢
⎡��
�
�
�
�
�
�⎦
⎥
⎥
⎥
⎥
⎤
,   (1) 171 

 172 

note that the right hand side of (1) is unaffected by the number of parents, so that 𝛽𝛽�  is 173 

inversely proportional to the number of parents (that is, �
��� , �

��� , �
��� and �

���),  where, 𝐈𝐈� is 174 

a 4×4 identity matrix,  𝚷𝚷  is a 4×4 matrix of regression coefficients with 𝜋𝜋��  being the 175 

regression coefficient of 𝑠𝑠�,� of a selected offspring i of category x (SS, SD, DS, DD) on 𝑠𝑠�,� 176 

of its parent j of category y (SS, SD, DS, DD). For example, 𝜋𝜋��,�� is the regression coefficient 177 

of 𝑠𝑠�,�� of a selected offspring i of SD on 𝑠𝑠�,�� of its parent j of SS. Given that SS is the sires 178 

to breed sons category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (1,1) 179 

and (2, 1), respectively. In the same way, since SD is the sires to breed daughters category, we 180 

have non-zero elements, 𝜋𝜋��,�� and 𝜋𝜋��,�� , in 𝚷𝚷 as elements (3,2) and (4,2), respectively. 181 

Because DS is the dams to breed sons category, we have non-zero elements, 𝜋𝜋��,��  and 182 

𝜋𝜋��,�� , in 𝚷𝚷 as elements (1,3) and (2,3), respectively. And given that DD is the dams to breed 183 

daughters category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (3,4) and 184 

 is the regression coefficient of 

8 
 

 163 

where 𝛂𝛂𝛂𝛂𝛂 is the left eigenvector of G with eigenvalue 1; the left eigenvector is obtained 164 

according to [11] and is equal to (0.25 0.25 0.25 0.25). 165 

 166 

Therefore 𝛂𝛂� � � �
����  �

����  �
����  �

�����. 167 

 168 

Solutions for 𝛽𝛽� are obtained according to Woolliams et al [9]:  169 

 170 

�
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��

� � �𝐈𝐈� � �
�𝚷𝚷𝛂��� �

�
�  �𝛂 � �

𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��
�=�𝐈𝐈� � �

�𝚷𝚷𝛂��� �
�
�  �𝛂 �

⎣
⎢
⎢
⎢
⎢
⎡��
�
�
�
�
�
�⎦
⎥
⎥
⎥
⎥
⎤
,   (1) 171 

 172 

note that the right hand side of (1) is unaffected by the number of parents, so that 𝛽𝛽�  is 173 

inversely proportional to the number of parents (that is, �
��� , �

��� , �
��� and �

���),  where, 𝐈𝐈� is 174 

a 4×4 identity matrix,  𝚷𝚷  is a 4×4 matrix of regression coefficients with 𝜋𝜋��  being the 175 

regression coefficient of 𝑠𝑠�,� of a selected offspring i of category x (SS, SD, DS, DD) on 𝑠𝑠�,� 176 

of its parent j of category y (SS, SD, DS, DD). For example, 𝜋𝜋��,�� is the regression coefficient 177 

of 𝑠𝑠�,�� of a selected offspring i of SD on 𝑠𝑠�,�� of its parent j of SS. Given that SS is the sires 178 

to breed sons category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (1,1) 179 

and (2, 1), respectively. In the same way, since SD is the sires to breed daughters category, we 180 

have non-zero elements, 𝜋𝜋��,�� and 𝜋𝜋��,�� , in 𝚷𝚷 as elements (3,2) and (4,2), respectively. 181 

Because DS is the dams to breed sons category, we have non-zero elements, 𝜋𝜋��,��  and 182 

𝜋𝜋��,�� , in 𝚷𝚷 as elements (1,3) and (2,3), respectively. And given that DD is the dams to breed 183 

daughters category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (3,4) and 184 

 of a selected off-
spring i of SD on 

8 
 

 163 

where 𝛂𝛂𝛂𝛂𝛂 is the left eigenvector of G with eigenvalue 1; the left eigenvector is obtained 164 

according to [11] and is equal to (0.25 0.25 0.25 0.25). 165 

 166 

Therefore 𝛂𝛂� � � �
����  �

����  �
����  �

�����. 167 

 168 

Solutions for 𝛽𝛽� are obtained according to Woolliams et al [9]:  169 

 170 

�
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��

� � �𝐈𝐈� � �
�𝚷𝚷𝛂��� �

�
�  �𝛂 � �

𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��
�=�𝐈𝐈� � �

�𝚷𝚷𝛂��� �
�
�  �𝛂 �

⎣
⎢
⎢
⎢
⎢
⎡��
�
�
�
�
�
�⎦
⎥
⎥
⎥
⎥
⎤
,   (1) 171 

 172 

note that the right hand side of (1) is unaffected by the number of parents, so that 𝛽𝛽�  is 173 

inversely proportional to the number of parents (that is, �
��� , �

��� , �
��� and �

���),  where, 𝐈𝐈� is 174 

a 4×4 identity matrix,  𝚷𝚷  is a 4×4 matrix of regression coefficients with 𝜋𝜋��  being the 175 

regression coefficient of 𝑠𝑠�,� of a selected offspring i of category x (SS, SD, DS, DD) on 𝑠𝑠�,� 176 

of its parent j of category y (SS, SD, DS, DD). For example, 𝜋𝜋��,�� is the regression coefficient 177 

of 𝑠𝑠�,�� of a selected offspring i of SD on 𝑠𝑠�,�� of its parent j of SS. Given that SS is the sires 178 

to breed sons category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (1,1) 179 

and (2, 1), respectively. In the same way, since SD is the sires to breed daughters category, we 180 

have non-zero elements, 𝜋𝜋��,�� and 𝜋𝜋��,�� , in 𝚷𝚷 as elements (3,2) and (4,2), respectively. 181 

Because DS is the dams to breed sons category, we have non-zero elements, 𝜋𝜋��,��  and 182 

𝜋𝜋��,�� , in 𝚷𝚷 as elements (1,3) and (2,3), respectively. And given that DD is the dams to breed 183 

daughters category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (3,4) and 184 

 of its parent j of SS. Given that SS is 
the sires to breed sons category, we have non-zero elements, 

8 
 

 163 

where 𝛂𝛂𝛂𝛂𝛂 is the left eigenvector of G with eigenvalue 1; the left eigenvector is obtained 164 

according to [11] and is equal to (0.25 0.25 0.25 0.25). 165 

 166 

Therefore 𝛂𝛂� � � �
����  �

����  �
����  �

�����. 167 

 168 

Solutions for 𝛽𝛽� are obtained according to Woolliams et al [9]:  169 

 170 

�
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��

� � �𝐈𝐈� � �
�𝚷𝚷𝛂��� �

�
�  �𝛂 � �

𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��
�=�𝐈𝐈� � �

�𝚷𝚷𝛂��� �
�
�  �𝛂 �

⎣
⎢
⎢
⎢
⎢
⎡��
�
�
�
�
�
�⎦
⎥
⎥
⎥
⎥
⎤
,   (1) 171 

 172 

note that the right hand side of (1) is unaffected by the number of parents, so that 𝛽𝛽�  is 173 

inversely proportional to the number of parents (that is, �
��� , �

��� , �
��� and �

���),  where, 𝐈𝐈� is 174 

a 4×4 identity matrix,  𝚷𝚷  is a 4×4 matrix of regression coefficients with 𝜋𝜋��  being the 175 

regression coefficient of 𝑠𝑠�,� of a selected offspring i of category x (SS, SD, DS, DD) on 𝑠𝑠�,� 176 

of its parent j of category y (SS, SD, DS, DD). For example, 𝜋𝜋��,�� is the regression coefficient 177 

of 𝑠𝑠�,�� of a selected offspring i of SD on 𝑠𝑠�,�� of its parent j of SS. Given that SS is the sires 178 

to breed sons category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (1,1) 179 

and (2, 1), respectively. In the same way, since SD is the sires to breed daughters category, we 180 

have non-zero elements, 𝜋𝜋��,�� and 𝜋𝜋��,�� , in 𝚷𝚷 as elements (3,2) and (4,2), respectively. 181 

Because DS is the dams to breed sons category, we have non-zero elements, 𝜋𝜋��,��  and 182 

𝜋𝜋��,�� , in 𝚷𝚷 as elements (1,3) and (2,3), respectively. And given that DD is the dams to breed 183 

daughters category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (3,4) and 184 

 and 

8 
 

 163 

where 𝛂𝛂𝛂𝛂𝛂 is the left eigenvector of G with eigenvalue 1; the left eigenvector is obtained 164 

according to [11] and is equal to (0.25 0.25 0.25 0.25). 165 

 166 

Therefore 𝛂𝛂� � � �
����  �

����  �
����  �

�����. 167 

 168 

Solutions for 𝛽𝛽� are obtained according to Woolliams et al [9]:  169 

 170 

�
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��

� � �𝐈𝐈� � �
�𝚷𝚷𝛂��� �

�
�  �𝛂 � �

𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��
�=�𝐈𝐈� � �

�𝚷𝚷𝛂��� �
�
�  �𝛂 �

⎣
⎢
⎢
⎢
⎢
⎡��
�
�
�
�
�
�⎦
⎥
⎥
⎥
⎥
⎤
,   (1) 171 

 172 

note that the right hand side of (1) is unaffected by the number of parents, so that 𝛽𝛽�  is 173 

inversely proportional to the number of parents (that is, �
��� , �

��� , �
��� and �

���),  where, 𝐈𝐈� is 174 

a 4×4 identity matrix,  𝚷𝚷  is a 4×4 matrix of regression coefficients with 𝜋𝜋��  being the 175 

regression coefficient of 𝑠𝑠�,� of a selected offspring i of category x (SS, SD, DS, DD) on 𝑠𝑠�,� 176 

of its parent j of category y (SS, SD, DS, DD). For example, 𝜋𝜋��,�� is the regression coefficient 177 

of 𝑠𝑠�,�� of a selected offspring i of SD on 𝑠𝑠�,�� of its parent j of SS. Given that SS is the sires 178 

to breed sons category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (1,1) 179 

and (2, 1), respectively. In the same way, since SD is the sires to breed daughters category, we 180 

have non-zero elements, 𝜋𝜋��,�� and 𝜋𝜋��,�� , in 𝚷𝚷 as elements (3,2) and (4,2), respectively. 181 

Because DS is the dams to breed sons category, we have non-zero elements, 𝜋𝜋��,��  and 182 

𝜋𝜋��,�� , in 𝚷𝚷 as elements (1,3) and (2,3), respectively. And given that DD is the dams to breed 183 

daughters category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (3,4) and 184 

, in Π as elements (1,1) and (2,1), respec-
tively. In the same way, since SD is the sires to breed daughters 
category, we have non-zero elements, 

8 
 

 163 

where 𝛂𝛂𝛂𝛂𝛂 is the left eigenvector of G with eigenvalue 1; the left eigenvector is obtained 164 

according to [11] and is equal to (0.25 0.25 0.25 0.25). 165 

 166 

Therefore 𝛂𝛂� � � �
����  �

����  �
����  �

�����. 167 

 168 

Solutions for 𝛽𝛽� are obtained according to Woolliams et al [9]:  169 

 170 

�
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��

� � �𝐈𝐈� � �
�𝚷𝚷𝛂��� �

�
�  �𝛂 � �

𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��
�=�𝐈𝐈� � �

�𝚷𝚷𝛂��� �
�
�  �𝛂 �

⎣
⎢
⎢
⎢
⎢
⎡��
�
�
�
�
�
�⎦
⎥
⎥
⎥
⎥
⎤
,   (1) 171 

 172 

note that the right hand side of (1) is unaffected by the number of parents, so that 𝛽𝛽�  is 173 

inversely proportional to the number of parents (that is, �
��� , �

��� , �
��� and �

���),  where, 𝐈𝐈� is 174 

a 4×4 identity matrix,  𝚷𝚷  is a 4×4 matrix of regression coefficients with 𝜋𝜋��  being the 175 

regression coefficient of 𝑠𝑠�,� of a selected offspring i of category x (SS, SD, DS, DD) on 𝑠𝑠�,� 176 

of its parent j of category y (SS, SD, DS, DD). For example, 𝜋𝜋��,�� is the regression coefficient 177 

of 𝑠𝑠�,�� of a selected offspring i of SD on 𝑠𝑠�,�� of its parent j of SS. Given that SS is the sires 178 

to breed sons category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (1,1) 179 

and (2, 1), respectively. In the same way, since SD is the sires to breed daughters category, we 180 

have non-zero elements, 𝜋𝜋��,�� and 𝜋𝜋��,�� , in 𝚷𝚷 as elements (3,2) and (4,2), respectively. 181 

Because DS is the dams to breed sons category, we have non-zero elements, 𝜋𝜋��,��  and 182 

𝜋𝜋��,�� , in 𝚷𝚷 as elements (1,3) and (2,3), respectively. And given that DD is the dams to breed 183 

daughters category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (3,4) and 184 

 and 

8 
 

 163 

where 𝛂𝛂𝛂𝛂𝛂 is the left eigenvector of G with eigenvalue 1; the left eigenvector is obtained 164 

according to [11] and is equal to (0.25 0.25 0.25 0.25). 165 

 166 

Therefore 𝛂𝛂� � � �
����  �

����  �
����  �

�����. 167 

 168 

Solutions for 𝛽𝛽� are obtained according to Woolliams et al [9]:  169 

 170 

�
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��

� � �𝐈𝐈� � �
�𝚷𝚷𝛂��� �

�
�  �𝛂 � �

𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��
�=�𝐈𝐈� � �

�𝚷𝚷𝛂��� �
�
�  �𝛂 �

⎣
⎢
⎢
⎢
⎢
⎡��
�
�
�
�
�
�⎦
⎥
⎥
⎥
⎥
⎤
,   (1) 171 

 172 

note that the right hand side of (1) is unaffected by the number of parents, so that 𝛽𝛽�  is 173 

inversely proportional to the number of parents (that is, �
��� , �

��� , �
��� and �

���),  where, 𝐈𝐈� is 174 

a 4×4 identity matrix,  𝚷𝚷  is a 4×4 matrix of regression coefficients with 𝜋𝜋��  being the 175 

regression coefficient of 𝑠𝑠�,� of a selected offspring i of category x (SS, SD, DS, DD) on 𝑠𝑠�,� 176 

of its parent j of category y (SS, SD, DS, DD). For example, 𝜋𝜋��,�� is the regression coefficient 177 

of 𝑠𝑠�,�� of a selected offspring i of SD on 𝑠𝑠�,�� of its parent j of SS. Given that SS is the sires 178 

to breed sons category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (1,1) 179 

and (2, 1), respectively. In the same way, since SD is the sires to breed daughters category, we 180 

have non-zero elements, 𝜋𝜋��,�� and 𝜋𝜋��,�� , in 𝚷𝚷 as elements (3,2) and (4,2), respectively. 181 

Because DS is the dams to breed sons category, we have non-zero elements, 𝜋𝜋��,��  and 182 

𝜋𝜋��,�� , in 𝚷𝚷 as elements (1,3) and (2,3), respectively. And given that DD is the dams to breed 183 

daughters category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (3,4) and 184 

, in 
Π as elements (3,2) and (4,2), respectively. Because DS is the 
dams to breed sons category, we have non-zero elements, 

8 
 

 163 

where 𝛂𝛂𝛂𝛂𝛂 is the left eigenvector of G with eigenvalue 1; the left eigenvector is obtained 164 

according to [11] and is equal to (0.25 0.25 0.25 0.25). 165 

 166 

Therefore 𝛂𝛂� � � �
����  �

����  �
����  �

�����. 167 

 168 

Solutions for 𝛽𝛽� are obtained according to Woolliams et al [9]:  169 

 170 

�
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��

� � �𝐈𝐈� � �
�𝚷𝚷𝛂��� �

�
�  �𝛂 � �

𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��
�=�𝐈𝐈� � �

�𝚷𝚷𝛂��� �
�
�  �𝛂 �

⎣
⎢
⎢
⎢
⎢
⎡��
�
�
�
�
�
�⎦
⎥
⎥
⎥
⎥
⎤
,   (1) 171 

 172 

note that the right hand side of (1) is unaffected by the number of parents, so that 𝛽𝛽�  is 173 

inversely proportional to the number of parents (that is, �
��� , �

��� , �
��� and �

���),  where, 𝐈𝐈� is 174 

a 4×4 identity matrix,  𝚷𝚷  is a 4×4 matrix of regression coefficients with 𝜋𝜋��  being the 175 

regression coefficient of 𝑠𝑠�,� of a selected offspring i of category x (SS, SD, DS, DD) on 𝑠𝑠�,� 176 

of its parent j of category y (SS, SD, DS, DD). For example, 𝜋𝜋��,�� is the regression coefficient 177 

of 𝑠𝑠�,�� of a selected offspring i of SD on 𝑠𝑠�,�� of its parent j of SS. Given that SS is the sires 178 

to breed sons category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (1,1) 179 

and (2, 1), respectively. In the same way, since SD is the sires to breed daughters category, we 180 

have non-zero elements, 𝜋𝜋��,�� and 𝜋𝜋��,�� , in 𝚷𝚷 as elements (3,2) and (4,2), respectively. 181 

Because DS is the dams to breed sons category, we have non-zero elements, 𝜋𝜋��,��  and 182 

𝜋𝜋��,�� , in 𝚷𝚷 as elements (1,3) and (2,3), respectively. And given that DD is the dams to breed 183 

daughters category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (3,4) and 184 

 and 

8 
 

 163 

where 𝛂𝛂𝛂𝛂𝛂 is the left eigenvector of G with eigenvalue 1; the left eigenvector is obtained 164 

according to [11] and is equal to (0.25 0.25 0.25 0.25). 165 

 166 

Therefore 𝛂𝛂� � � �
����  �

����  �
����  �

�����. 167 

 168 

Solutions for 𝛽𝛽� are obtained according to Woolliams et al [9]:  169 

 170 

�
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��

� � �𝐈𝐈� � �
�𝚷𝚷𝛂��� �

�
�  �𝛂 � �

𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��
�=�𝐈𝐈� � �

�𝚷𝚷𝛂��� �
�
�  �𝛂 �

⎣
⎢
⎢
⎢
⎢
⎡��
�
�
�
�
�
�⎦
⎥
⎥
⎥
⎥
⎤
,   (1) 171 

 172 

note that the right hand side of (1) is unaffected by the number of parents, so that 𝛽𝛽�  is 173 

inversely proportional to the number of parents (that is, �
��� , �

��� , �
��� and �

���),  where, 𝐈𝐈� is 174 

a 4×4 identity matrix,  𝚷𝚷  is a 4×4 matrix of regression coefficients with 𝜋𝜋��  being the 175 

regression coefficient of 𝑠𝑠�,� of a selected offspring i of category x (SS, SD, DS, DD) on 𝑠𝑠�,� 176 

of its parent j of category y (SS, SD, DS, DD). For example, 𝜋𝜋��,�� is the regression coefficient 177 

of 𝑠𝑠�,�� of a selected offspring i of SD on 𝑠𝑠�,�� of its parent j of SS. Given that SS is the sires 178 

to breed sons category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (1,1) 179 

and (2, 1), respectively. In the same way, since SD is the sires to breed daughters category, we 180 

have non-zero elements, 𝜋𝜋��,�� and 𝜋𝜋��,�� , in 𝚷𝚷 as elements (3,2) and (4,2), respectively. 181 

Because DS is the dams to breed sons category, we have non-zero elements, 𝜋𝜋��,��  and 182 

𝜋𝜋��,�� , in 𝚷𝚷 as elements (1,3) and (2,3), respectively. And given that DD is the dams to breed 183 

daughters category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (3,4) and 184 

, in Π as elements (1,3) and (2,3), respec-

tively. And given that DD is the dams to breed daughters 
category, we have non-zero elements, 

8 
 

 163 

where 𝛂𝛂𝛂𝛂𝛂 is the left eigenvector of G with eigenvalue 1; the left eigenvector is obtained 164 

according to [11] and is equal to (0.25 0.25 0.25 0.25). 165 

 166 

Therefore 𝛂𝛂� � � �
����  �

����  �
����  �

�����. 167 

 168 

Solutions for 𝛽𝛽� are obtained according to Woolliams et al [9]:  169 

 170 

�
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��

� � �𝐈𝐈� � �
�𝚷𝚷𝛂��� �

�
�  �𝛂 � �

𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��
�=�𝐈𝐈� � �

�𝚷𝚷𝛂��� �
�
�  �𝛂 �

⎣
⎢
⎢
⎢
⎢
⎡��
�
�
�
�
�
�⎦
⎥
⎥
⎥
⎥
⎤
,   (1) 171 

 172 

note that the right hand side of (1) is unaffected by the number of parents, so that 𝛽𝛽�  is 173 

inversely proportional to the number of parents (that is, �
��� , �

��� , �
��� and �

���),  where, 𝐈𝐈� is 174 

a 4×4 identity matrix,  𝚷𝚷  is a 4×4 matrix of regression coefficients with 𝜋𝜋��  being the 175 

regression coefficient of 𝑠𝑠�,� of a selected offspring i of category x (SS, SD, DS, DD) on 𝑠𝑠�,� 176 

of its parent j of category y (SS, SD, DS, DD). For example, 𝜋𝜋��,�� is the regression coefficient 177 

of 𝑠𝑠�,�� of a selected offspring i of SD on 𝑠𝑠�,�� of its parent j of SS. Given that SS is the sires 178 

to breed sons category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (1,1) 179 

and (2, 1), respectively. In the same way, since SD is the sires to breed daughters category, we 180 

have non-zero elements, 𝜋𝜋��,�� and 𝜋𝜋��,�� , in 𝚷𝚷 as elements (3,2) and (4,2), respectively. 181 

Because DS is the dams to breed sons category, we have non-zero elements, 𝜋𝜋��,��  and 182 

𝜋𝜋��,�� , in 𝚷𝚷 as elements (1,3) and (2,3), respectively. And given that DD is the dams to breed 183 

daughters category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (3,4) and 184  and 

8 
 

 163 

where 𝛂𝛂𝛂𝛂𝛂 is the left eigenvector of G with eigenvalue 1; the left eigenvector is obtained 164 

according to [11] and is equal to (0.25 0.25 0.25 0.25). 165 

 166 

Therefore 𝛂𝛂� � � �
����  �

����  �
����  �

�����. 167 

 168 

Solutions for 𝛽𝛽� are obtained according to Woolliams et al [9]:  169 

 170 

�
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��
𝑁𝑁��𝛽𝛽��

� � �𝐈𝐈� � �
�𝚷𝚷𝛂��� �

�
�  �𝛂 � �

𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��𝑁𝑁��𝛼𝛼��
�=�𝐈𝐈� � �

�𝚷𝚷𝛂��� �
�
�  �𝛂 �

⎣
⎢
⎢
⎢
⎢
⎡��
�
�
�
�
�
�⎦
⎥
⎥
⎥
⎥
⎤
,   (1) 171 

 172 

note that the right hand side of (1) is unaffected by the number of parents, so that 𝛽𝛽�  is 173 

inversely proportional to the number of parents (that is, �
��� , �

��� , �
��� and �

���),  where, 𝐈𝐈� is 174 

a 4×4 identity matrix,  𝚷𝚷  is a 4×4 matrix of regression coefficients with 𝜋𝜋��  being the 175 

regression coefficient of 𝑠𝑠�,� of a selected offspring i of category x (SS, SD, DS, DD) on 𝑠𝑠�,� 176 

of its parent j of category y (SS, SD, DS, DD). For example, 𝜋𝜋��,�� is the regression coefficient 177 

of 𝑠𝑠�,�� of a selected offspring i of SD on 𝑠𝑠�,�� of its parent j of SS. Given that SS is the sires 178 

to breed sons category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (1,1) 179 

and (2, 1), respectively. In the same way, since SD is the sires to breed daughters category, we 180 

have non-zero elements, 𝜋𝜋��,�� and 𝜋𝜋��,�� , in 𝚷𝚷 as elements (3,2) and (4,2), respectively. 181 

Because DS is the dams to breed sons category, we have non-zero elements, 𝜋𝜋��,��  and 182 

𝜋𝜋��,�� , in 𝚷𝚷 as elements (1,3) and (2,3), respectively. And given that DD is the dams to breed 183 

daughters category, we have non-zero elements,𝜋𝜋��,�� and 𝜋𝜋��,��, in 𝚷𝚷 as elements (3,4) and 184 , 
in Π as elements (3,4) and (4,4), respectively.
  In addition, Λ is a 4×4 matrix of regression coefficients, 
with λxy being the regression coefficient of the number of se-
lected offspring of category x on 

9 
 

(4,4), respectively. 185 

In addition, 𝚲𝚲 is a 4×4 matrix of regression coefficients, with 𝜆𝜆�� being the regression 186 

coefficient of the number of selected offspring of category x on 𝑠𝑠�,� of its parent j of category y. 187 

In the same way as 𝚷𝚷 , we have non-zero elements, 𝜆𝜆��,�� and 𝜆𝜆��,�� ,  𝜆𝜆��,�� and 188 

𝜆𝜆��,�� , 𝜆𝜆��,�� and 𝜆𝜆��,�� , and 𝜆𝜆��,�� and 𝜆𝜆��,�� in 𝚲𝚲 as elements (1,1) and (2,1), (3,2) and 189 

(4,2), (1,3) and (2,3), and (3,4) and (4,4), respectively. Consequently, 190 

 191 

𝚷𝚷��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� 
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� ⎦

⎥⎥
⎥⎥
⎤
, and 192 

 193 

𝚲𝚲��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� 
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� ⎦

⎥⎥
⎥⎥
⎤
, 194 

 195 

representing rows as offspring and columns as parental categories.  196 

In our current study, elements in matrices 𝚷𝚷 and 𝚲𝚲 were calculated from Woolliams et al 197 

[9] and Bijma and Woolliams [11], as outlined in Appendices A and B. 198 

The sires in the SS category are included among the sires in SD category. That is, the sires in 199 

the SS category are selected not only to breed sons but as sires in the SD category to breed 200 

daughters. Similarly the dams in the DS category are included among the dams in the DD 201 

category. The dams in the DS category are selected not only to breed sons but as dams in the 202 

DD category to breed daughters. Therefore, after applying the procedure of Bijma and 203 

Woolliams [6], the number of sires in SD is larger than that of sires in SS, and the number of 204 

dams in DD is larger than that of dams in DS. Therefore, E (ΔF) = �� ���𝐍𝐍�𝐔𝐔���, where 205 

 of its parent j of category 
y. In the same way as Π, we have non-zero elements, 

9 
 

(4,4), respectively. 185 

In addition, 𝚲𝚲 is a 4×4 matrix of regression coefficients, with 𝜆𝜆�� being the regression 186 

coefficient of the number of selected offspring of category x on 𝑠𝑠�,� of its parent j of category y. 187 

In the same way as 𝚷𝚷 , we have non-zero elements, 𝜆𝜆��,�� and 𝜆𝜆��,�� ,  𝜆𝜆��,�� and 188 

𝜆𝜆��,�� , 𝜆𝜆��,�� and 𝜆𝜆��,�� , and 𝜆𝜆��,�� and 𝜆𝜆��,�� in 𝚲𝚲 as elements (1,1) and (2,1), (3,2) and 189 

(4,2), (1,3) and (2,3), and (3,4) and (4,4), respectively. Consequently, 190 

 191 

𝚷𝚷��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� 
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� ⎦

⎥⎥
⎥⎥
⎤
, and 192 

 193 

𝚲𝚲��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� 
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� ⎦

⎥⎥
⎥⎥
⎤
, 194 

 195 

representing rows as offspring and columns as parental categories.  196 

In our current study, elements in matrices 𝚷𝚷 and 𝚲𝚲 were calculated from Woolliams et al 197 

[9] and Bijma and Woolliams [11], as outlined in Appendices A and B. 198 

The sires in the SS category are included among the sires in SD category. That is, the sires in 199 

the SS category are selected not only to breed sons but as sires in the SD category to breed 200 

daughters. Similarly the dams in the DS category are included among the dams in the DD 201 

category. The dams in the DS category are selected not only to breed sons but as dams in the 202 

DD category to breed daughters. Therefore, after applying the procedure of Bijma and 203 

Woolliams [6], the number of sires in SD is larger than that of sires in SS, and the number of 204 

dams in DD is larger than that of dams in DS. Therefore, E (ΔF) = �� ���𝐍𝐍�𝐔𝐔���, where 205 

 
and 

9 
 

(4,4), respectively. 185 

In addition, 𝚲𝚲 is a 4×4 matrix of regression coefficients, with 𝜆𝜆�� being the regression 186 

coefficient of the number of selected offspring of category x on 𝑠𝑠�,� of its parent j of category y. 187 

In the same way as 𝚷𝚷 , we have non-zero elements, 𝜆𝜆��,�� and 𝜆𝜆��,�� ,  𝜆𝜆��,�� and 188 

𝜆𝜆��,�� , 𝜆𝜆��,�� and 𝜆𝜆��,�� , and 𝜆𝜆��,�� and 𝜆𝜆��,�� in 𝚲𝚲 as elements (1,1) and (2,1), (3,2) and 189 

(4,2), (1,3) and (2,3), and (3,4) and (4,4), respectively. Consequently, 190 

 191 

𝚷𝚷��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� 
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� ⎦

⎥⎥
⎥⎥
⎤
, and 192 

 193 

𝚲𝚲��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� 
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� ⎦

⎥⎥
⎥⎥
⎤
, 194 

 195 

representing rows as offspring and columns as parental categories.  196 

In our current study, elements in matrices 𝚷𝚷 and 𝚲𝚲 were calculated from Woolliams et al 197 

[9] and Bijma and Woolliams [11], as outlined in Appendices A and B. 198 

The sires in the SS category are included among the sires in SD category. That is, the sires in 199 

the SS category are selected not only to breed sons but as sires in the SD category to breed 200 

daughters. Similarly the dams in the DS category are included among the dams in the DD 201 

category. The dams in the DS category are selected not only to breed sons but as dams in the 202 

DD category to breed daughters. Therefore, after applying the procedure of Bijma and 203 

Woolliams [6], the number of sires in SD is larger than that of sires in SS, and the number of 204 

dams in DD is larger than that of dams in DS. Therefore, E (ΔF) = �� ���𝐍𝐍�𝐔𝐔���, where 205 

, 

9 
 

(4,4), respectively. 185 

In addition, 𝚲𝚲 is a 4×4 matrix of regression coefficients, with 𝜆𝜆�� being the regression 186 

coefficient of the number of selected offspring of category x on 𝑠𝑠�,� of its parent j of category y. 187 

In the same way as 𝚷𝚷 , we have non-zero elements, 𝜆𝜆��,�� and 𝜆𝜆��,�� ,  𝜆𝜆��,�� and 188 

𝜆𝜆��,�� , 𝜆𝜆��,�� and 𝜆𝜆��,�� , and 𝜆𝜆��,�� and 𝜆𝜆��,�� in 𝚲𝚲 as elements (1,1) and (2,1), (3,2) and 189 

(4,2), (1,3) and (2,3), and (3,4) and (4,4), respectively. Consequently, 190 

 191 

𝚷𝚷��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� 
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� ⎦

⎥⎥
⎥⎥
⎤
, and 192 

 193 

𝚲𝚲��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� 
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� ⎦

⎥⎥
⎥⎥
⎤
, 194 

 195 

representing rows as offspring and columns as parental categories.  196 

In our current study, elements in matrices 𝚷𝚷 and 𝚲𝚲 were calculated from Woolliams et al 197 

[9] and Bijma and Woolliams [11], as outlined in Appendices A and B. 198 

The sires in the SS category are included among the sires in SD category. That is, the sires in 199 

the SS category are selected not only to breed sons but as sires in the SD category to breed 200 

daughters. Similarly the dams in the DS category are included among the dams in the DD 201 

category. The dams in the DS category are selected not only to breed sons but as dams in the 202 

DD category to breed daughters. Therefore, after applying the procedure of Bijma and 203 

Woolliams [6], the number of sires in SD is larger than that of sires in SS, and the number of 204 

dams in DD is larger than that of dams in DS. Therefore, E (ΔF) = �� ���𝐍𝐍�𝐔𝐔���, where 205 

 and 

9 
 

(4,4), respectively. 185 

In addition, 𝚲𝚲 is a 4×4 matrix of regression coefficients, with 𝜆𝜆�� being the regression 186 

coefficient of the number of selected offspring of category x on 𝑠𝑠�,� of its parent j of category y. 187 

In the same way as 𝚷𝚷 , we have non-zero elements, 𝜆𝜆��,�� and 𝜆𝜆��,�� ,  𝜆𝜆��,�� and 188 

𝜆𝜆��,�� , 𝜆𝜆��,�� and 𝜆𝜆��,�� , and 𝜆𝜆��,�� and 𝜆𝜆��,�� in 𝚲𝚲 as elements (1,1) and (2,1), (3,2) and 189 

(4,2), (1,3) and (2,3), and (3,4) and (4,4), respectively. Consequently, 190 

 191 

𝚷𝚷��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� 
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� ⎦

⎥⎥
⎥⎥
⎤
, and 192 

 193 

𝚲𝚲��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� 
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� ⎦

⎥⎥
⎥⎥
⎤
, 194 

 195 

representing rows as offspring and columns as parental categories.  196 

In our current study, elements in matrices 𝚷𝚷 and 𝚲𝚲 were calculated from Woolliams et al 197 

[9] and Bijma and Woolliams [11], as outlined in Appendices A and B. 198 

The sires in the SS category are included among the sires in SD category. That is, the sires in 199 

the SS category are selected not only to breed sons but as sires in the SD category to breed 200 

daughters. Similarly the dams in the DS category are included among the dams in the DD 201 

category. The dams in the DS category are selected not only to breed sons but as dams in the 202 

DD category to breed daughters. Therefore, after applying the procedure of Bijma and 203 

Woolliams [6], the number of sires in SD is larger than that of sires in SS, and the number of 204 

dams in DD is larger than that of dams in DS. Therefore, E (ΔF) = �� ���𝐍𝐍�𝐔𝐔���, where 205 

, 

9 
 

(4,4), respectively. 185 

In addition, 𝚲𝚲 is a 4×4 matrix of regression coefficients, with 𝜆𝜆�� being the regression 186 

coefficient of the number of selected offspring of category x on 𝑠𝑠�,� of its parent j of category y. 187 

In the same way as 𝚷𝚷 , we have non-zero elements, 𝜆𝜆��,�� and 𝜆𝜆��,�� ,  𝜆𝜆��,�� and 188 

𝜆𝜆��,�� , 𝜆𝜆��,�� and 𝜆𝜆��,�� , and 𝜆𝜆��,�� and 𝜆𝜆��,�� in 𝚲𝚲 as elements (1,1) and (2,1), (3,2) and 189 

(4,2), (1,3) and (2,3), and (3,4) and (4,4), respectively. Consequently, 190 

 191 

𝚷𝚷��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� 
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� ⎦

⎥⎥
⎥⎥
⎤
, and 192 

 193 

𝚲𝚲��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� 
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� ⎦

⎥⎥
⎥⎥
⎤
, 194 

 195 

representing rows as offspring and columns as parental categories.  196 

In our current study, elements in matrices 𝚷𝚷 and 𝚲𝚲 were calculated from Woolliams et al 197 

[9] and Bijma and Woolliams [11], as outlined in Appendices A and B. 198 

The sires in the SS category are included among the sires in SD category. That is, the sires in 199 

the SS category are selected not only to breed sons but as sires in the SD category to breed 200 

daughters. Similarly the dams in the DS category are included among the dams in the DD 201 

category. The dams in the DS category are selected not only to breed sons but as dams in the 202 

DD category to breed daughters. Therefore, after applying the procedure of Bijma and 203 

Woolliams [6], the number of sires in SD is larger than that of sires in SS, and the number of 204 

dams in DD is larger than that of dams in DS. Therefore, E (ΔF) = �� ���𝐍𝐍�𝐔𝐔���, where 205 

 and 

9 
 

(4,4), respectively. 185 

In addition, 𝚲𝚲 is a 4×4 matrix of regression coefficients, with 𝜆𝜆�� being the regression 186 

coefficient of the number of selected offspring of category x on 𝑠𝑠�,� of its parent j of category y. 187 

In the same way as 𝚷𝚷 , we have non-zero elements, 𝜆𝜆��,�� and 𝜆𝜆��,�� ,  𝜆𝜆��,�� and 188 

𝜆𝜆��,�� , 𝜆𝜆��,�� and 𝜆𝜆��,�� , and 𝜆𝜆��,�� and 𝜆𝜆��,�� in 𝚲𝚲 as elements (1,1) and (2,1), (3,2) and 189 

(4,2), (1,3) and (2,3), and (3,4) and (4,4), respectively. Consequently, 190 

 191 

𝚷𝚷��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� 
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� ⎦

⎥⎥
⎥⎥
⎤
, and 192 

 193 

𝚲𝚲��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� 
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� ⎦

⎥⎥
⎥⎥
⎤
, 194 

 195 

representing rows as offspring and columns as parental categories.  196 

In our current study, elements in matrices 𝚷𝚷 and 𝚲𝚲 were calculated from Woolliams et al 197 

[9] and Bijma and Woolliams [11], as outlined in Appendices A and B. 198 

The sires in the SS category are included among the sires in SD category. That is, the sires in 199 

the SS category are selected not only to breed sons but as sires in the SD category to breed 200 

daughters. Similarly the dams in the DS category are included among the dams in the DD 201 

category. The dams in the DS category are selected not only to breed sons but as dams in the 202 

DD category to breed daughters. Therefore, after applying the procedure of Bijma and 203 

Woolliams [6], the number of sires in SD is larger than that of sires in SS, and the number of 204 

dams in DD is larger than that of dams in DS. Therefore, E (ΔF) = �� ���𝐍𝐍�𝐔𝐔���, where 205 

, and 

9 
 

(4,4), respectively. 185 

In addition, 𝚲𝚲 is a 4×4 matrix of regression coefficients, with 𝜆𝜆�� being the regression 186 

coefficient of the number of selected offspring of category x on 𝑠𝑠�,� of its parent j of category y. 187 

In the same way as 𝚷𝚷 , we have non-zero elements, 𝜆𝜆��,�� and 𝜆𝜆��,�� ,  𝜆𝜆��,�� and 188 

𝜆𝜆��,�� , 𝜆𝜆��,�� and 𝜆𝜆��,�� , and 𝜆𝜆��,�� and 𝜆𝜆��,�� in 𝚲𝚲 as elements (1,1) and (2,1), (3,2) and 189 

(4,2), (1,3) and (2,3), and (3,4) and (4,4), respectively. Consequently, 190 

 191 

𝚷𝚷��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� 
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� ⎦

⎥⎥
⎥⎥
⎤
, and 192 

 193 

𝚲𝚲��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� 
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� ⎦

⎥⎥
⎥⎥
⎤
, 194 

 195 

representing rows as offspring and columns as parental categories.  196 

In our current study, elements in matrices 𝚷𝚷 and 𝚲𝚲 were calculated from Woolliams et al 197 

[9] and Bijma and Woolliams [11], as outlined in Appendices A and B. 198 

The sires in the SS category are included among the sires in SD category. That is, the sires in 199 

the SS category are selected not only to breed sons but as sires in the SD category to breed 200 

daughters. Similarly the dams in the DS category are included among the dams in the DD 201 

category. The dams in the DS category are selected not only to breed sons but as dams in the 202 

DD category to breed daughters. Therefore, after applying the procedure of Bijma and 203 

Woolliams [6], the number of sires in SD is larger than that of sires in SS, and the number of 204 

dams in DD is larger than that of dams in DS. Therefore, E (ΔF) = �� ���𝐍𝐍�𝐔𝐔���, where 205 

 and 

9 
 

(4,4), respectively. 185 

In addition, 𝚲𝚲 is a 4×4 matrix of regression coefficients, with 𝜆𝜆�� being the regression 186 

coefficient of the number of selected offspring of category x on 𝑠𝑠�,� of its parent j of category y. 187 

In the same way as 𝚷𝚷 , we have non-zero elements, 𝜆𝜆��,�� and 𝜆𝜆��,�� ,  𝜆𝜆��,�� and 188 

𝜆𝜆��,�� , 𝜆𝜆��,�� and 𝜆𝜆��,�� , and 𝜆𝜆��,�� and 𝜆𝜆��,�� in 𝚲𝚲 as elements (1,1) and (2,1), (3,2) and 189 

(4,2), (1,3) and (2,3), and (3,4) and (4,4), respectively. Consequently, 190 

 191 

𝚷𝚷��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� 
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� ⎦

⎥⎥
⎥⎥
⎤
, and 192 

 193 

𝚲𝚲��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� 
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� ⎦

⎥⎥
⎥⎥
⎤
, 194 

 195 

representing rows as offspring and columns as parental categories.  196 

In our current study, elements in matrices 𝚷𝚷 and 𝚲𝚲 were calculated from Woolliams et al 197 

[9] and Bijma and Woolliams [11], as outlined in Appendices A and B. 198 

The sires in the SS category are included among the sires in SD category. That is, the sires in 199 

the SS category are selected not only to breed sons but as sires in the SD category to breed 200 

daughters. Similarly the dams in the DS category are included among the dams in the DD 201 

category. The dams in the DS category are selected not only to breed sons but as dams in the 202 

DD category to breed daughters. Therefore, after applying the procedure of Bijma and 203 

Woolliams [6], the number of sires in SD is larger than that of sires in SS, and the number of 204 

dams in DD is larger than that of dams in DS. Therefore, E (ΔF) = �� ���𝐍𝐍�𝐔𝐔���, where 205 

 in Λ as elements (1,1) and (2,1), (3,2) 
and (4,2), (1,3) and (2,3), and (3,4) and (4,4), respectively. 
Consequently,

 

9 
 

(4,4), respectively. 185 

In addition, 𝚲𝚲 is a 4×4 matrix of regression coefficients, with 𝜆𝜆�� being the regression 186 

coefficient of the number of selected offspring of category x on 𝑠𝑠�,� of its parent j of category y. 187 

In the same way as 𝚷𝚷 , we have non-zero elements, 𝜆𝜆��,�� and 𝜆𝜆��,�� ,  𝜆𝜆��,�� and 188 

𝜆𝜆��,�� , 𝜆𝜆��,�� and 𝜆𝜆��,�� , and 𝜆𝜆��,�� and 𝜆𝜆��,�� in 𝚲𝚲 as elements (1,1) and (2,1), (3,2) and 189 

(4,2), (1,3) and (2,3), and (3,4) and (4,4), respectively. Consequently, 190 

 191 

𝚷𝚷��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� 
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� ⎦

⎥⎥
⎥⎥
⎤
, and 192 

 193 

𝚲𝚲��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� 
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� ⎦

⎥⎥
⎥⎥
⎤
, 194 

 195 

representing rows as offspring and columns as parental categories.  196 

In our current study, elements in matrices 𝚷𝚷 and 𝚲𝚲 were calculated from Woolliams et al 197 

[9] and Bijma and Woolliams [11], as outlined in Appendices A and B. 198 

The sires in the SS category are included among the sires in SD category. That is, the sires in 199 

the SS category are selected not only to breed sons but as sires in the SD category to breed 200 

daughters. Similarly the dams in the DS category are included among the dams in the DD 201 

category. The dams in the DS category are selected not only to breed sons but as dams in the 202 

DD category to breed daughters. Therefore, after applying the procedure of Bijma and 203 

Woolliams [6], the number of sires in SD is larger than that of sires in SS, and the number of 204 

dams in DD is larger than that of dams in DS. Therefore, E (ΔF) = �� ���𝐍𝐍�𝐔𝐔���, where 205 

, and

 

9 
 

(4,4), respectively. 185 

In addition, 𝚲𝚲 is a 4×4 matrix of regression coefficients, with 𝜆𝜆�� being the regression 186 

coefficient of the number of selected offspring of category x on 𝑠𝑠�,� of its parent j of category y. 187 

In the same way as 𝚷𝚷 , we have non-zero elements, 𝜆𝜆��,�� and 𝜆𝜆��,�� ,  𝜆𝜆��,�� and 188 

𝜆𝜆��,�� , 𝜆𝜆��,�� and 𝜆𝜆��,�� , and 𝜆𝜆��,�� and 𝜆𝜆��,�� in 𝚲𝚲 as elements (1,1) and (2,1), (3,2) and 189 

(4,2), (1,3) and (2,3), and (3,4) and (4,4), respectively. Consequently, 190 

 191 

𝚷𝚷��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� 
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� ⎦

⎥⎥
⎥⎥
⎤
, and 192 

 193 

𝚲𝚲��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� 
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� ⎦

⎥⎥
⎥⎥
⎤
, 194 

 195 

representing rows as offspring and columns as parental categories.  196 

In our current study, elements in matrices 𝚷𝚷 and 𝚲𝚲 were calculated from Woolliams et al 197 

[9] and Bijma and Woolliams [11], as outlined in Appendices A and B. 198 

The sires in the SS category are included among the sires in SD category. That is, the sires in 199 

the SS category are selected not only to breed sons but as sires in the SD category to breed 200 

daughters. Similarly the dams in the DS category are included among the dams in the DD 201 

category. The dams in the DS category are selected not only to breed sons but as dams in the 202 

DD category to breed daughters. Therefore, after applying the procedure of Bijma and 203 

Woolliams [6], the number of sires in SD is larger than that of sires in SS, and the number of 204 

dams in DD is larger than that of dams in DS. Therefore, E (ΔF) = �� ���𝐍𝐍�𝐔𝐔���, where 205 

,

representing rows as offspring and columns as parental cate-
gories. 
  In our current study, elements in matrices Π and Λ were 
calculated from Woolliams et al [9] and Bijma and Wool-
liams [11], as outlined in Appendices A and B.
  The sires in the SS category are included among the sires 
in SD category. That is, the sires in the SS category are select-
ed not only to breed sons but as sires in the SD category to 
breed daughters. Similarly the dams in the DS category are 
included among the dams in the DD category. The dams in 
the DS category are selected not only to breed sons but as 
dams in the DD category to breed daughters. Therefore, af-
ter applying the procedure of Bijma and Woolliams [6], the 
number of sires in SD is larger than that of sires in SS, and 
the number of dams in DD is larger than that of dams in DS. 
Therefore, 

9 
 

(4,4), respectively. 185 

In addition, 𝚲𝚲 is a 4×4 matrix of regression coefficients, with 𝜆𝜆�� being the regression 186 

coefficient of the number of selected offspring of category x on 𝑠𝑠�,� of its parent j of category y. 187 

In the same way as 𝚷𝚷 , we have non-zero elements, 𝜆𝜆��,�� and 𝜆𝜆��,�� ,  𝜆𝜆��,�� and 188 

𝜆𝜆��,�� , 𝜆𝜆��,�� and 𝜆𝜆��,�� , and 𝜆𝜆��,�� and 𝜆𝜆��,�� in 𝚲𝚲 as elements (1,1) and (2,1), (3,2) and 189 

(4,2), (1,3) and (2,3), and (3,4) and (4,4), respectively. Consequently, 190 

 191 

𝚷𝚷��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜋𝜋��,�� 0
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� 
𝐷𝐷𝐷𝐷 0 𝜋𝜋��,�� 0 𝜋𝜋��,�� ⎦

⎥⎥
⎥⎥
⎤
, and 192 

 193 

𝚲𝚲��� �

⎣⎢
⎢⎢
⎢⎡

𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝑆𝑆𝑆𝑆 𝑆𝑆��,�� 0 𝜆𝜆��,�� 0
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� 
𝐷𝐷𝐷𝐷 0 𝜆𝜆��,�� 0 𝜆𝜆��,�� ⎦

⎥⎥
⎥⎥
⎤
, 194 

 195 

representing rows as offspring and columns as parental categories.  196 

In our current study, elements in matrices 𝚷𝚷 and 𝚲𝚲 were calculated from Woolliams et al 197 

[9] and Bijma and Woolliams [11], as outlined in Appendices A and B. 198 

The sires in the SS category are included among the sires in SD category. That is, the sires in 199 

the SS category are selected not only to breed sons but as sires in the SD category to breed 200 

daughters. Similarly the dams in the DS category are included among the dams in the DD 201 

category. The dams in the DS category are selected not only to breed sons but as dams in the 202 

DD category to breed daughters. Therefore, after applying the procedure of Bijma and 203 

Woolliams [6], the number of sires in SD is larger than that of sires in SS, and the number of 204 

dams in DD is larger than that of dams in DS. Therefore, E (ΔF) = �� ���𝐍𝐍�𝐔𝐔���, where 205 , where

 

10 
 

 206 

𝐍𝐍� � �
𝑁𝑁�� 0 0 0

0 𝑁𝑁�� 0 0
0 0 𝑁𝑁�� 0
0 0 0 𝑁𝑁��

�,  207 

 208 

𝐔𝐔� �
⎣
⎢⎢
⎢
⎡ ��u�,��� � 0 0 0
2��𝑢𝑢�,��𝑢𝑢�,��� E�u�,��� � 0 0

0 0 ��u�,��� � 0
0 0 2��𝑢𝑢�,��𝑢𝑢�,��� ��u�,��� �⎦

⎥⎥
⎥
⎤
, 209 

 210 

E denotes the expectation with respect to the selective advantage,  211 

 212 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 213 

 214 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 215 

 216 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 217 

 218 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 219 

 220 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 221 

 222 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 223 

 224 

,

 

10 
 

 206 

𝐍𝐍� � �
𝑁𝑁�� 0 0 0

0 𝑁𝑁�� 0 0
0 0 𝑁𝑁�� 0
0 0 0 𝑁𝑁��

�,  207 

 208 

𝐔𝐔� �
⎣
⎢⎢
⎢
⎡ ��u�,��� � 0 0 0
2��𝑢𝑢�,��𝑢𝑢�,��� E�u�,��� � 0 0

0 0 ��u�,��� � 0
0 0 2��𝑢𝑢�,��𝑢𝑢�,��� ��u�,��� �⎦

⎥⎥
⎥
⎤
, 209 

 210 

E denotes the expectation with respect to the selective advantage,  211 

 212 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 213 

 214 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 215 

 216 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 217 

 218 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 219 

 220 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 221 

 222 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 223 

 224 

,

  E denotes the expectation with respect to the selective ad-



www.animbiosci.org  807

Togashi et al (2022) Anim Biosci 35:804-813

vantage, 

 

10 
 

 206 

𝐍𝐍� � �
𝑁𝑁�� 0 0 0

0 𝑁𝑁�� 0 0
0 0 𝑁𝑁�� 0
0 0 0 𝑁𝑁��

�,  207 

 208 

𝐔𝐔� �
⎣
⎢⎢
⎢
⎡ ��u�,��� � 0 0 0
2��𝑢𝑢�,��𝑢𝑢�,��� E�u�,��� � 0 0

0 0 ��u�,��� � 0
0 0 2��𝑢𝑢�,��𝑢𝑢�,��� ��u�,��� �⎦

⎥⎥
⎥
⎤
, 209 

 210 

E denotes the expectation with respect to the selective advantage,  211 

 212 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 213 

 214 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 215 

 216 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 217 

 218 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 219 

 220 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 221 

 222 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 223 

 224 

 

10 
 

 206 

𝐍𝐍� � �
𝑁𝑁�� 0 0 0

0 𝑁𝑁�� 0 0
0 0 𝑁𝑁�� 0
0 0 0 𝑁𝑁��

�,  207 

 208 

𝐔𝐔� �
⎣
⎢⎢
⎢
⎡ ��u�,��� � 0 0 0
2��𝑢𝑢�,��𝑢𝑢�,��� E�u�,��� � 0 0

0 0 ��u�,��� � 0
0 0 2��𝑢𝑢�,��𝑢𝑢�,��� ��u�,��� �⎦

⎥⎥
⎥
⎤
, 209 

 210 

E denotes the expectation with respect to the selective advantage,  211 

 212 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 213 

 214 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 215 

 216 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 217 

 218 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 219 

 220 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 221 

 222 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 223 

 224 

 

10 
 

 206 

𝐍𝐍� � �
𝑁𝑁�� 0 0 0

0 𝑁𝑁�� 0 0
0 0 𝑁𝑁�� 0
0 0 0 𝑁𝑁��

�,  207 

 208 

𝐔𝐔� �
⎣
⎢⎢
⎢
⎡ ��u�,��� � 0 0 0
2��𝑢𝑢�,��𝑢𝑢�,��� E�u�,��� � 0 0

0 0 ��u�,��� � 0
0 0 2��𝑢𝑢�,��𝑢𝑢�,��� ��u�,��� �⎦

⎥⎥
⎥
⎤
, 209 

 210 

E denotes the expectation with respect to the selective advantage,  211 

 212 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 213 

 214 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 215 

 216 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 217 

 218 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 219 

 220 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 221 

 222 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 223 

 224 

    

10 
 

 206 

𝐍𝐍� � �
𝑁𝑁�� 0 0 0

0 𝑁𝑁�� 0 0
0 0 𝑁𝑁�� 0
0 0 0 𝑁𝑁��

�,  207 

 208 

𝐔𝐔� �
⎣
⎢⎢
⎢
⎡ ��u�,��� � 0 0 0
2��𝑢𝑢�,��𝑢𝑢�,��� E�u�,��� � 0 0

0 0 ��u�,��� � 0
0 0 2��𝑢𝑢�,��𝑢𝑢�,��� ��u�,��� �⎦

⎥⎥
⎥
⎤
, 209 

 210 

E denotes the expectation with respect to the selective advantage,  211 

 212 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 213 

 214 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 215 

 216 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 217 

 218 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 219 

 220 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 221 

 222 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 223 

 224 

,

 

10 
 

 206 

𝐍𝐍� � �
𝑁𝑁�� 0 0 0

0 𝑁𝑁�� 0 0
0 0 𝑁𝑁�� 0
0 0 0 𝑁𝑁��

�,  207 

 208 

𝐔𝐔� �
⎣
⎢⎢
⎢
⎡ ��u�,��� � 0 0 0
2��𝑢𝑢�,��𝑢𝑢�,��� E�u�,��� � 0 0

0 0 ��u�,��� � 0
0 0 2��𝑢𝑢�,��𝑢𝑢�,��� ��u�,��� �⎦

⎥⎥
⎥
⎤
, 209 

 210 

E denotes the expectation with respect to the selective advantage,  211 

 212 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 213 

 214 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 215 

 216 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 217 

 218 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 219 

 220 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 221 

 222 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 223 

 224 

    

10 
 

 206 

𝐍𝐍� � �
𝑁𝑁�� 0 0 0

0 𝑁𝑁�� 0 0
0 0 𝑁𝑁�� 0
0 0 0 𝑁𝑁��

�,  207 

 208 

𝐔𝐔� �
⎣
⎢⎢
⎢
⎡ ��u�,��� � 0 0 0
2��𝑢𝑢�,��𝑢𝑢�,��� E�u�,��� � 0 0

0 0 ��u�,��� � 0
0 0 2��𝑢𝑢�,��𝑢𝑢�,��� ��u�,��� �⎦

⎥⎥
⎥
⎤
, 209 

 210 

E denotes the expectation with respect to the selective advantage,  211 

 212 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 213 

 214 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 215 

 216 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 217 

 218 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 219 

 220 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 221 

 222 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 223 

 224 

,

 

10 
 

 206 

𝐍𝐍� � �
𝑁𝑁�� 0 0 0

0 𝑁𝑁�� 0 0
0 0 𝑁𝑁�� 0
0 0 0 𝑁𝑁��

�,  207 

 208 

𝐔𝐔� �
⎣
⎢⎢
⎢
⎡ ��u�,��� � 0 0 0
2��𝑢𝑢�,��𝑢𝑢�,��� E�u�,��� � 0 0

0 0 ��u�,��� � 0
0 0 2��𝑢𝑢�,��𝑢𝑢�,��� ��u�,��� �⎦

⎥⎥
⎥
⎤
, 209 

 210 

E denotes the expectation with respect to the selective advantage,  211 

 212 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 213 

 214 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 215 

 216 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 217 

 218 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 219 

 220 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 221 

 222 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 223 

 224 

    

10 
 

 206 

𝐍𝐍� � �
𝑁𝑁�� 0 0 0

0 𝑁𝑁�� 0 0
0 0 𝑁𝑁�� 0
0 0 0 𝑁𝑁��

�,  207 

 208 

𝐔𝐔� �
⎣
⎢⎢
⎢
⎡ ��u�,��� � 0 0 0
2��𝑢𝑢�,��𝑢𝑢�,��� E�u�,��� � 0 0

0 0 ��u�,��� � 0
0 0 2��𝑢𝑢�,��𝑢𝑢�,��� ��u�,��� �⎦

⎥⎥
⎥
⎤
, 209 

 210 

E denotes the expectation with respect to the selective advantage,  211 

 212 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 213 

 214 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 215 

 216 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 217 

 218 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 219 

 220 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 221 

 222 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 223 

 224 

,

 

10 
 

 206 

𝐍𝐍� � �
𝑁𝑁�� 0 0 0

0 𝑁𝑁�� 0 0
0 0 𝑁𝑁�� 0
0 0 0 𝑁𝑁��

�,  207 

 208 

𝐔𝐔� �
⎣
⎢⎢
⎢
⎡ ��u�,��� � 0 0 0
2��𝑢𝑢�,��𝑢𝑢�,��� E�u�,��� � 0 0

0 0 ��u�,��� � 0
0 0 2��𝑢𝑢�,��𝑢𝑢�,��� ��u�,��� �⎦

⎥⎥
⎥
⎤
, 209 

 210 

E denotes the expectation with respect to the selective advantage,  211 

 212 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 213 

 214 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 215 

 216 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 217 

 218 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 219 

 220 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 221 

 222 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 223 

 224     

10 
 

 206 

𝐍𝐍� � �
𝑁𝑁�� 0 0 0

0 𝑁𝑁�� 0 0
0 0 𝑁𝑁�� 0
0 0 0 𝑁𝑁��

�,  207 

 208 

𝐔𝐔� �
⎣
⎢⎢
⎢
⎡ ��u�,��� � 0 0 0
2��𝑢𝑢�,��𝑢𝑢�,��� E�u�,��� � 0 0

0 0 ��u�,��� � 0
0 0 2��𝑢𝑢�,��𝑢𝑢�,��� ��u�,��� �⎦

⎥⎥
⎥
⎤
, 209 

 210 

E denotes the expectation with respect to the selective advantage,  211 

 212 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 213 

 214 

��u�,��� � � ���� � ���� 𝜎𝜎��� , ��u�,��� � � ���� � ���� 𝜎𝜎��� , 215 

 216 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 217 

 218 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� �

��,��
���
���

�1 � ���𝑟𝑟��,�� � �1 � �
����, 219 

 220 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 221 

 222 

𝜎𝜎���  = 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �
���� � 𝜎𝜎�,�� �1 � ���𝑟𝑟��,�� � �1 � �

����, 223 

 224 

,

 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

          

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

, 

 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

,

 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

              

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

              

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

,

and 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

, 

note that variance of selective advantage (

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

, 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

, 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

, and 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

) is not affected greatly by the number of parents (

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

, 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

, 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

, and 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

), since the term of 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

 is adjust-

ment for finite population size, where 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

 and 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

 are the 
equilibrium genetic variance in the male and female popula-
tions, respectively; 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

 and 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

 are the equilibrium reliability 
of GEBV in the male and female populations, respectively; 
and 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

, 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

, 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

, and 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 

 are variance reduction coefficients 
for offspring selection in SS, SD, DS, and DD, respectively. 
Note that covariances of mates between SS and SD and be-

tween DS and DD are zero, because of random mating. 
General predictions of expected genetic contributions was 
developed using equilibrium genetic variances instead of 
second generation genetic variances [9]. Therefore, variances 
thereafter refer to those in equilibrium. 
  The accounting percentage derived from SS, SD, DS, and 
DD for the rate of inbreeding (ΔF) is obtained,

 

11 
 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� � 𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� � 𝛼𝛼��𝛽𝛽��𝐸𝐸�A��� � A����, 225 

 226 

𝐸𝐸�A��� � A���� � ����� � �����𝜎𝜎�,�,  227 

 228 

𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,��� � 𝛼𝛼��𝛼𝛼�� 229 

�𝛽𝛽��𝛽𝛽��𝜎𝜎�,�� �1 � 𝑘𝑘��𝑟𝑟���� � �1 � 1
𝑁𝑁��� 230 

�𝛼𝛼��𝛽𝛽��𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴���,  231 

 232 

and 𝐸𝐸�𝐴̅𝐴�� � 𝐴̅𝐴��� � ����� � �����𝜎𝜎�,�,  233 

 234 

note that variance of selective advantage (𝜎𝜎��� ,𝜎𝜎��� ,𝜎𝜎��� , and 𝜎𝜎��� � is not affected greatly by the 235 

number of parents (𝑁𝑁��,𝑁𝑁��,𝑁𝑁��, and 𝑁𝑁���, since the term of �1 � �
��� is adjustment for 236 

finite population size, where 𝜎𝜎�,�� and 𝜎𝜎�,��  are the equilibrium genetic variance in the male and 237 

female populations, respectively; 𝑟𝑟��,�� and 𝑟𝑟����  are the equilibrium reliability of GEBV in the 238 

male and female populations, respectively; and 𝑘𝑘�� ,𝑘𝑘��, 𝑘𝑘�� , and 𝑘𝑘�� are variance reduction 239 

coefficients for offspring selection in SS, SD, DS, and DD, respectively. Note that covariances 240 

of mates between SS and SD and between DS and DD are zero, because of random mating. 241 

General predictions of expected genetic contributions was developed using equilibrium genetic 242 

variances instead of second generation genetic variances [9]. Therefore, variances thereafter 243 

refer to those in equilibrium.   244 

The accounting percentage derived from SS, SD, DS, and DD for the rate of inbreeding (ΔF) 245 

is obtained, 246 

 247 

�� �𝑁𝑁�� � �𝐸𝐸�𝑢𝑢�,��� � � 𝐸𝐸�𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF),  248 , 

 

12 
 

 249 

� �� 𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), 250 

 251 

� �� 𝑁𝑁�� � ���𝑢𝑢�,��� � � ��𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF), and 252 

 253 

�� �𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), respectively. 254 

 255 

When the effect of selection on inbreeding is ignored, i.e., � � 0 , E (ΔF) 256 

= �� �𝟏𝟏�𝐍𝐍�𝐔𝐔�𝟏𝟏� = ��� �
�
��� �

�
��� �

�
��� �

�
����. 257 

This result is in agreement with the formula from Gowe et al [8], which likewise neglects 258 

the effects of selection on ΔF. 259 

 260 

Correction of E (ΔF) from Poisson variances 261 

The correction for deviations of the variance of the family size from independent Poisson 262 

variances in the selected offspring from SS, SD, DS, and DD parents, i.e., δ�� , δ��, δ�� , and δ��, 263 

can be approximated by Woolliams and Bijma [10].  264 

According to Woolliams and Bijma [10],  265 

 266 

δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻 ∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �,  267 

and δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �, 268 

 269 

Where 270 

 271 

,

 

12 
 

 249 

� �� 𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), 250 

 251 

� �� 𝑁𝑁�� � ���𝑢𝑢�,��� � � ��𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF), and 252 

 253 

�� �𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), respectively. 254 

 255 

When the effect of selection on inbreeding is ignored, i.e., � � 0 , E (ΔF) 256 

= �� �𝟏𝟏�𝐍𝐍�𝐔𝐔�𝟏𝟏� = ��� �
�
��� �

�
��� �

�
��� �

�
����. 257 

This result is in agreement with the formula from Gowe et al [8], which likewise neglects 258 

the effects of selection on ΔF. 259 

 260 

Correction of E (ΔF) from Poisson variances 261 

The correction for deviations of the variance of the family size from independent Poisson 262 

variances in the selected offspring from SS, SD, DS, and DD parents, i.e., δ�� , δ��, δ�� , and δ��, 263 

can be approximated by Woolliams and Bijma [10].  264 

According to Woolliams and Bijma [10],  265 

 266 

δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻 ∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �,  267 

and δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �, 268 

 269 

Where 270 

 271 

, and

 

12 
 

 249 

� �� 𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), 250 

 251 

� �� 𝑁𝑁�� � ���𝑢𝑢�,��� � � ��𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF), and 252 

 253 

�� �𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), respectively. 254 

 255 

When the effect of selection on inbreeding is ignored, i.e., � � 0 , E (ΔF) 256 

= �� �𝟏𝟏�𝐍𝐍�𝐔𝐔�𝟏𝟏� = ��� �
�
��� �

�
��� �

�
��� �

�
����. 257 

This result is in agreement with the formula from Gowe et al [8], which likewise neglects 258 

the effects of selection on ΔF. 259 

 260 

Correction of E (ΔF) from Poisson variances 261 

The correction for deviations of the variance of the family size from independent Poisson 262 

variances in the selected offspring from SS, SD, DS, and DD parents, i.e., δ�� , δ��, δ�� , and δ��, 263 

can be approximated by Woolliams and Bijma [10].  264 

According to Woolliams and Bijma [10],  265 

 266 

δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻 ∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �,  267 

and δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �, 268 

 269 

Where 270 

 271 

, re-
spectively.

  When the effect of selection on inbreeding is ignored, i.e., 

β = 0, E (ΔF) = 

12 
 

 249 

� �� 𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), 250 

 251 

� �� 𝑁𝑁�� � ���𝑢𝑢�,��� � � ��𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF), and 252 

 253 

�� �𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), respectively. 254 

 255 

When the effect of selection on inbreeding is ignored, i.e., � � 0 , E (ΔF) 256 

= �� �𝟏𝟏�𝐍𝐍�𝐔𝐔�𝟏𝟏� = ��� �
�
��� �

�
��� �

�
��� �

�
����. 257 

This result is in agreement with the formula from Gowe et al [8], which likewise neglects 258 

the effects of selection on ΔF. 259 

 260 

Correction of E (ΔF) from Poisson variances 261 

The correction for deviations of the variance of the family size from independent Poisson 262 

variances in the selected offspring from SS, SD, DS, and DD parents, i.e., δ�� , δ��, δ�� , and δ��, 263 

can be approximated by Woolliams and Bijma [10].  264 

According to Woolliams and Bijma [10],  265 

 266 

δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻 ∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �,  267 

and δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �, 268 

 269 

Where 270 

 271 

.

  This result is in agreement with the formula from Gowe 
et al [8], which likewise neglects the effects of selection on 
ΔF.

Correction of E (ΔF) from Poisson variances
The correction for deviations of the variance of the family 
size from independent Poisson variances in the selected off-
spring from SS, SD, DS, and DD parents, i.e., 

12 
 

 249 

� �� 𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), 250 

 251 

� �� 𝑁𝑁�� � ���𝑢𝑢�,��� � � ��𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF), and 252 

 253 

�� �𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), respectively. 254 

 255 

When the effect of selection on inbreeding is ignored, i.e., � � 0 , E (ΔF) 256 

= �� �𝟏𝟏�𝐍𝐍�𝐔𝐔�𝟏𝟏� = ��� �
�
��� �

�
��� �

�
��� �

�
����. 257 

This result is in agreement with the formula from Gowe et al [8], which likewise neglects 258 

the effects of selection on ΔF. 259 

 260 

Correction of E (ΔF) from Poisson variances 261 

The correction for deviations of the variance of the family size from independent Poisson 262 

variances in the selected offspring from SS, SD, DS, and DD parents, i.e., δ�� , δ��, δ�� , and δ��, 263 

can be approximated by Woolliams and Bijma [10].  264 

According to Woolliams and Bijma [10],  265 

 266 

δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻 ∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �,  267 

and δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �, 268 

 269 

Where 270 

 271 

, 

12 
 

 249 

� �� 𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), 250 

 251 

� �� 𝑁𝑁�� � ���𝑢𝑢�,��� � � ��𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF), and 252 

 253 

�� �𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), respectively. 254 

 255 

When the effect of selection on inbreeding is ignored, i.e., � � 0 , E (ΔF) 256 

= �� �𝟏𝟏�𝐍𝐍�𝐔𝐔�𝟏𝟏� = ��� �
�
��� �

�
��� �

�
��� �

�
����. 257 

This result is in agreement with the formula from Gowe et al [8], which likewise neglects 258 

the effects of selection on ΔF. 259 

 260 

Correction of E (ΔF) from Poisson variances 261 

The correction for deviations of the variance of the family size from independent Poisson 262 

variances in the selected offspring from SS, SD, DS, and DD parents, i.e., δ�� , δ��, δ�� , and δ��, 263 

can be approximated by Woolliams and Bijma [10].  264 

According to Woolliams and Bijma [10],  265 

 266 

δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻 ∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �,  267 

and δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �, 268 

 269 

Where 270 

 271 

, 

12 
 

 249 

� �� 𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), 250 

 251 

� �� 𝑁𝑁�� � ���𝑢𝑢�,��� � � ��𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF), and 252 

 253 

�� �𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), respectively. 254 

 255 

When the effect of selection on inbreeding is ignored, i.e., � � 0 , E (ΔF) 256 

= �� �𝟏𝟏�𝐍𝐍�𝐔𝐔�𝟏𝟏� = ��� �
�
��� �

�
��� �

�
��� �

�
����. 257 

This result is in agreement with the formula from Gowe et al [8], which likewise neglects 258 

the effects of selection on ΔF. 259 

 260 

Correction of E (ΔF) from Poisson variances 261 

The correction for deviations of the variance of the family size from independent Poisson 262 

variances in the selected offspring from SS, SD, DS, and DD parents, i.e., δ�� , δ��, δ�� , and δ��, 263 

can be approximated by Woolliams and Bijma [10].  264 

According to Woolliams and Bijma [10],  265 

 266 

δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻 ∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �,  267 

and δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �, 268 

 269 

Where 270 

 271 

, 
and 

12 
 

 249 

� �� 𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), 250 

 251 

� �� 𝑁𝑁�� � ���𝑢𝑢�,��� � � ��𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF), and 252 

 253 

�� �𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), respectively. 254 

 255 

When the effect of selection on inbreeding is ignored, i.e., � � 0 , E (ΔF) 256 

= �� �𝟏𝟏�𝐍𝐍�𝐔𝐔�𝟏𝟏� = ��� �
�
��� �

�
��� �

�
��� �

�
����. 257 

This result is in agreement with the formula from Gowe et al [8], which likewise neglects 258 

the effects of selection on ΔF. 259 

 260 

Correction of E (ΔF) from Poisson variances 261 

The correction for deviations of the variance of the family size from independent Poisson 262 

variances in the selected offspring from SS, SD, DS, and DD parents, i.e., δ�� , δ��, δ�� , and δ��, 263 

can be approximated by Woolliams and Bijma [10].  264 

According to Woolliams and Bijma [10],  265 

 266 

δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻 ∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �,  267 

and δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �, 268 

 269 

Where 270 

 271 

, can be approximated by Woolliams and Bijma [10]. 
  According to Woolliams and Bijma [10], 

 

12 
 

 249 

� �� 𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), 250 

 251 

� �� 𝑁𝑁�� � ���𝑢𝑢�,��� � � ��𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF), and 252 

 253 

�� �𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), respectively. 254 

 255 

When the effect of selection on inbreeding is ignored, i.e., � � 0 , E (ΔF) 256 

= �� �𝟏𝟏�𝐍𝐍�𝐔𝐔�𝟏𝟏� = ��� �
�
��� �

�
��� �

�
��� �

�
����. 257 

This result is in agreement with the formula from Gowe et al [8], which likewise neglects 258 

the effects of selection on ΔF. 259 

 260 

Correction of E (ΔF) from Poisson variances 261 

The correction for deviations of the variance of the family size from independent Poisson 262 

variances in the selected offspring from SS, SD, DS, and DD parents, i.e., δ�� , δ��, δ�� , and δ��, 263 

can be approximated by Woolliams and Bijma [10].  264 

According to Woolliams and Bijma [10],  265 

 266 

δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻 ∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �,  267 

and δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �, 268 

 269 

Where 270 

 271 

, 

12 
 

 249 

� �� 𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), 250 

 251 

� �� 𝑁𝑁�� � ���𝑢𝑢�,��� � � ��𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF), and 252 

 253 

�� �𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), respectively. 254 

 255 

When the effect of selection on inbreeding is ignored, i.e., � � 0 , E (ΔF) 256 

= �� �𝟏𝟏�𝐍𝐍�𝐔𝐔�𝟏𝟏� = ��� �
�
��� �

�
��� �

�
��� �

�
����. 257 

This result is in agreement with the formula from Gowe et al [8], which likewise neglects 258 

the effects of selection on ΔF. 259 

 260 

Correction of E (ΔF) from Poisson variances 261 

The correction for deviations of the variance of the family size from independent Poisson 262 

variances in the selected offspring from SS, SD, DS, and DD parents, i.e., δ�� , δ��, δ�� , and δ��, 263 

can be approximated by Woolliams and Bijma [10].  264 

According to Woolliams and Bijma [10],  265 

 266 

δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻 ∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �,  267 

and δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �, 268 

 269 

Where 270 

 271 

, 

 

12 
 

 249 

� �� 𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), 250 

 251 

� �� 𝑁𝑁�� � ���𝑢𝑢�,��� � � ��𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF), and 252 

 253 

�� �𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), respectively. 254 

 255 

When the effect of selection on inbreeding is ignored, i.e., � � 0 , E (ΔF) 256 

= �� �𝟏𝟏�𝐍𝐍�𝐔𝐔�𝟏𝟏� = ��� �
�
��� �

�
��� �

�
��� �

�
����. 257 

This result is in agreement with the formula from Gowe et al [8], which likewise neglects 258 

the effects of selection on ΔF. 259 

 260 

Correction of E (ΔF) from Poisson variances 261 

The correction for deviations of the variance of the family size from independent Poisson 262 

variances in the selected offspring from SS, SD, DS, and DD parents, i.e., δ�� , δ��, δ�� , and δ��, 263 

can be approximated by Woolliams and Bijma [10].  264 

According to Woolliams and Bijma [10],  265 

 266 

δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻 ∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �,  267 

and δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �, 268 

 269 

Where 270 

 271 

, and 

12 
 

 249 

� �� 𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), 250 

 251 

� �� 𝑁𝑁�� � ���𝑢𝑢�,��� � � ��𝑢𝑢�,��𝑢𝑢�,�����/E (ΔF), and 252 

 253 

�� �𝑁𝑁�� � ��𝑢𝑢�,��� � � �
�𝑁𝑁����𝑢𝑢�,��𝑢𝑢�,����/E (ΔF), respectively. 254 

 255 

When the effect of selection on inbreeding is ignored, i.e., � � 0 , E (ΔF) 256 

= �� �𝟏𝟏�𝐍𝐍�𝐔𝐔�𝟏𝟏� = ��� �
�
��� �

�
��� �

�
��� �

�
����. 257 

This result is in agreement with the formula from Gowe et al [8], which likewise neglects 258 

the effects of selection on ΔF. 259 

 260 

Correction of E (ΔF) from Poisson variances 261 

The correction for deviations of the variance of the family size from independent Poisson 262 

variances in the selected offspring from SS, SD, DS, and DD parents, i.e., δ�� , δ��, δ�� , and δ��, 263 

can be approximated by Woolliams and Bijma [10].  264 

According to Woolliams and Bijma [10],  265 

 266 

δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑺𝑺𝑺𝑺∗𝑻𝑻 ∆𝑽𝑽𝑺𝑺𝑺𝑺𝒖𝒖𝑺𝑺𝑺𝑺∗ �, δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �,  267 

and δ�� = E(𝒖𝒖𝑫𝑫𝑫𝑫∗𝑻𝑻 ∆𝑽𝑽𝑫𝑫𝑫𝑫𝒖𝒖𝑫𝑫𝑫𝑫∗ �, 268 

 269 

Where 270 

 271 

, 

  Where

 

13 
 

𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, 𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�, 272 

 273 

𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, and 𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�; 274 

 275 

∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑫𝑫𝑫𝑫, and ∆𝑽𝑽𝑫𝑫𝑫𝑫 are 4×4 matrices which are variances of selected family size 276 

deviated from Poisson variance by applying binomial distribution to the family size from the 277 

parents of SS,SD,DS, and DD, respectively, and 𝑠𝑠� is the selective advantage of parents in 278 

category 𝑥𝑥 �SS, SD, DS, DD�. Elements of ∆𝑽𝑽𝑺𝑺𝑺𝑺,𝑺𝑺𝑺𝑺,𝑫𝑫𝑫𝑫,�� 𝑫𝑫𝑫𝑫 are shown in Appendix C. 279 

 280 

Example applications of the formula 281 

To demonstrate the application of our formula, we assumed only two quantitative traits: trait 1 282 

was assumed to be moderately heritable, with h2 = 0.3, whereas trait 2 was assumed to have low 283 

heritability, with ℎ� � 0.1. These traits are selected as single traits expressed as GEBV. 284 

Furthermore, we assumed an aggregate genotype as a linear combination of genetic values, each 285 

weighted by the relative economic weights, which was expressed as  𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, where 𝑔𝑔� is 286 

the true genetic value for trait i,  𝑎𝑎�  is the relative economic weight for trait i, and the genetic 287 

correlation between traits 1 and 2 was assumed as 0.4. Index selection was performed to select 288 

 𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, that is, breeding goal (H), under the assumption that the relative economic weight 289 

between traits 1 and 2 is 1: 1. Breeding value (A) was defined as described earlier in the 290 

Methods; for example, the breeding value of sire i in SS was defined as 𝐴𝐴�,�� . Similarly, the 291 

breeding goal value (H) of sire i in SS can be expressed as 𝐻𝐻�,�� ; note that the formula that we 292 

developed in Methods can be applied not only to breeding value (𝐴𝐴) but also to breeding goal 293 

, 

13 
 

𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, 𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�, 272 

 273 

𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, and 𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�; 274 

 275 

∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑫𝑫𝑫𝑫, and ∆𝑽𝑽𝑫𝑫𝑫𝑫 are 4×4 matrices which are variances of selected family size 276 

deviated from Poisson variance by applying binomial distribution to the family size from the 277 

parents of SS,SD,DS, and DD, respectively, and 𝑠𝑠� is the selective advantage of parents in 278 

category 𝑥𝑥 �SS, SD, DS, DD�. Elements of ∆𝑽𝑽𝑺𝑺𝑺𝑺,𝑺𝑺𝑺𝑺,𝑫𝑫𝑫𝑫,�� 𝑫𝑫𝑫𝑫 are shown in Appendix C. 279 

 280 

Example applications of the formula 281 

To demonstrate the application of our formula, we assumed only two quantitative traits: trait 1 282 

was assumed to be moderately heritable, with h2 = 0.3, whereas trait 2 was assumed to have low 283 

heritability, with ℎ� � 0.1. These traits are selected as single traits expressed as GEBV. 284 

Furthermore, we assumed an aggregate genotype as a linear combination of genetic values, each 285 

weighted by the relative economic weights, which was expressed as  𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, where 𝑔𝑔� is 286 

the true genetic value for trait i,  𝑎𝑎�  is the relative economic weight for trait i, and the genetic 287 

correlation between traits 1 and 2 was assumed as 0.4. Index selection was performed to select 288 

 𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, that is, breeding goal (H), under the assumption that the relative economic weight 289 

between traits 1 and 2 is 1: 1. Breeding value (A) was defined as described earlier in the 290 

Methods; for example, the breeding value of sire i in SS was defined as 𝐴𝐴�,�� . Similarly, the 291 

breeding goal value (H) of sire i in SS can be expressed as 𝐻𝐻�,�� ; note that the formula that we 292 

developed in Methods can be applied not only to breeding value (𝐴𝐴) but also to breeding goal 293 

, 

 

13 
 

𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, 𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�, 272 

 273 

𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, and 𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�; 274 

 275 

∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑫𝑫𝑫𝑫, and ∆𝑽𝑽𝑫𝑫𝑫𝑫 are 4×4 matrices which are variances of selected family size 276 

deviated from Poisson variance by applying binomial distribution to the family size from the 277 

parents of SS,SD,DS, and DD, respectively, and 𝑠𝑠� is the selective advantage of parents in 278 

category 𝑥𝑥 �SS, SD, DS, DD�. Elements of ∆𝑽𝑽𝑺𝑺𝑺𝑺,𝑺𝑺𝑺𝑺,𝑫𝑫𝑫𝑫,�� 𝑫𝑫𝑫𝑫 are shown in Appendix C. 279 

 280 

Example applications of the formula 281 

To demonstrate the application of our formula, we assumed only two quantitative traits: trait 1 282 

was assumed to be moderately heritable, with h2 = 0.3, whereas trait 2 was assumed to have low 283 

heritability, with ℎ� � 0.1. These traits are selected as single traits expressed as GEBV. 284 

Furthermore, we assumed an aggregate genotype as a linear combination of genetic values, each 285 

weighted by the relative economic weights, which was expressed as  𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, where 𝑔𝑔� is 286 

the true genetic value for trait i,  𝑎𝑎�  is the relative economic weight for trait i, and the genetic 287 

correlation between traits 1 and 2 was assumed as 0.4. Index selection was performed to select 288 

 𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, that is, breeding goal (H), under the assumption that the relative economic weight 289 

between traits 1 and 2 is 1: 1. Breeding value (A) was defined as described earlier in the 290 

Methods; for example, the breeding value of sire i in SS was defined as 𝐴𝐴�,�� . Similarly, the 291 

breeding goal value (H) of sire i in SS can be expressed as 𝐻𝐻�,�� ; note that the formula that we 292 

developed in Methods can be applied not only to breeding value (𝐴𝐴) but also to breeding goal 293 

,

  and 

13 
 

𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, 𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�, 272 

 273 

𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, and 𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�; 274 

 275 

∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑫𝑫𝑫𝑫, and ∆𝑽𝑽𝑫𝑫𝑫𝑫 are 4×4 matrices which are variances of selected family size 276 

deviated from Poisson variance by applying binomial distribution to the family size from the 277 

parents of SS,SD,DS, and DD, respectively, and 𝑠𝑠� is the selective advantage of parents in 278 

category 𝑥𝑥 �SS, SD, DS, DD�. Elements of ∆𝑽𝑽𝑺𝑺𝑺𝑺,𝑺𝑺𝑺𝑺,𝑫𝑫𝑫𝑫,�� 𝑫𝑫𝑫𝑫 are shown in Appendix C. 279 

 280 

Example applications of the formula 281 

To demonstrate the application of our formula, we assumed only two quantitative traits: trait 1 282 

was assumed to be moderately heritable, with h2 = 0.3, whereas trait 2 was assumed to have low 283 

heritability, with ℎ� � 0.1. These traits are selected as single traits expressed as GEBV. 284 

Furthermore, we assumed an aggregate genotype as a linear combination of genetic values, each 285 

weighted by the relative economic weights, which was expressed as  𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, where 𝑔𝑔� is 286 

the true genetic value for trait i,  𝑎𝑎�  is the relative economic weight for trait i, and the genetic 287 

correlation between traits 1 and 2 was assumed as 0.4. Index selection was performed to select 288 

 𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, that is, breeding goal (H), under the assumption that the relative economic weight 289 

between traits 1 and 2 is 1: 1. Breeding value (A) was defined as described earlier in the 290 

Methods; for example, the breeding value of sire i in SS was defined as 𝐴𝐴�,�� . Similarly, the 291 

breeding goal value (H) of sire i in SS can be expressed as 𝐻𝐻�,�� ; note that the formula that we 292 

developed in Methods can be applied not only to breeding value (𝐴𝐴) but also to breeding goal 293 

;

 

13 
 

𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, 𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�, 272 

 273 

𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, and 𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�; 274 

 275 

∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑫𝑫𝑫𝑫, and ∆𝑽𝑽𝑫𝑫𝑫𝑫 are 4×4 matrices which are variances of selected family size 276 

deviated from Poisson variance by applying binomial distribution to the family size from the 277 

parents of SS,SD,DS, and DD, respectively, and 𝑠𝑠� is the selective advantage of parents in 278 

category 𝑥𝑥 �SS, SD, DS, DD�. Elements of ∆𝑽𝑽𝑺𝑺𝑺𝑺,𝑺𝑺𝑺𝑺,𝑫𝑫𝑫𝑫,�� 𝑫𝑫𝑫𝑫 are shown in Appendix C. 279 

 280 

Example applications of the formula 281 

To demonstrate the application of our formula, we assumed only two quantitative traits: trait 1 282 

was assumed to be moderately heritable, with h2 = 0.3, whereas trait 2 was assumed to have low 283 

heritability, with ℎ� � 0.1. These traits are selected as single traits expressed as GEBV. 284 

Furthermore, we assumed an aggregate genotype as a linear combination of genetic values, each 285 

weighted by the relative economic weights, which was expressed as  𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, where 𝑔𝑔� is 286 

the true genetic value for trait i,  𝑎𝑎�  is the relative economic weight for trait i, and the genetic 287 

correlation between traits 1 and 2 was assumed as 0.4. Index selection was performed to select 288 

 𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, that is, breeding goal (H), under the assumption that the relative economic weight 289 

between traits 1 and 2 is 1: 1. Breeding value (A) was defined as described earlier in the 290 

Methods; for example, the breeding value of sire i in SS was defined as 𝐴𝐴�,�� . Similarly, the 291 

breeding goal value (H) of sire i in SS can be expressed as 𝐻𝐻�,�� ; note that the formula that we 292 

developed in Methods can be applied not only to breeding value (𝐴𝐴) but also to breeding goal 293 

, 

13 
 

𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, 𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�, 272 

 273 

𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, and 𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�; 274 

 275 

∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑫𝑫𝑫𝑫, and ∆𝑽𝑽𝑫𝑫𝑫𝑫 are 4×4 matrices which are variances of selected family size 276 

deviated from Poisson variance by applying binomial distribution to the family size from the 277 

parents of SS,SD,DS, and DD, respectively, and 𝑠𝑠� is the selective advantage of parents in 278 

category 𝑥𝑥 �SS, SD, DS, DD�. Elements of ∆𝑽𝑽𝑺𝑺𝑺𝑺,𝑺𝑺𝑺𝑺,𝑫𝑫𝑫𝑫,�� 𝑫𝑫𝑫𝑫 are shown in Appendix C. 279 

 280 

Example applications of the formula 281 

To demonstrate the application of our formula, we assumed only two quantitative traits: trait 1 282 

was assumed to be moderately heritable, with h2 = 0.3, whereas trait 2 was assumed to have low 283 

heritability, with ℎ� � 0.1. These traits are selected as single traits expressed as GEBV. 284 

Furthermore, we assumed an aggregate genotype as a linear combination of genetic values, each 285 

weighted by the relative economic weights, which was expressed as  𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, where 𝑔𝑔� is 286 

the true genetic value for trait i,  𝑎𝑎�  is the relative economic weight for trait i, and the genetic 287 

correlation between traits 1 and 2 was assumed as 0.4. Index selection was performed to select 288 

 𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, that is, breeding goal (H), under the assumption that the relative economic weight 289 

between traits 1 and 2 is 1: 1. Breeding value (A) was defined as described earlier in the 290 

Methods; for example, the breeding value of sire i in SS was defined as 𝐴𝐴�,�� . Similarly, the 291 

breeding goal value (H) of sire i in SS can be expressed as 𝐻𝐻�,�� ; note that the formula that we 292 

developed in Methods can be applied not only to breeding value (𝐴𝐴) but also to breeding goal 293 

, 

13 
 

𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, 𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�, 272 

 273 

𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, and 𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�; 274 

 275 

∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑫𝑫𝑫𝑫, and ∆𝑽𝑽𝑫𝑫𝑫𝑫 are 4×4 matrices which are variances of selected family size 276 

deviated from Poisson variance by applying binomial distribution to the family size from the 277 

parents of SS,SD,DS, and DD, respectively, and 𝑠𝑠� is the selective advantage of parents in 278 

category 𝑥𝑥 �SS, SD, DS, DD�. Elements of ∆𝑽𝑽𝑺𝑺𝑺𝑺,𝑺𝑺𝑺𝑺,𝑫𝑫𝑫𝑫,�� 𝑫𝑫𝑫𝑫 are shown in Appendix C. 279 

 280 

Example applications of the formula 281 

To demonstrate the application of our formula, we assumed only two quantitative traits: trait 1 282 

was assumed to be moderately heritable, with h2 = 0.3, whereas trait 2 was assumed to have low 283 

heritability, with ℎ� � 0.1. These traits are selected as single traits expressed as GEBV. 284 

Furthermore, we assumed an aggregate genotype as a linear combination of genetic values, each 285 

weighted by the relative economic weights, which was expressed as  𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, where 𝑔𝑔� is 286 

the true genetic value for trait i,  𝑎𝑎�  is the relative economic weight for trait i, and the genetic 287 

correlation between traits 1 and 2 was assumed as 0.4. Index selection was performed to select 288 

 𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, that is, breeding goal (H), under the assumption that the relative economic weight 289 

between traits 1 and 2 is 1: 1. Breeding value (A) was defined as described earlier in the 290 

Methods; for example, the breeding value of sire i in SS was defined as 𝐴𝐴�,�� . Similarly, the 291 

breeding goal value (H) of sire i in SS can be expressed as 𝐻𝐻�,�� ; note that the formula that we 292 

developed in Methods can be applied not only to breeding value (𝐴𝐴) but also to breeding goal 293 

, and 

13 
 

𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, 𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�, 272 

 273 

𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, and 𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�; 274 

 275 

∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑫𝑫𝑫𝑫, and ∆𝑽𝑽𝑫𝑫𝑫𝑫 are 4×4 matrices which are variances of selected family size 276 

deviated from Poisson variance by applying binomial distribution to the family size from the 277 

parents of SS,SD,DS, and DD, respectively, and 𝑠𝑠� is the selective advantage of parents in 278 

category 𝑥𝑥 �SS, SD, DS, DD�. Elements of ∆𝑽𝑽𝑺𝑺𝑺𝑺,𝑺𝑺𝑺𝑺,𝑫𝑫𝑫𝑫,�� 𝑫𝑫𝑫𝑫 are shown in Appendix C. 279 

 280 

Example applications of the formula 281 

To demonstrate the application of our formula, we assumed only two quantitative traits: trait 1 282 

was assumed to be moderately heritable, with h2 = 0.3, whereas trait 2 was assumed to have low 283 

heritability, with ℎ� � 0.1. These traits are selected as single traits expressed as GEBV. 284 

Furthermore, we assumed an aggregate genotype as a linear combination of genetic values, each 285 

weighted by the relative economic weights, which was expressed as  𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, where 𝑔𝑔� is 286 

the true genetic value for trait i,  𝑎𝑎�  is the relative economic weight for trait i, and the genetic 287 

correlation between traits 1 and 2 was assumed as 0.4. Index selection was performed to select 288 

 𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, that is, breeding goal (H), under the assumption that the relative economic weight 289 

between traits 1 and 2 is 1: 1. Breeding value (A) was defined as described earlier in the 290 

Methods; for example, the breeding value of sire i in SS was defined as 𝐴𝐴�,�� . Similarly, the 291 

breeding goal value (H) of sire i in SS can be expressed as 𝐻𝐻�,�� ; note that the formula that we 292 

developed in Methods can be applied not only to breeding value (𝐴𝐴) but also to breeding goal 293 

 are 4×4 matrices which are 
variances of selected family size deviated from Poisson vari-
ance by applying binomial distribution to the family size from 



808  www.animbiosci.org

Togashi et al (2022) Anim Biosci 35:804-813

the parents of SS, SD, DS, and DD, respectively, and sx is the 
selective advantage of parents in category x (SS, SD, DS, DD). 
Elements of 

13 
 

𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, 𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�, 272 

 273 

𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, and 𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�; 274 

 275 

∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑫𝑫𝑫𝑫, and ∆𝑽𝑽𝑫𝑫𝑫𝑫 are 4×4 matrices which are variances of selected family size 276 

deviated from Poisson variance by applying binomial distribution to the family size from the 277 

parents of SS,SD,DS, and DD, respectively, and 𝑠𝑠� is the selective advantage of parents in 278 

category 𝑥𝑥 �SS, SD, DS, DD�. Elements of ∆𝑽𝑽𝑺𝑺𝑺𝑺,𝑺𝑺𝑺𝑺,𝑫𝑫𝑫𝑫,�� 𝑫𝑫𝑫𝑫 are shown in Appendix C. 279 

 280 

Example applications of the formula 281 

To demonstrate the application of our formula, we assumed only two quantitative traits: trait 1 282 

was assumed to be moderately heritable, with h2 = 0.3, whereas trait 2 was assumed to have low 283 

heritability, with ℎ� � 0.1. These traits are selected as single traits expressed as GEBV. 284 

Furthermore, we assumed an aggregate genotype as a linear combination of genetic values, each 285 

weighted by the relative economic weights, which was expressed as  𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, where 𝑔𝑔� is 286 

the true genetic value for trait i,  𝑎𝑎�  is the relative economic weight for trait i, and the genetic 287 

correlation between traits 1 and 2 was assumed as 0.4. Index selection was performed to select 288 

 𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, that is, breeding goal (H), under the assumption that the relative economic weight 289 

between traits 1 and 2 is 1: 1. Breeding value (A) was defined as described earlier in the 290 

Methods; for example, the breeding value of sire i in SS was defined as 𝐴𝐴�,�� . Similarly, the 291 

breeding goal value (H) of sire i in SS can be expressed as 𝐻𝐻�,�� ; note that the formula that we 292 

developed in Methods can be applied not only to breeding value (𝐴𝐴) but also to breeding goal 293 

 are shown in Appendix C.

Example applications of the formula
To demonstrate the application of our formula, we assumed 
only two quantitative traits: trait 1 was assumed to be mod-
erately heritable, with h2 = 0.3, whereas trait 2 was assumed 
to have low heritability, with h2 = 0.1. These traits are selected 
as single traits expressed as GEBV. Furthermore, we assumed 
an aggregate genotype as a linear combination of genetic 
values, each weighted by the relative economic weights, which 
was expressed as 

13 
 

𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, 𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�, 272 

 273 

𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, and 𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�; 274 

 275 

∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑫𝑫𝑫𝑫, and ∆𝑽𝑽𝑫𝑫𝑫𝑫 are 4×4 matrices which are variances of selected family size 276 

deviated from Poisson variance by applying binomial distribution to the family size from the 277 

parents of SS,SD,DS, and DD, respectively, and 𝑠𝑠� is the selective advantage of parents in 278 

category 𝑥𝑥 �SS, SD, DS, DD�. Elements of ∆𝑽𝑽𝑺𝑺𝑺𝑺,𝑺𝑺𝑺𝑺,𝑫𝑫𝑫𝑫,�� 𝑫𝑫𝑫𝑫 are shown in Appendix C. 279 

 280 

Example applications of the formula 281 

To demonstrate the application of our formula, we assumed only two quantitative traits: trait 1 282 

was assumed to be moderately heritable, with h2 = 0.3, whereas trait 2 was assumed to have low 283 

heritability, with ℎ� � 0.1. These traits are selected as single traits expressed as GEBV. 284 

Furthermore, we assumed an aggregate genotype as a linear combination of genetic values, each 285 

weighted by the relative economic weights, which was expressed as  𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, where 𝑔𝑔� is 286 

the true genetic value for trait i,  𝑎𝑎�  is the relative economic weight for trait i, and the genetic 287 

correlation between traits 1 and 2 was assumed as 0.4. Index selection was performed to select 288 

 𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, that is, breeding goal (H), under the assumption that the relative economic weight 289 

between traits 1 and 2 is 1: 1. Breeding value (A) was defined as described earlier in the 290 

Methods; for example, the breeding value of sire i in SS was defined as 𝐴𝐴�,�� . Similarly, the 291 

breeding goal value (H) of sire i in SS can be expressed as 𝐻𝐻�,�� ; note that the formula that we 292 

developed in Methods can be applied not only to breeding value (𝐴𝐴) but also to breeding goal 293 

+

13 
 

𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, 𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�, 272 

 273 

𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, and 𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�; 274 

 275 

∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑫𝑫𝑫𝑫, and ∆𝑽𝑽𝑫𝑫𝑫𝑫 are 4×4 matrices which are variances of selected family size 276 

deviated from Poisson variance by applying binomial distribution to the family size from the 277 

parents of SS,SD,DS, and DD, respectively, and 𝑠𝑠� is the selective advantage of parents in 278 

category 𝑥𝑥 �SS, SD, DS, DD�. Elements of ∆𝑽𝑽𝑺𝑺𝑺𝑺,𝑺𝑺𝑺𝑺,𝑫𝑫𝑫𝑫,�� 𝑫𝑫𝑫𝑫 are shown in Appendix C. 279 

 280 

Example applications of the formula 281 

To demonstrate the application of our formula, we assumed only two quantitative traits: trait 1 282 

was assumed to be moderately heritable, with h2 = 0.3, whereas trait 2 was assumed to have low 283 

heritability, with ℎ� � 0.1. These traits are selected as single traits expressed as GEBV. 284 

Furthermore, we assumed an aggregate genotype as a linear combination of genetic values, each 285 

weighted by the relative economic weights, which was expressed as  𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, where 𝑔𝑔� is 286 

the true genetic value for trait i,  𝑎𝑎�  is the relative economic weight for trait i, and the genetic 287 

correlation between traits 1 and 2 was assumed as 0.4. Index selection was performed to select 288 

 𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, that is, breeding goal (H), under the assumption that the relative economic weight 289 

between traits 1 and 2 is 1: 1. Breeding value (A) was defined as described earlier in the 290 

Methods; for example, the breeding value of sire i in SS was defined as 𝐴𝐴�,�� . Similarly, the 291 

breeding goal value (H) of sire i in SS can be expressed as 𝐻𝐻�,�� ; note that the formula that we 292 

developed in Methods can be applied not only to breeding value (𝐴𝐴) but also to breeding goal 293 

, where 

13 
 

𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, 𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�, 272 

 273 

𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, and 𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�; 274 

 275 

∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑫𝑫𝑫𝑫, and ∆𝑽𝑽𝑫𝑫𝑫𝑫 are 4×4 matrices which are variances of selected family size 276 

deviated from Poisson variance by applying binomial distribution to the family size from the 277 

parents of SS,SD,DS, and DD, respectively, and 𝑠𝑠� is the selective advantage of parents in 278 

category 𝑥𝑥 �SS, SD, DS, DD�. Elements of ∆𝑽𝑽𝑺𝑺𝑺𝑺,𝑺𝑺𝑺𝑺,𝑫𝑫𝑫𝑫,�� 𝑫𝑫𝑫𝑫 are shown in Appendix C. 279 

 280 

Example applications of the formula 281 

To demonstrate the application of our formula, we assumed only two quantitative traits: trait 1 282 

was assumed to be moderately heritable, with h2 = 0.3, whereas trait 2 was assumed to have low 283 

heritability, with ℎ� � 0.1. These traits are selected as single traits expressed as GEBV. 284 

Furthermore, we assumed an aggregate genotype as a linear combination of genetic values, each 285 

weighted by the relative economic weights, which was expressed as  𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, where 𝑔𝑔� is 286 

the true genetic value for trait i,  𝑎𝑎�  is the relative economic weight for trait i, and the genetic 287 

correlation between traits 1 and 2 was assumed as 0.4. Index selection was performed to select 288 

 𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, that is, breeding goal (H), under the assumption that the relative economic weight 289 

between traits 1 and 2 is 1: 1. Breeding value (A) was defined as described earlier in the 290 

Methods; for example, the breeding value of sire i in SS was defined as 𝐴𝐴�,�� . Similarly, the 291 

breeding goal value (H) of sire i in SS can be expressed as 𝐻𝐻�,�� ; note that the formula that we 292 

developed in Methods can be applied not only to breeding value (𝐴𝐴) but also to breeding goal 293 

 is the true genetic 
value for trait i, ai is the relative economic weight for trait i, 
and the genetic correlation between traits 1 and 2 was as-
sumed as 0.4. Index selection was performed to select 

13 
 

𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, 𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�, 272 

 273 

𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, and 𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�; 274 

 275 

∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑫𝑫𝑫𝑫, and ∆𝑽𝑽𝑫𝑫𝑫𝑫 are 4×4 matrices which are variances of selected family size 276 

deviated from Poisson variance by applying binomial distribution to the family size from the 277 

parents of SS,SD,DS, and DD, respectively, and 𝑠𝑠� is the selective advantage of parents in 278 

category 𝑥𝑥 �SS, SD, DS, DD�. Elements of ∆𝑽𝑽𝑺𝑺𝑺𝑺,𝑺𝑺𝑺𝑺,𝑫𝑫𝑫𝑫,�� 𝑫𝑫𝑫𝑫 are shown in Appendix C. 279 

 280 

Example applications of the formula 281 

To demonstrate the application of our formula, we assumed only two quantitative traits: trait 1 282 

was assumed to be moderately heritable, with h2 = 0.3, whereas trait 2 was assumed to have low 283 

heritability, with ℎ� � 0.1. These traits are selected as single traits expressed as GEBV. 284 

Furthermore, we assumed an aggregate genotype as a linear combination of genetic values, each 285 

weighted by the relative economic weights, which was expressed as  𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, where 𝑔𝑔� is 286 

the true genetic value for trait i,  𝑎𝑎�  is the relative economic weight for trait i, and the genetic 287 

correlation between traits 1 and 2 was assumed as 0.4. Index selection was performed to select 288 

 𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, that is, breeding goal (H), under the assumption that the relative economic weight 289 

between traits 1 and 2 is 1: 1. Breeding value (A) was defined as described earlier in the 290 

Methods; for example, the breeding value of sire i in SS was defined as 𝐴𝐴�,�� . Similarly, the 291 

breeding goal value (H) of sire i in SS can be expressed as 𝐻𝐻�,�� ; note that the formula that we 292 

developed in Methods can be applied not only to breeding value (𝐴𝐴) but also to breeding goal 293 

+

13 
 

𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, 𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�, 272 

 273 

𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, and 𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�; 274 

 275 

∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑫𝑫𝑫𝑫, and ∆𝑽𝑽𝑫𝑫𝑫𝑫 are 4×4 matrices which are variances of selected family size 276 

deviated from Poisson variance by applying binomial distribution to the family size from the 277 

parents of SS,SD,DS, and DD, respectively, and 𝑠𝑠� is the selective advantage of parents in 278 

category 𝑥𝑥 �SS, SD, DS, DD�. Elements of ∆𝑽𝑽𝑺𝑺𝑺𝑺,𝑺𝑺𝑺𝑺,𝑫𝑫𝑫𝑫,�� 𝑫𝑫𝑫𝑫 are shown in Appendix C. 279 

 280 

Example applications of the formula 281 

To demonstrate the application of our formula, we assumed only two quantitative traits: trait 1 282 

was assumed to be moderately heritable, with h2 = 0.3, whereas trait 2 was assumed to have low 283 

heritability, with ℎ� � 0.1. These traits are selected as single traits expressed as GEBV. 284 

Furthermore, we assumed an aggregate genotype as a linear combination of genetic values, each 285 

weighted by the relative economic weights, which was expressed as  𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, where 𝑔𝑔� is 286 

the true genetic value for trait i,  𝑎𝑎�  is the relative economic weight for trait i, and the genetic 287 

correlation between traits 1 and 2 was assumed as 0.4. Index selection was performed to select 288 

 𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, that is, breeding goal (H), under the assumption that the relative economic weight 289 

between traits 1 and 2 is 1: 1. Breeding value (A) was defined as described earlier in the 290 

Methods; for example, the breeding value of sire i in SS was defined as 𝐴𝐴�,�� . Similarly, the 291 

breeding goal value (H) of sire i in SS can be expressed as 𝐻𝐻�,�� ; note that the formula that we 292 

developed in Methods can be applied not only to breeding value (𝐴𝐴) but also to breeding goal 293 

, that is, breeding goal (H), under the assumption that 
the relative economic weight between traits 1 and 2 is 1:1. 
Breeding value (A) was defined as described earlier in the 
Methods; for example, the breeding value of sire i in SS was 
defined as 

13 
 

𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, 𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�, 272 

 273 

𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, and 𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�; 274 

 275 

∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑫𝑫𝑫𝑫, and ∆𝑽𝑽𝑫𝑫𝑫𝑫 are 4×4 matrices which are variances of selected family size 276 

deviated from Poisson variance by applying binomial distribution to the family size from the 277 

parents of SS,SD,DS, and DD, respectively, and 𝑠𝑠� is the selective advantage of parents in 278 

category 𝑥𝑥 �SS, SD, DS, DD�. Elements of ∆𝑽𝑽𝑺𝑺𝑺𝑺,𝑺𝑺𝑺𝑺,𝑫𝑫𝑫𝑫,�� 𝑫𝑫𝑫𝑫 are shown in Appendix C. 279 

 280 

Example applications of the formula 281 

To demonstrate the application of our formula, we assumed only two quantitative traits: trait 1 282 

was assumed to be moderately heritable, with h2 = 0.3, whereas trait 2 was assumed to have low 283 

heritability, with ℎ� � 0.1. These traits are selected as single traits expressed as GEBV. 284 

Furthermore, we assumed an aggregate genotype as a linear combination of genetic values, each 285 

weighted by the relative economic weights, which was expressed as  𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, where 𝑔𝑔� is 286 

the true genetic value for trait i,  𝑎𝑎�  is the relative economic weight for trait i, and the genetic 287 

correlation between traits 1 and 2 was assumed as 0.4. Index selection was performed to select 288 

 𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, that is, breeding goal (H), under the assumption that the relative economic weight 289 

between traits 1 and 2 is 1: 1. Breeding value (A) was defined as described earlier in the 290 

Methods; for example, the breeding value of sire i in SS was defined as 𝐴𝐴�,�� . Similarly, the 291 

breeding goal value (H) of sire i in SS can be expressed as 𝐻𝐻�,�� ; note that the formula that we 292 

developed in Methods can be applied not only to breeding value (𝐴𝐴) but also to breeding goal 293 

. Similarly, the breeding goal value (H) of 
sire i in SS can be expressed as 

13 
 

𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, 𝒖𝒖𝑺𝑺𝑺𝑺∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�, 272 

 273 

𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

0
0

�, and 𝒖𝒖𝑫𝑫𝑫𝑫∗ � �
0
0

𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��
𝛼𝛼�� � ���𝜋𝜋��,��𝑠𝑠��

�; 274 

 275 

∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑺𝑺𝑺𝑺, ∆𝑽𝑽𝑫𝑫𝑫𝑫, and ∆𝑽𝑽𝑫𝑫𝑫𝑫 are 4×4 matrices which are variances of selected family size 276 

deviated from Poisson variance by applying binomial distribution to the family size from the 277 

parents of SS,SD,DS, and DD, respectively, and 𝑠𝑠� is the selective advantage of parents in 278 

category 𝑥𝑥 �SS, SD, DS, DD�. Elements of ∆𝑽𝑽𝑺𝑺𝑺𝑺,𝑺𝑺𝑺𝑺,𝑫𝑫𝑫𝑫,�� 𝑫𝑫𝑫𝑫 are shown in Appendix C. 279 

 280 

Example applications of the formula 281 

To demonstrate the application of our formula, we assumed only two quantitative traits: trait 1 282 

was assumed to be moderately heritable, with h2 = 0.3, whereas trait 2 was assumed to have low 283 

heritability, with ℎ� � 0.1. These traits are selected as single traits expressed as GEBV. 284 

Furthermore, we assumed an aggregate genotype as a linear combination of genetic values, each 285 

weighted by the relative economic weights, which was expressed as  𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, where 𝑔𝑔� is 286 

the true genetic value for trait i,  𝑎𝑎�  is the relative economic weight for trait i, and the genetic 287 

correlation between traits 1 and 2 was assumed as 0.4. Index selection was performed to select 288 

 𝑎𝑎�𝑔𝑔� � 𝑎𝑎�𝑔𝑔�, that is, breeding goal (H), under the assumption that the relative economic weight 289 

between traits 1 and 2 is 1: 1. Breeding value (A) was defined as described earlier in the 290 

Methods; for example, the breeding value of sire i in SS was defined as 𝐴𝐴�,�� . Similarly, the 291 

breeding goal value (H) of sire i in SS can be expressed as 𝐻𝐻�,�� ; note that the formula that we 292 

developed in Methods can be applied not only to breeding value (𝐴𝐴) but also to breeding goal 293 

; note that the formula 
that we developed in Methods can be applied not only to 
breeding value (A) but also to breeding goal value (H). 
  In our example, we assumed the reliabilities of the GEBVs 
for traits 1 and 2 to be 0.5721 and 0.4836, respectively [3]. In-
dex selection (I) was performed as I = 

14 
 

value (H).  294 

In our example, we assumed the reliabilities of the GEBVs for traits 1 and 2 to be 0.5721 295 

and 0.4836, respectively [3]. Index selection (I) was performed as I =  𝑎𝑎�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺� �  𝑎𝑎�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�, 296 

because GEBVs are assumed to be derived from multiple-trait BLUP (MT BLUP) genetic 297 

evaluation methods in the current study  (as done for single-step genomic BLUP, [13]). We 298 

calculated equilibrium genetic variances and reliabilities based on Togashi et al [3]. The initial 299 

(generation 0) and equilibrium genetic variances and reliabilities for single-trait selection (h2 = 300 

0.3 or h2 = 0.1) and index selection are shown in Table 1. Rates of inbreeding were calculated 301 

based on equilibrium genetic variances and reliabilities, because regression coefficients of the 302 

number or breeding value of selected offspring on the breeding value of the parent are equal for 303 

the parental and offspring generations under equilibrium genetic variances and reliabilities. 304 

We considered two scenarios for the selection percentages for SS, SD, DS, and 305 

DD—5%-12.5%-1%-70% and 1%-5%-1%-70%—and three scenarios for the numbers of 306 

selected parents of SS, SD, DS, and DD—namely 20-50-100-7,000, 40-100-200-14,000, and 307 

60-150-300-21,000. Therefore, we considered six scenarios (two scenarios of selection 308 

percentage and three scenarios of the number of parents in SS, SD, DS, DD) in total. Note that 309 

the two scenarios for selection percentage for SS, SD, DS, and DD differ only in the selection 310 

percentage along the SS and SD selection paths, because under actual breeding conditions, 311 

selection intensity can be adjusted more easily in male selection paths (SS and SD) than in 312 

female selection paths (DS and DD). The numbers of male and female offspring from a dam of 313 

DS, i.e., 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, were set at 4. The number of female offspring from a dam of DD, i.e., 314 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, was set at 1.4. These numbers are derived from the years of usage of a dam and the 315 

reproduction method (ovum collection, in vitro fertilization, or embryo transfer). When DS and 316 

DD parents are used with constant selection intensity and in equal numbers over several years, 317 

they belong to a single or exclusive category. Therefore, the numbers of parents of DS and DD 318 

can be 4 and 1.4, respectively. The numbers are used to compute the deviation of the variance of 319 

+

14 
 

value (H).  294 

In our example, we assumed the reliabilities of the GEBVs for traits 1 and 2 to be 0.5721 295 

and 0.4836, respectively [3]. Index selection (I) was performed as I =  𝑎𝑎�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺� �  𝑎𝑎�𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�, 296 

because GEBVs are assumed to be derived from multiple-trait BLUP (MT BLUP) genetic 297 

evaluation methods in the current study  (as done for single-step genomic BLUP, [13]). We 298 

calculated equilibrium genetic variances and reliabilities based on Togashi et al [3]. The initial 299 

(generation 0) and equilibrium genetic variances and reliabilities for single-trait selection (h2 = 300 

0.3 or h2 = 0.1) and index selection are shown in Table 1. Rates of inbreeding were calculated 301 

based on equilibrium genetic variances and reliabilities, because regression coefficients of the 302 

number or breeding value of selected offspring on the breeding value of the parent are equal for 303 

the parental and offspring generations under equilibrium genetic variances and reliabilities. 304 

We considered two scenarios for the selection percentages for SS, SD, DS, and 305 

DD—5%-12.5%-1%-70% and 1%-5%-1%-70%—and three scenarios for the numbers of 306 

selected parents of SS, SD, DS, and DD—namely 20-50-100-7,000, 40-100-200-14,000, and 307 

60-150-300-21,000. Therefore, we considered six scenarios (two scenarios of selection 308 

percentage and three scenarios of the number of parents in SS, SD, DS, DD) in total. Note that 309 

the two scenarios for selection percentage for SS, SD, DS, and DD differ only in the selection 310 

percentage along the SS and SD selection paths, because under actual breeding conditions, 311 

selection intensity can be adjusted more easily in male selection paths (SS and SD) than in 312 

female selection paths (DS and DD). The numbers of male and female offspring from a dam of 313 

DS, i.e., 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, were set at 4. The number of female offspring from a dam of DD, i.e., 314 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, was set at 1.4. These numbers are derived from the years of usage of a dam and the 315 

reproduction method (ovum collection, in vitro fertilization, or embryo transfer). When DS and 316 

DD parents are used with constant selection intensity and in equal numbers over several years, 317 

they belong to a single or exclusive category. Therefore, the numbers of parents of DS and DD 318 

can be 4 and 1.4, respectively. The numbers are used to compute the deviation of the variance of 319 

, 
because GEBVs are assumed to be derived from multiple-
trait BLUP (MT BLUP) genetic evaluation methods in the 
current study (as done for single-step genomic BLUP [13]). 
We calculated equilibrium genetic variances and reliabilities 
based on Togashi et al [3]. The initial (generation 0) and 
equilibrium genetic variances and reliabilities for single-trait 
selection (h2 = 0.3 or h2 = 0.1) and index selection are shown 
in Table 1. Rates of inbreeding were calculated based on equi-
librium genetic variances and reliabilities, because regression 
coefficients of the number or breeding value of selected off-
spring on the breeding value of the parent are equal for the 

parental and offspring generations under equilibrium genetic 
variances and reliabilities.
  We considered two scenarios for the selection percentages 
for SS, SD, DS, and DD—5%-12.5%-1%-70% and 1%-5%-
1%-70%—and three scenarios for the numbers of selected 
parents of SS, SD, DS, and DD—namely 20-50-100-7,000, 
40-100-200-14,000, and 60-150-300-21,000. Therefore, we 
considered six scenarios (two scenarios of selection percent-
age and three scenarios of the number of parents in SS, SD, 
DS, DD) in total. Note that the two scenarios for selection 
percentage for SS, SD, DS, and DD differ only in the selec-
tion percentage along the SS and SD selection paths, because 
under actual breeding conditions, selection intensity can be 
adjusted more easily in male selection paths (SS and SD) 
than in female selection paths (DS and DD). The numbers 
of male and female offspring from a dam of DS, i.e., fmds 
and ffds, were set at 4. The number of female offspring from 
a dam of DD, i.e., ffdd, was set at 1.4. These numbers are de-
rived from the years of usage of a dam and the reproduction 
method (ovum collection, in vitro fertilization, or embryo 
transfer). When DS and DD parents are used with constant 
selection intensity and in equal numbers over several years, 
they belong to a single or exclusive category. The numbers 
are used to compute the deviation of the variance of the family 
size from Poisson variance. 

RESULTS AND DISCUSSION 

Rates of inbreeding
The rates of inbreeding without correction for deviation from 
Poisson variances (that is, the rates of inbreeding with Poisson 
family size) are shown in Table 2. Because the rates from 
Gowe et al [8] do not account for selection, ΔF is the same 
between two selection percentages in SS, SD, DS, and DD, 
i.e., 1%-5%-1%-70% and 5%-12.5%-1%-70%. In contrast, 
ΔF derived from the method developed in the current study 
increased with the increase in selection intensity. When we 
applied our formula, ΔF was lower when selection was ignored 

Table 1. Genetic variances and reliabilities of genomically enhanced breeding values in generation 0 and at the asymptote

Items
Genetic variances Reliabilities

Single- trait 
(h2 = 0.3)

Single- trait 
(h2 = 0.1)

Index selection 
1:11)

Single- trait 
(h2 = 0.3)

Single- trait 
(h2 = 0.1)

Index selection 
1:1

Generation 0 0.300 0.100 0.5386 0.5721 0.4836 0.5386 
Male population

1%-5%-1%-70%2) 0.2190 0.0771 0.4020 0.4138 0.3304 0.3846 
5%-12.5%-1%-70% 0.2200 0.0774 0.4040 0.4164 0.3329 0.3861 

Female population
1%-5%-1%-70% 0.2365 0.0802 0.4202 0.4571 0.3563 0.3998
5%-12.5%-1%-70% 0.2367 0.0806 0.4225 0.4577 0.3590 0.4015

1) Economic weight is 1:1, genetic correlation of two traits (h2 =  0.3 and h2 =  0.1) is 0.4.
2) Selection percentage in selection paths of sires to breed sons (SS), sires to breed daughters (SD), dams to breed sons (DS), and dams to breed daugh-
ters (DD), respectively.
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than when it was included, suggesting that ΔF was underes-
timated when selection was ignored. The ratio of ΔF when 
selection was ignored to that when it was included was about 
0.61 under the selection percentages of 5%-12.5%-1%-70% 
for the SS, SD, DS, and DD selection paths, whereas the ΔF 
ratio was 0.53 to 0.56 under the selection percentage condi-
tion of 1%-5%-1%-70%. That is, calculation according to 
Gowe et al [8] underestimated ΔF by approximately 40% 
and 45% under selection percentages of 5%-12.5%-1%-70% 
and 1%-5%-1%-70% for the SS, SD, DS, and DD selection 
paths, respectively. In contrast, the rates of inbreeding under 
selection estimated by using our formula were 63% to 87% 
greater than those calculated according to the current work-
ing formula, which does not consider selection [8]. The ratio 
of ΔF for 5%-12.5%-1%-70% to that for 1%-5%-1%-70% 
was 0.88 to 0.89, resulting in an approximately 12% decrease 
in ΔF due to increasing the selection percentage or decreas-
ing the selection intensity for SS and SD for all three scenarios 
compared in the numbers of parents in SS, SD, DS, and DD 
(20-50-100-7,000, 40-100-200-14,000, and 60-150-300-
21,000). In contrast, the decrease in ∆F due to the increase 
in the number of parents was proportional to the numbers. 
The ∆F under the number of parents in SS, SD, DS, and DD 
(40-100-200-14,000 and 60-150-300-21,000) was approxi-
mately half and one third of the ∆F under the number of parents 
(20-50-100-7,000), respectively, for all two scenarios com-
pared in the selection percentage of parents in SS, SD, DS, 
and DD (5%-12.5%-1%-70% and 1%-5%-1%-70%). Conse-
quently, the decrease in the rate of inbreeding likely would 

be greater with an increase in the number of parents than 
with a decrease in selection intensity; however, we need to 
perform more trials at different selection intensities to con-
firm this association. 
  In general, both genetic gain and ΔF increase with an in-
crease in selection intensity. However, because the number 
of parents has a greater effect on inbreeding than does selec-
tion intensity, increasing the number of parents is one option 
for offsetting the increase in ΔF due to an increase in selec-
tion intensity.
  The rate of inbreeding was slightly lower in single-trait se-
lection with a low heritable trait (h2 = 0.1) than the other 
selection methods (i.e., single-trait selection with a trait (h2 
= 0.3) and index selection [Table 2]). However, the differ-
ence was not so remarkable. Consequently, we consider the 
major factors in the rate of inbreeding to be the number of 
parents and the selection intensity in each of the four selec-
tion paths.
  Values for effective population size expressed as 
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compared with that computed by using our formula, which accounts for selection. The 368 
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are shown in Table 3. Using a method that ignores selection 
[8] overestimated the effective population size due to ∆F 
compared with that computed by using our formula, which 
accounts for selection. The overestimation was greater when 
the selection percentage in SS, SD, DS, and DD was 1%-5%-
1%-70% than when it was 5%-12.5%-1%-70%. The ratio of 
NE for the 5%-12.5%-1%-70% condition to that for 1%-5%-
1%-70% became greater as the numbers of parents in SS, 
SD, DS, and DD increased from 20-50-100-7,000 to 40-100-

Table 2. Rate of inbreeding

Items ΔF under selection of 
5%-12.5%-1%-70%1)

ΔF under selection of 
1%-5%-1%-70%

Ratio of ΔF ignoring selection 
to that including selection 

Ratio of ΔF at  
5%-12.5%-1%-70% 

to that at 
1%-5%-1%-70%5%-12.5%-1%-70% 1%-5%-1%-70%

20-50-100-7,0002)

03) 0.00376 0.00376 
1 0.00613 0.00701 0.613 0.558 0.875
2 0.00609 0.00698 0.613 0.558 0.873
3 0.00613 0.00702 0.614 0.559 0.873

40-100-200-14,000 
0 0.00188 0.00188 
1 0.00309 0.00348 0.609 0.540 0.887 
2 0.00307 0.00346 0.609 0.540 0.888 
3 0.00309 0.00349 0.609 0.540 0.886 

60-150-300-21,000
0 0.00125 0.00125 
1 0.00206 0.00235 0.608 0.534 0.879 
2 0.00205 0.00233 0.608 0.534 0.879 
3 0.00206 0.00235 0.608 0.534 0.878 

SS, sires to breed sons; SD, sires to breed daughters; DS, dams to breed sons; DD, dams to breed daughters.
1) Selection percentages in SS, SD, DS, and DD, respectively.
2) Numbers of parents in SS, SD, DS, and DD, respectively.
3) 0, 1, 2, and 3 refer to rates of inbreeding from Gowe et al [8], which does not account for selection; single-trait selection (h2 =  0.3); single-trait selection (h2 
=  0.1); and index selection based on two traits (h2 =  0.3 and h2 =  0.1) with equal economic weights, respectively.
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200-14,000 and then to 60-150-300-21,000. This pattern is 
consistent with the suggestion that increasing the number 
of parents is one option for offsetting an increase in ΔF due 
to an increase in selection intensity (Table 2). That is, decreas-
ing ΔF is equivalent to increasing the effective population 
size.
  The expectation of the square of long-term contribution 
of an individual (that is, 
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) in SS, SD, DS, and DD are shown in Table 4. The 
expectation of the square of long-term contribution of an 

individual was the greatest in SS of all the four selection paths 
(SS, SD, DS, and DD), since selection intensity is the high-
est and the number of parents is the smallest of all the four 
selection paths. On the contrary, the square of long-term 
contribution of an individual was the smallest in DD of all 
the four selection paths, since selection intensity in DD is 
the lowest and the number of parents is the largest of all the 
four selection paths. The square of long-term contribution 
of an individual in SD was greater than that in DS, mainly 
because the number of parents in SD is smaller than those 

Table 3. Effective population size (NE)

Items NE under selection of 
5%-12.5%-1%-70%1)

NE under selection of 
1%-5%-1%-70%

Ratio of NE at 5%-12.5%-1%-70% 
to that at 1%-5%-1%-70%

20-50-100-7,0002) 
03) 132.9 132.9 1.000
1 81.5 74.2 1.099 
2 82.1 74.9 1.096 
3 81.6 74.2 1.100 

40-100-200-14,000 
0 265.7 265.7 1.000
1 161.8 143.5 1.127 
2 162.8 144.6 1.126 
3 161.9 143.5 1.128 

60-150-300-21,000 
0 398.6 398.6 1.000
1 242.2 212.8 1.138 
2 243.6 214.1 1.138 
3 242.3 212.7 1.139 

SS, sires to breed sons; SD, sires to breed daughters; DS, dams to breed sons; DD, dams to breed daughters.
1) Selection percentages in SS, SD, DS, and DD, respectively.
2) Numbers of parents in SS, SD, DS, and DD, respectively.
3) 0, 1, 2, and 3 refer to rates of inbreeding from Gowe et al [8], which does not account for selection; single-trait selection (h2 =  0.3); single-trait selection (h2 
=  0.1); and index selection based on two traits (h2 =  0.3 and h2 =  0.1) with equal economic weights, respectively.

Table 4. The expectation of the square of long-term contribution of individual in SS, SD, DS, and DD (×10–4) 

Items
5%-12.5%-1%-70%1) 1%-5%-1%-70%1)

SS SD DS DD SS SD DS DD

20-50-100-7,0002)

13) 2.4227 0.3532 0.1192 0.0000 2.8171 0.3593 0.1461 0.0000 
2 2.4122 0.3532 0.1186 0.0000 2.8034 0.3614 0.1450 0.0000 
3 2.4249 0.3531 0.1197 0.0000 2.8226 0.3605 0.1468 0.0000 

40-100-200-14,000  
1 0.6114 0.0888 0.0304 0.0000 0.7058 0.0900 0.0369 0.0000 
2 0.6086 0.0886 0.0302 0.0000 0.7013 0.0904 0.0366 0.0000 
3 0.6119 0.0885 0.0305 0.0000 0.7068 0.0902 0.0371 0.0000 

60-150-300-21,000
1 0.2726 0.0395 0.0135 0.0000 0.3165 0.0401 0.0165 0.0000 
2 0.2713 0.0394 0.0134 0.0000 0.3147 0.0403 0.0164 0.0000 
3 0.2728 0.0394 0.0136 0.0000 0.3171 0.0402 0.0166 0.0000 

SS, sires to breed sons; SD, sires to breed daughters; DS, dams to breed sons; DD, dams to breed daughters.
1) Selection percentage in SS, SD, DS, and DD.
2) Numbers of parents of SS, SD, DS, and DD.
3) 1, 2, and 3 refer to rates of inbreeding from single-trait selection (h2 =  0.3); single-trait selection (h2 =  0.1); and index selection based on two traits (h2 =  0.3 
and h2 =  0.1) with equal economic weights, respectively. 
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in DS. With the increase in selection intensity or decrease 
in selection percentage in the four selection paths (SS-SD-
DS-DD), i.e., from 5%-12.5%-1%-70% to 1%-5%-1%-70%, 
the increase in the square of long-term contribution of in-
dividuals in SS and DS was greater than that in SD and 
DD, because the selective advantage of an individual in DS 
was the sum of its breeding value and the breeding value of 
its mate in SS category with the greatest long-term contri-
bution of all the four selection paths. The increase in the 
number of parents decreased the square of long-term con-
tribution of an individual in SS, SD, DS, and DD, because 
the expected contribution of an average parent (α) in each 
of the four selection paths decreased with the increase in the 
number of parents. The square of long-term contribution 
of an individual was slightly lower in single-trait selection 
with a low heritable trait (h2 = 0.1) than the other selection 
methods (i.e., single-trait selection with a trait (h2 = 0.3) and 
index selection). However, the difference was not so remark-
able in all selection methods (single-trait selection with a 
trait (h2 = 0.1 or 0.3) and index selection), which was con-
sistent with the trend that the rate of inbreeding was almost 
the same in all selection methods (Table 2). 
  The accounting percentage derived from SS, SD, DS, and 
DD for the rate of inbreeding (ΔF) when the numbers of 
parents in SS, SD, DS, and DD are 40-100-200-14,000 is 
shown in Table 5. The accounting percentage in SS was the 
greatest of all the four selection paths for all two scenarios 
compared in the selection percentage in SS, SD, DS, and DD 
(that is, 5%-12.5%-1%-70% and 1%-5%-1%-70%), because 
the expectation of the square of lifetime long-term contribu-
tion of an individual was the greatest in SS of all the four 
selection paths (Table 4). The sum of accounting percentage 
in SS and SD was approximately 90% for ΔF, because the 
number of male parents in SS and SD was smaller than that 
of female parents in DS and DD and selection intensity in 

male parents is generally higher than that in female parents. 
In addition, the accounting percentage in each of the four 
selection paths when the numbers of parents in SS, SD, DS, 
and DD were 40-100-200-14,000 (Table 5) was approximately 
the same as the other scenario when the numbers of parents 
in SS, SD, DS, and DD were 20-50-100-7,000 or 60-150-300-
21,000, although the accounting percentage in SS, SD, DS, 
and DD in the other scenarios was not shown. This is mainly 
because the expected contribution of an average parent (α) 
and the regression coefficient of the contribution of an indi-
vidual on its selective advantage (β) are inversely proportional 
to the number of parents as explained previously in equation 
(1). Consequently, the accounting percentage derived from 
SS, SD, DS, and DD for the rate of inbreeding (ΔF), (that is, 
the relative magnitude of ΔF in SS, SD, DS, and DD), resulted 
in almost the same for all three scenarios compared in the 
numbers of parents in SS, SD, DS, and DD, even if the abso-
lute magnitude of ΔF derived from each of the four selection 
paths differed in the number of parents in each of the four 
selection paths. 

Correction derived from deviation from Poisson 
variance 
Corrections for deviations in the variance of the family size 
from independent Poisson variances (×10–4) approximated 
by binomial distribution are shown in Table 6. The magnitude 
approximated by binomial distribution under the assumed 
selection percentages in the SS, SD, DS, and DD selection 
paths of 5%-12.5%-1%-70% and 1%-5%-1%-70% varied 
from –0.29×10–4 to –0.88×10–4, and –0.04×10–4 to –0.12×10–4, 

Table 5. The accounting percentage derived from SS, SD, DS, and DD 
for the rate of inbreeding (ΔF) when the numbers of parents in SS, 
SD, DS, and DD are 40-100-200-14,000

Items SS SD DS DD

5%-12.5%-1%-70%1)

12) 0.574 0.322 0.101 0.004 
2 0.574 0.322 0.101 0.004 
3 0.574 0.321 0.101 0.004 

1%-5%-1%-70%1)

1 0.579 0.310 0.108 0.003 
2 0.579 0.311 0.107 0.003 
3 0.579 0.310 0.108 0.003 

SS, sires to breed sons; SD, sires to breed daughters; DS, dams to breed 
sons; DD, dams to breed daughters.
1) Selection percentage in SS, SD, DS, and DD.
2) 1, 2, and 3 refer to rates of inbreeding from single-trait selection (h2 =  
0.3); single-trait selection (h2 =  0.1); and index selection based on two 
traits (h2 =  0.3 and h2 =  0.1) with equal economic weights, respectively. 

Table 6. Correction factors for deviations of the variance of the family 
size from independent Poisson variances (×10–4) approximated by 
binomial distribution

Items Selection of  
5%-12.5%-1%-70%1)

Selection of  
1%-5%-1%-70% 

20-50-100-7,0002) 
13) –0.870 –0.118 
2 –0.883 –0.121 
3 –0.875 –0.119 

40-100-200-14,000 
1 –0.436 –0.059 
2 –0.443 –0.060 
3 –0.439 –0.060 

60-150-300-21,000 
1 –0.291 –0.040 
2 –0.295 –0.040 
3 –0.293 –0.040 

SS, sires to breed sons; SD, sires to breed daughters; DS, dams to breed 
sons; DD, dams to breed daughters.
1) Selection percentages in SS, SD, DS, and DD, respectively.
2) Numbers of parents in SS, SD, DS, and DD, respectively.
3) 1, 2, and 3 refer to rates of single trait selection (h2 =  0.3), single trait 
selection (h2 =  0.1), and index selection based on two traits (h2 =  0.3 and 
h2 =  0.1) with equal economic weights.
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respectively. In comparison, the rates of inbreeding with 
Poisson family size without correction shown in Table 2 
varied from 0.2×10–2 to 0.7×10–2. Therefore, because the 
magnitude of correction was much smaller than that of the 
rates of inbreeding with Poisson family size without correc-
tion, correction is unnecessary; thus the rates of inbreeding 
without correction (Table 2) are reasonable rates of inbreed-
ing. However, the method in terms of the factorial moments 
[10] should be examined to confirm that the magnitude of 
correction is much smaller than those of ΔF with Poisson 
family size without correction.
  Selection intensities and variance reduction coefficients 
should be adjusted by using the procedure from Wray and 
Thompson [4] in situations of few families with numerous 
candidates per family, for example, when the number of se-
lected parents is only 5 or 10 [6]. Because we set the number 
of parents in SS at 20, 40, and 60, we did not adjust the selec-
tion intensity in the SS path. In addition, selection intensity 
in DD generally is much smaller than those in SS, SD, and 
DD selection paths. Consequently, when selection in DD is 
not performed, the selection intensity and reduction factor 
of the variance need to be set at zero in the DD selection path 
in the formula developed in the current study.

CONCLUSION

We here developed a formula for calculating the rates of in-
breeding in populations under selection based on GEBV. 
The population is selected along the four selection paths of 
SS (sires to breed sons), SD (sires to breed daughters), DS 
(dams to breed sons), and DD (dams to breed daughters). 
Assuming that the number and selection intensity of parents 
remained the same over the period of usage (several years) 
enabled us to regard generations as discrete generations. The 
effect on decreasing the rate of inbreeding was greater when 
the number of parents was increased than when the selec-
tion intensity was decreased, and both number of parents 
and the selection intensity in four-path selection emerged as 
major factors affecting the rate of inbreeding. In general, both 
genetic gain and ΔF tended to increase in line with any in-
crease in selection intensity. Therefore, increasing the number 
of parents is one option for offsetting the increase in ΔF due 
to an increase in selection intensity. Especially, increasing 
the number of male parents would be effective, since the ac-
counting percentage for the increase in ΔF from male parents 
is greater than that from female parents. When applied without 
correction for deviation of family size from Poisson distribu-
tions, the formula we developed here would be highly useful 
as a practical method for predicting the approximate rate of 
inbreeding (∆F) in populations where selection is performed 
according to four-path programs.
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