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Abstract

We propose a Bayesian adaptive design for early phase drug combination cancer trials 

incorporating ordinal grade of toxicities. Parametric models are used to describe the relationship 

between the dose combinations and the probabilities of the ordinal toxicities under the 

proportional odds assumption. Trial design proceeds by treating cohorts of two patients 

simultaneously receiving different dose combinations. Specifically, at each stage of the trial, we 

seek the dose of one agent by minimizing the Bayes risk with respect to a loss function given the 

current dose of the other agent. We consider two types of loss functions corresponding to the 

Continual Reassessment Method (CRM) and Escalation with Overdose Control (EWOC). At the 

end of the trial, we estimate the MTD curve as a function of Bayes estimates of the model 

parameters. We evaluate design operating characteristics in terms of safety of the trial and percent 

of dose recommendation at dose combination neighborhoods around the true MTD by comparing 

this design to the one that uses a binary indicator of DLT. The methodology is further adapted to 

the case of a pre-specified discrete set of dose combinations.
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1. Introduction

The primary goal of early phase cancer clinical trials, also known as phase I trials, is to 

estimate the maximum tolerated dose (MTD) of a new drug or combination of drugs for use 

in larger randomized phase II/III trials. Dose escalation is guided using dose limiting toxicity 

(DLT) outcomes from all previously treated patients. The definition of DLT is pre-specified 

in the clinical protocol and consists of serious adverse events usually classified as Grade 3 or 
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higher in the Common Toxicity Criteria for Adverse Events (CTCAE) [1]. The CTCAE is a 

systematic classification system proposed by the National Cancer Institute to guide 

investigators in identifying and evaluate the severity of adverse events varying from mild 

(Grade 1) to death (Grade 5). Even though such criteria have been extensively adopted 

allowing investigators to better understand the toxicity profiles of patients, classical cancer 

phase I designs dichotomize patients’ toxicity profiles based on the maximum grade of DLT 

as 0–2 (absence) and 3–5 (presence). Dichotomization is convenient for statistical modeling, 

but also entails loss of information and it should be avoided.

For single agent dose finding trials in cancer, many authors have investigated properties of 

statistical models and designs that account for all toxicity grades experienced by patients in 

the trial. Some of these use multivariable models for eliciting the different grades of 

toxicities as a function of dose [2–8] and others proposed summary indexes to account for 

different types of toxicities using weights defined by clinicians [9–16]. In general, there is a 

modest gain in safety and efficiency of the trial under some scenarios. In the first approach, 

we highlight the work of Van Meter et al. [6] that extended the Continual Reassessment 

Method (CRM) under the assumption of proportional odds considering toxicities Grades 0, 

1, 2, 3 and 4–5, and Tighiouart et al. [8] that proposed the proportional odds Escalation With 

Overdose Control (EWOC) modeling toxicities 0–1, 2 and 3–5. They both showed some 

benefits either in safety or precision of the MTD estimate when compared to the classical 

designs [17–21] for single agent trials under certain scenarios.

Even though dose-finding designs for two agents have been the focus of statistical research 

in the last two decades [22–34], the proposed approaches have ignored lower grades and 

different types of toxicities. Noteworthy, Tighiouart et al. [34] presented an early phase I 

EWOC design that estimates an MTD curve lying anywhere within the Cartesian plane 

defined by the range of the continuous doses of two synergistic agents, and Diniz et al. [35] 

investigated properties of this approach using the CRM criterion. In this paper, we extend 

the work of Tighiouart et al. [8] by accounting for lower grades of toxicities in the designs 

described in [34,35]. We assess the benefits of this added level of model complexity by 

comparing safety of the trial and efficiency of the estimate of the MTD to the ones obtained 

using binary DLT. We note that Tighiouart et al. [8] showed a desirable ethical property that 

controls the magnitude of the escalation for the continuous dose level in the absence of DLT. 

More precisely, they showed that the escalation is lower for a patient who exhibits a Grade 2 

DLT than the size of this dose level had this patient experienced a 0–1 grade DLT. This 

property does not hold in the current setting partly due to the overlapping nature of DLTs in 

cancer treatment with drug combinations. Nevertheless, we show that a similar characteristic 

of including lower grades of toxicities result in a more cautious dose escalation when the 

true MTD is far from the minimum dose combination without loss of efficiency, and hence 

results in lower DLTs relative to the binary DLT model.

The manuscript is organized as follows. Section 2 describes the proportional odds model for 

two drugs and trial designs using EWOC and CRM schemes. We present the simulation 

scenarios and design operating characteristics for the ordinal and binary toxicity models in 

Section 3. We illustrate how the method is adapted to a set of discrete dose levels in Section 

4 and conclude with a discussion and final recommendations in Section 5.
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2. Method

2.1. Dose-Toxicity Model

Let G = 0, 1,...,4 be the maximum toxicity grade experienced by a patient during one cycle 

of therapy, and define DLT as a maximum of Grade 3 or 4 toxicity. Let Z be the aggregated 

maximum grade of toxicity defined by

Z =
0 if G = 0, 1
1 if G = 2
2 if G = 3, 4.

(1)

Cytotoxic agents are denoted by A with doses x ∈ [Xmin, Xmax] and B with doses y ∈ [Ymin, 

Ymax]. We consider the family of dose-toxicity models

P (Z ≥ z ∣ x, y) = F αz + βx + γy + ηxy for z = 1, 2, (2)

where F(.) is a known cumulative distribution function (c.d.f.); α1 is the probability of G ≥ 2 

and α2 is the probability of G ≥ 3, 4 at the minimum dose combination; β, γ are the effects 

of drugs A and B, respectively; and η quantifies the extent of synergy between the two 

drugs. The doses x and y are standardized to be in the interval [0, 1] so that (0, 0) 

corresponds to the minimum dose combination available in the trial (Xmin, Ymin). We 

assume that the probability of DLT increases with the dose of any one of the agents when the 

other one is held constant. A necessary and sufficient condition for this to hold is to assume 

that β > 0, γ > 0, and η > 0. In addition, α2 ≤ α1 since F is non-decreasing. The MTD is 

defined as any dose combination (x*, y*) that satisfies

P Z = 2 ∣ x*, y* = θ, (3)

where θ is the target probability of DLT and is pre-specified by the clinicians. This target 

depends on the severity and clinical manageability of DLT; it is usually set relatively high 

when the DLT is a transient, correctable or nonfatal condition and low when it is fatal or life 

threatening.

Then, a set C of dose combinations can be characterized as MTD from (2) and (3),

C = x*, y* :y* = F−1(θ) − α2 − βx*
γ + ηx* . (4)

We further reparameterize Model (2) in terms of parameters that are easily understood by 

clinicians: ρ200 is the probability of Grade 3 or 4 toxicity (DLT) at the minimum dose 

combination (0, 0), ρ100 is the probability of Grade 2 or more toxicity at dose (0, 0), ρ210 is 

the probability of Grade 3 or 4 toxicity (DLT) at dose (1, 0) and ρ201 is the probability of 

Grade 3 or 4 toxicity (DLT) at dose (0, 1). Other reparametrizations are also possible. The 

restrictions β, γ > 0 and α2 ≤ α1 translate into ρ200 < min{ρ210, ρ201} and ρ200 ≤ ρ100, 

respectively. It then follows that
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α1 = F−1 ρ100
α2 = F−1 ρ200
β = F−1 ρ210 − F−1 ρ200
γ = F−1 ρ201 − F−1 ρ200 .

(5)

Similarly, the MTD set can be rewritten as

C = x*, y* :y* =
F−1(θ) − F−1 ρ200 − F−1 ρ210 − F−1 ρ200 x*

F−1 ρ201 − F−1 ρ200 + ηx*
. (6)

2.2. Prior and Posterior Distributions

To easily elicit prior information from single agent phase I trials, we assume that ρ100, ρ210, 

ρ201 are independent a priori with ρ100 ~ Beta(a100, b100), ρ210 ~ Beta(a210, b210), ρ201 ~ 

Beta(a201, b201), and given {ρ210, ρ201, ρ100}, ρ200/min{ρ210, ρ201, ρ100} ~ Beta(a200, b200). 

The prior distribution for the interaction parameter η is given by a Gamma distribution with 

mean E(η) = a/b and variance Var(η) = a/b2.

Let Dn = xi, yi, zi , i = 1, …, n  be the data after enrolling n patients in the trial. Using Bayes 

rule, the posterior distribution of the model parameters is proportional to the product of the 

likelihood and prior distribution

π ρ210, ρ201, ρ200, ρ100, η ∣ Dn

∝ ∏
i = 1

n
H1 ρ210, ρ201, ρ200, ρ100, η; xi, yi

I Zi = 0

× H1 ρ210, ρ201, ρ200, ρ100, η; xi, yi − H2 ρ210, ρ201, ρ200, η; xi, yi
I Zi = 1

× H2 ρ210, ρ201, ρ200, η; xi, yi
I Zi = 2 π ρ210, ρ201, ρ200, ρ100, η ,

(7)

where

H1 ρ210, ρ201, ρ200, ρ100, η; x, y
= 1 − F F−1 ρ100 + F−1 ρ210 − F−1 ρ200 x + F−1 ρ201 − F−1 ρ200 y + ηxy ,

H2 ρ210, ρ201, ρ200, η; x, y
= 1 − F F−1 ρ200 + F−1 ρ210 − F−1 ρ200 x + F−1 ρ201 − F−1 ρ200 y + ηxy .

We used JAGS [36] to sample from the posterior distribution of these parameters and 

estimate design operating characteristics of the designs described below.

2.3. Trial Design

The dose allocation algorithm proceeds by treating cohorts of two patients simultaneously. 

The dose combinations assigned to newly enrolled patients are based on EWOC scheme and 

the CRM principle proposed by the authors of [34,35], respectively.
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1. Each patient in the first cohort of two patients receives the same dose 

combination (x1, y1) = (x2, y2) = (0, 0).

2. In the ith cohort of two patients:

(a) If i is even, then patient 2i − 1 receives dose (x2i−1, y2i−3) and patient 2i 
receives dose (x2i−2, y2i), where

x2i − 1 = πΓA ∣ B = y2i − 3
−1 α ∣ Di − 1

y2i = πΓB ∣ A = x2i − 2
−1 α ∣ Di − 1

for EWOC criterion.

x2i − 1 = argmin
x

|H ρ200, ρ201, ρ210, ρ100, η; x, y2i − 3 − θ|

y2i = argmin
y

|H ρ200, ρ201, ρ210, ρ100, η; x2i − 2, y − θ|

for CRM principle.

(b) If i is odd, then patient 2i − 1 receives dose (x2i−3, y2i−1) and patient 2i 
receives dose (x2i, y2i−2), where

x2i = πΓA ∣ B = y2i − 2
−1 α ∣ Di − 1

y2i − 1 = πΓB ∣ A = y2i − 3
−1 α ∣ Di − 1

for EWOC criterion.

x2i = argmin
r

|H ρ200, ρ201, ρ210, ρ100, η; x, y2i − θ|

y2i − 1 = argmin
y

|H ρ200, ρ201, ρ210, ρ100, η; x2i − 1, y − θ|

for CRM principle.

3. Repeat Step 2 until n patients are enrolled to the trial subject to the following 

stopping rule.

Here, πΓA ∣ B = y
−1 ( ⋅ ∣ D) denotes the inverse c.d.f of the posterior distribution of the MTD of 

drug A given the level of drug B = y and ρq, η, q ∈ 200, 201, 210, 100  are the posterior 

medians.

Stopping rule: We stop enrollment to the trial if 

P P (DLT ∣ (x, y) = (0, 0)) > θ + δ1 ∣ data > δ2, i.e. if the posterior probability that the 

probability of DLT at the minimum available dose combination in the trial exceeds the target 

probability of DLT is high. The parameters δ1 and δ2 are design parameters chosen to 

achieve desirable model operating characteristics.
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At the end of the trial, we estimate the MTD curve using Bayes estimates of the parameters 

defining this curve as

C = x*, y* :y* =
F−1(θ) − F−1 ρ200 − F−1 ρ210 − F−1 ρ200 x*

F−1 ρ201 − F−1 ρ200 + ηx*
, (8)

where ρ200, ρ100, ρ210, ρ201, η are the posterior medians given the data Dn.

When using EWOC criteria, we seek a dose such that the posterior probability that the MTD 

exceeds this dose is bounded by a feasibility bound α. For example, when i is even, the dose 

of drug A, x★, assigned to patient (2i − 1) is the maximum dose level of A such that the 

posterior probability that the MTD of A given that the level of drug B is y2i−3 exceeds x★ is 

bounded by α, i.e., x⋆ = x2i − 1 = πΓA ∣ B = y2i − 3
−1 α ∣ Di − 1 . On the other hand, CRM 

principle consists of estimating the model parameters by the median of the posterior 

distribution, and then assigning the dose x★ that minimizes the distance between the 

estimated probability of DLT and the target risk of DLT θ, 

|H ρ200, ρ201, ρ210, ρ100, η; x⋆, y2i − 3 − θ| .

3. Simulations

3.1. Set-Up and Scenarios

We study the performance of these designs in six pairs of scenarios as determined by the true 

parameter values (ρ100, ρ200, ρ210, ρ201, η). In all cases, the target probability of DLT is 

fixed at θ = 0.33 and the trial sample size is n = 42 patients. The feasibility bound α is set to 

0.25 at the start of the trial and increases in increments of 0.05 each time a cohort of two 

patients are enrolled to a maximum value of 0.5. We investigate the influence of the 

percentage of Grade 2, defined as P(Z = 2) = ρ100 − ρ200, considering two possible values 

for ρ100 = 0.5, 0.9 for each pair of scenarios. Hence, each pair will have the same true MTD 

curve (see Figure 1). Scenario (1) (ρ100, 10−7, 3 × 10−6, 3 × 10−6, 10) shows two drugs that 

are very safe within the range of available doses in the trial where the true MTD curve lies 

near the upper-right corner of the x–y plane. In Scenario (2) (ρ100, 0.01, 0.9, 0.2, 20), the 

MTD of Agent A when Agent B is at its minimum dose level is within the range of doses of 

Agent A, but the MTD of Agent B when Agent A is at its minimum dose level is above the 

maximum dose level of Agent B. For Scenario (3) (ρ100, 0.001, 0.01, 0.6, 20), Drug A is 

very safe, but the MTD of Agent B when Drug A is at its minimum dose level is just above 

0.8. Scenario (4) (ρ100, 0.01, 0.9, 0.2, 100) is similar to Scenario (2) except that the two 

drugs are highly synergistic. Scenario (5) (ρ100, 0.2, 0.9, 0.9, 100) is a case where the middle 

of true MTD curve is close to the initial dose (0, 0) with high probability of Grade 2 toxicity. 

Finally, Scenario (6) (ρ100, 0.2, 0.57, 0.57, 20) is similar to Scenario (5) except that the 

interaction between the two drugs is much smaller.
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3.2. Operating Characteristics

We evaluate the performance of the two designs using EWOC and CRM criteria by 

assessing the safety of the trial designs as well as the efficiency of the estimate of the MTD 

curve based on 3000 simulated trials.

3.2.1. Safety—We assess trial safety by reporting the average percent of Grade 2 and 3 

DLT across all 3000 trials and the percent of trials that have a DLT rate exceeding θ + δ, for 

δ = 0.1. The threshold θ + 0.1 is used as an indicator of an excessive DLT rate.

3.2.2. Efficiency—We present an estimate of the MTD curve using the average posterior 

medians of the model parameters. Under the reparameterization, the estimate is

C = x*, y* :y* =
F−1(θ) − F−1 ρ200 − F−1 ρ210 − F−1 ρ200 x*

F−1 ρ201 − F−1 ρ200 + ηx*
, (9)

where F(.) is the logistic function and ρ200, ρ201, ρ210, η are the average posterior medians of 

the parameters ρ200, ρ201, ρ210, η from all m = 3000 trial replicates.

The MTD curves lie in a two-dimensional plan, therefore closeness between two curves can 

be measured based on several approaches. We calculate two measures of efficiency 

introduced by Tighiouart et al. [32,34,37] and applied to real trials in [38,39]. The first one is 

the pointwise average relative minimum distance from the true MTD curve to the estimated 

MTD curve. Let Ci be the estimated MTD curve and Ctrue be the true MTD curve for i = 

1,...,m. For every point (x, y) ∈ Ctrue, let

d(x, y)
(i) = sign(y′ − y) × min{(x*, y*): (x*, y*) ∈ Ci}((x − x*)2 + (y − y*)2)1/2, (10)

where y′ is such that (x, y′) ∈ Ci. This is the minimum relative distance of the point (x, y) 

on the true MTD curve to the estimated MTD curve Ci. If the point (x, y) is below Ci, then 

d(x, y)
(i)  is positive. Otherwise, it is negative. Let

d(x, y) = 1
m ∑

i = 1

m
d(x, y)

(i) . (11)

The distance (11) is the pointwise average relative minimum distance from the true MTD 

curve to the estimated MTD curve and can be interpreted as the pointwise average bias in 

estimating the MTD.

As the magnitude of bias is relative to the true MTD value, we also quantify the percentage 

of trials for which the minimum distance of the point (x, y) from the true MTD curve to the 

estimated MTD curve Ci is no more than (100 × p)% of the true MTD,
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P(x, y) = 1
m ∑

i = 1

m
I |d(x, y)

(i) | ≤ pΔ(x, y) , (12)

where Δ(x, y) is the Euclidian distance between the minimum dose combination (0, 0) and 

the point (x, y) on the true MTD curve and 0 < p < 1.

The geometric idea is to draw a circle with center (x, y) on the true MTD curve and radius 

pΔ(x, y), and then the percent of trials with the MTD curve estimate Ci within this circle is 

given by P(x, y). Therefore, the statistic (12) measures the percentage of trials satisfying this 

condition for a given 100p% tolerance.

3.3. Results

Summary statistics for evaluating trial safety are presented in Table 1. In Scenarios (2)–(6), 

the average percent of DLTs are similar between the binary model and ordinal model using 

both EWOC and CRM criteria. Under Scenario (1), the binary model results in a higher 

average percentage of DLTs when compared with the ordinal model for both criteria. A 

similar trend was observed for single agent dose finding trials by Tighiouart et al. [8] when 

the true MTD is close to the maximum dose and ρ100 is high. This can be explained by the 

fact that when the MTD is very far from the minimum dose, the ordinal dose–toxicity based 

model design tends to have a more cautious dose escalation towards the MTD relative to the 

binary model. While this fact was proven for single agent trials by Tighiouart et al. [8], it is 

not trivial for dose combination trials since these models do not distinguish between DLT 

attribution to one or both drugs. It may be worth studying the performance of this ordinal 

model in settings where an unknown fraction of DLTs can be attributed to one or both drugs 

(see [40]). In all cases, the average percent of DLTs varies between 10.48% and 38.98%, 

indicating that the trial is safe. This rate is above the target θ under Scenario (5) due to the 

closeness of the MTD curve to the minimum dose combination (0, 0). These findings are 

also consistent with the percent of trials with an excessive rate of DLTs. This rate is less than 

5% in all scenarios except for Scenario (5), where it can reach 13% using the ordinal model 

and the CRM criteria. We conclude that in general, the trial design is safe except when the 

true MTD is close to the initial dose.

Figure 1 shows the plots of the true and estimated MTD curves obtained using (9). In 

general, the estimated MTD curves using the binary and ordinal models and EWOC and 

CRM criteria are close to the true MTD curve, except perhaps near the edges of the true 

MTD curve. The extent of these differences can be measured by the pointwise average bias 

shown in Figure 2. Scenarios (2), (3) and (6) show that the pointwise average absolute bias is 

highest at the edges of the MTD curve and Scenarios (1), (4) and (5) have the highest bias at 

one extremity of the true MTD curve. In all cases, the extent of differences in pointwise 

average bias between the binary and ordinal model using both dose estimation criteria are 

less than 0.04, which is practically not significant as this corresponds to less than 4% of the 

dose range of either agent.

The pointwise percent selection for tolerances p = 0.1 and p = 0.2 are shown in Figures 3 

and 4, respectively. In general, the ordinal and binary models are similar with respect to the 

Diniz et al. Page 8

Stats (Basel). Author manuscript; available in PMC 2020 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pointwise percent selection with the largest differences between 8% and 10% observed 

under Scenarios (2) and (4) near the edge or middle of the true MTD curve when the 

tolerance probability is p = 0.1. The extent of this difference diminishes with higher 

tolerance p = 0.2, see Figure 4. Moreover, the pointwise percent selection is 85% or more 

using both models and criteria under all 12 scenarios when p = 0.2. We also note that for 

each EWOC and CRM criteria, the ordinal model has a slightly higher pointwise percent 

selection relative to the binary model uniformly under Scenarios (4)–(6). Under Scenarios 

(2) and (3), no model performs uniformly better than the other. Finally, for each ordinal and 

binary models, CRM outperforms EWOC in the pointwise percent recommendation 

uniformly across all scenarios with the largest difference of 20% achieved under Scenario 

(2) using the ordinal model with p = 0.1.

The simulation results based on all 12 scenarios favor the use of CRM relative to EWOC to 

improve the precision of the estimate of the MTD. Given the similarities in the average 

percent of DLTs and safety of the trial between all models under Scenarios (2)–(6), and the 

fact that the ordinal model results in much less average percent of DLTs relative to the 

binary model when the true MTD curve is far away from the initial dose (Scenario (1)) while 

providing the same level of precision of the estimate of the MTD (Figures 3 and 4), we 

recommend the use of the ordinal model with CRM criteria for estimating the next dose 

combinations when designing prospective trials.

4. Discrete Approach

For a discrete set of doses, we follow the approach presented by Tighiouart [34]. Let (x1,

…,xr) and (y1,…,ys) be the doses of Agents A and B, respectively, with 

Xmin, A = x1, Y min, B = y1 and Xmax, A = xr, Y max, B = ys such that the doses are standardized 

to be in the interval [0, 1]. Trial design proceeds using the algorithm described in Section 2.3 

where the continuous doses recommended in Steps 2 and 3 are rounded to the nearest 

discrete dose levels. At the end of the trial, a discrete set Γ of dose combinations satisfying 

(i) and (ii) below is selected as MTDs: Let Ci be the estimated MTD curve at the end of the 

trial and denote by d((xj, yk), Ci), the Euclidean distance between the dose combination (xj, 

yk) and the estimated MTD curve Ci.

(i) Let

ΓA = ∪
t = 1

r
xt, y :y = argmin

yj
d xt, yj , Ci ,

ΓB = ∪
t = 1

s
x, yt :x = argmin

xj
d xj, yt , Ci , and Γ0 = ΓA ∩ ΓB .

(ii) Let

Γ = Γ0\ x*, y* :P |P DLT ∣ x*, y* − θ| > δ1 ∣ Dn > δ2 .
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where A\B = A ∩ BC . In (i), dose combinations closest to the MTD are selected by first 

minimizing the distances across the levels of Drug A, and then across the levels of Drug B. 

In (ii), we exclude MTDs from (i) that are likely to be either too toxic or too low. The design 

parameter δ1 is selected after consultation with a clinician and the parameter δ2 is selected 

after exploring a large number of scenarios for a given prospective trial.

4.1. Operating Characteristics

The performance of the method is evaluated by calculating the percent of MTDs selection 

introduced by Tighiouart et al. [34] estimating the percentage that a prospective trial will 

recommend a set of dose combinations that are all MTDs,

PS = 100 × 1
m ∑

i = 1

m
I Γi ⊂ Γδ , (13)

where Γδ = xi, yj : |P DLT ∣ xi, yj , z − θ| < δ  is the set of true MTDs such that the 

threshold parameter δ is fixed by a clinician. In the same way, the percentage of selection of 

at least K dose combinations that are MTDs discussed in [35] is

PSK = 100 × 1
m ∑

i = 1

m
I |Γi ∩ Γδ| ≥ K , (14)

In addition, the weighted average proportion of the recommended set of dose combinations 

which are MTDs is given by

SΓδ =
∑i = 1

m |Γi ∩ Γδ|
∑i = 1

m |Γi|
. (15)

The performance of the method is evaluated by calculating the percent of MTDs selection 

introduced by Tighiouart et al. [34] estimating the percentage that a prospective trial will 

recommend a set of dose combinations that are all MTDs,

PS = 100 × 1
m ∑

i = 1

m
I Γi ⊂ Γδ , (16)

where Γδ = xi, yj : |P DLT ∣ xi, yj , z − θ| < δ  is the set of true MTDs such that the 

threshold parameter δ is fixed by a clinician. Following the same rationale, we also consider 

the percentage of selection of at least K dose combinations that are MTDs discussed in [35] 

is

PSK = 100 × 1
m ∑

i = 1

m
I |Γi ∩ Γδ| ≥ K , (17)
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and the weighted average proportion of the recommended set of dose combinations which 

are MTDs is given by

SΓδ =
∑i = 1

m |Γi ∩ Γδ|
∑i = 1

m |Γi|
. (18)

4.2. Illustration

We studied the two scenarios shown in Table 2 where each agent has five dose levels and 

target probability of DLT equal to θ = 0.33. The first scenario has low dose combinations as 

MTDs, while the second scenario has high dose combinations as MTDs. We simulated m = 

3000 trials using the sample size of n = 42 patients and the same vague priors discussed in 

Section 2.

Table 3 shows the operating characteristics for safety and efficiency. The percentage of 

Grade 2, the average DLT rate and the percentage of excessive DLT are quite similar 

between models and criteria. On the other hand, the percentage that a prospective trial will 

recommend a set of dose combinations that are all MTDs (PS) and the percentage of 

selection of at least K dose combinations that are MTDs (S-K) favors ordinal models in 

comparison to the binary ones for both scenarios and models. Finally, the weighted average 

proportion of the recommended set of dose combinations which are MTDs (AV) have 

negligible differences between models. Similar to the continuous case discussed above, we 

note the superiority of CRM based designs relative to EWOC in recommending the MTD 

under Scenario 2.

5. Concluding Remarks

Clinical oncologists often advocate for a more comprehensive use of the CTCAE to 

characterize the toxicity profiles of cancer patients enrolled in clinical trials. Researchers 

have used various summary scores of toxicities to better ascertain patients’ adverse events 

burden to different cancer treatments with varying degree of success (see, e.g., [41] for the 

maximum-grade, [42] for the toxicity burden based on average and duration of low-grade 

toxicities, and [43,44] for the toxicity index). However, implementation of similar summary 

scores in dose finding early phase cancer trials is more challenging due to the sequential 

nature of these designs and the small sample size. In this manuscript, we extend the single 

agent trial design that accounts for lower grade toxicities [8] to drug combination trials using 

two different estimation criteria for dose allocation, EWOC and CRM. A proportional odds 

model for describing the relationship between dose combinations and the risk of ordinal 

toxicities was used and compared with models that use binary indicators of DLT. Extensive 

simulations under different practical scenarios for the location of the true MTD curve and 

true fraction of Grade 2 DLTs showed that, in most cases, the ordinal and binary models 

have similar safety profiles, regardless of the criteria used to estimate the next dose. We also 

observed that the ordinal model has a slightly higher pointwise percent selection relative to 

the binary model uniformly under half the scenarios and that, for each model, CRM 

outperforms EWOC with respect to pointwise percent recommendation uniformly across all 

Diniz et al. Page 11

Stats (Basel). Author manuscript; available in PMC 2020 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scenarios. Therefore, the ordinal model using CRM criteria for dose estimation should be 

used to design prospective trials since this model results in fewer DLTs relative to the binary 

case when the MTD is far from the minimum dose combination, on the average, and it 

maintains its efficiency in estimating the MTD.

For single agent dose finding trials using EWOC with ordinal grade of toxicity, Tighiouart et 

al. [8] proved that if the maximum grade of toxicity experienced by patient (k − 1) is Grade 

2, then the dose allocated to patient k is lower than the dose that would have been given to 

patient k had the maximum grade of toxicity experienced by patient (k − 1) been grade 0 or 

1. This is an important property because it is not ethical to escalate the dose for the next 

patient by the same amount as the one had the current patient experienced a maximum of 

grade 0 or 1 toxicity. This property does not hold under model (2) and trial design described 

in Section 2.3. This is partly due to the lack of DLT attribution to either one or both drugs. In 

model (2), a DLT event is attributed to either drug A, drug B, or both and hence, dose 

escalation or de-escalation cannot be attributed to DLTs caused by either A or B. This is not 

an uncommon problem in cancer treatment since most DLTs are overlapping. However, a 

similar property was noted when the true MTD curve is far away from the minimum dose 

combination (Scenario 1), where a more cautious dose escalation towards the MTD was 

observed resulting in fewer patients exhibiting DLTs relative to binary models of DLT, on 

the average. For some class of drugs, clinicians are able to attribute certain toxicities to a 

particular drug under investigation. We plan to extend the work of Jimenez et al. [40] that 

models an unknown fraction of DLT attribution to account for lower dose toxicities and 

further explore this ethical property.
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Figure 1. 
True and estimated MTD curves under Scenarios (1)–(6).
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Figure 2. 
Pointwise average relative minimum distance from the true MTD curve to the estimated 

MTD curve under Scenarios (1)–(6).
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Figure 3. 
Pointwise percent of MTD recommendation for p = 0.1 under Scenarios (1)–(6).
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Figure 4. 
Pointwise percent of MTD recommendation for p = 0.2 under Scenarios (1)–(6).

Diniz et al. Page 18

Stats (Basel). Author manuscript; available in PMC 2020 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Diniz et al. Page 19

Table 1.

Average DLT rate and % trials: DLT rate > θ + 0.10 under Scenarios (1)–(6).

Scenario Design
Average % Grade 2 (Z = 2) Average % DLTs (Z = 3) (% Trials: DLT Rate (Z = 3) > 0.43)

Binary Ordinal Binary Ordinal

1a
EWOC 76.12 81.41 16.31 (0.0) 10.86 (0.0)

CRM 76.03 81.32 16.47 (0.0) 11.14 (0.0)

1b
EWOC 78.47 83.33 16.35 (0.0) 11.48 (0.0)

CRM 78.76 84.34 16.16 (0.0) 10.48 (0.0)

2a
EWOC 61.22 61.77 30.31 (0.0) 29.37 (0.0)

CRM 59.36 60.39 32.33 (0.23) 31.26 (0.47)

2b
EWOC 64.34 65.23 30.44 (0.07) 29.45 (0.40)

CRM 62.32 67.80 32.45 (0.43) 31.67 (0.70)

3a
EWOC 67.65 69.63 25.29 (0.0) 22.96 (0.0)

CRM 65.29 67.46 27.36 (0.0) 25.53 (0.0)

3b
EWOC 69.67 71.48 25.25 (0.0) 23.30 (0.0)

CRM 67.40 69.27 27.53 (0.0) 25.64 (0.0)

4a
EWOC 58.98 58.47 32.64 (0.07) 33.06 (1.10)

CRM 57.74 57.79 33.95 (0.20) 34.11 (1.57)

4b
EWOC 61.90 61.51 32.90 (0.03) 33.17 (0.97)

CRM 60.73 60.37 34.06 (0.20) 34.45 (1.57)

5a
EWOC 49.11 48.44 36.73 (2.63) 37.66 (6.30)

CRM 48.38 47.73 37.00 (2.17) 38.55 (10.20)

5b
EWOC 57.39 55.96 36.71 (2.33) 38.14 (8.97)

CRM 57.06 55.10 36.96 (2.13) 38.98 (13.40)

6a
EWOC 52.04 52.19 32.83 (1.00) 32.67 (1.47)

CRM 50.45 50.98 34.98 (2.77) 34.65 (3.50)

6b
EWOC 61.04 61.17 32.85 (1.20) 32.70 (2.00)

CRM 59.11 59.32 34.91 (2.20) 34.63 (4.40)
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Table 2.

A selected dose limiting toxicity scenario with θ = 0.33 for Z = 1, 2 considering discrete dose combinations. 

True MTDs are shown in bold.

Scenario 01

Dose Level
Z = 1 Z = 2

1 2 3 4 5 1 2 3 4 5

5 0.50 0.44 0.38 0.31 0.24 0.45 0.53 0.60 0.68 0.75

4 0.53 0.49 0.43 0.35 0.26 0.40 0.46 0.53 0.63 0.70

3 0.58 0.57 0.51 0.43 0.36 0.33 0.36 0.44 0.53 0.59

2 0.65 0.57 0.55 0.47 0.44 0.20 0.33 0.38 0.48 0.53

1 0.68 0.65 0.58 0.53 0.48 0.15 0.20 0.33 0.40 0.47

Scenario 02

Dose Level
Z = 1 Z = 2

1 2 3 4 5 1 2 3 4 5

5 0.36 0.44 0.48 0.41 0.34 0.28 0.35 0.42 0.52 0.60

4 0.30 0.39 0.43 0.45 0.38 0.22 0.23 0.33 0.43 0.45

3 0.24 0.27 0.31 0.43 0.49 0.17 0.20 0.21 0.33 0.39

2 0.15 0.27 0.28 0.37 0.44 0.11 0.14 0.19 0.25 0.30

1 0.10 0.25 0.28 0.30 0.38 0.08 0.13 0.15 0.21 0.27
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Table 3.

Operating characteristics summarizing trial efficiency and safety for CRM and EWOC using non-informative 

priors.

Scenario 01

Criterion Model PS S-3 S-2 S-1 AV % Grade 2 Average DLT Rate (% Excessive DLT)

EWOC
Binary 57.2 9.5 29.0 64.6 84.8 54.33 31.91 (1.27)

Ordinal 71.7 26.7 54.7 92.2 82.4 54.81 31.59 (1.63)

CRM
Binary 54.2 8.2 25.3 62.7 82.4 53.74 32.92 (1.66)

Ordinal 70.5 26.2 61.9 91.6 81.1 53.86 32.87 (2.43)

Scenario 02

Criterion Model PS S-3 S-2 S-1 AV % Grade 2 Average DLT Rate (% Excessive DLT)

EWOC
Binary 26.6 3.3 12.5 40.1 64.2 30.14 21.11 (0.00)

Ordinal 38.4 38.2 58.4 84.9 63.9 30.95 21.30 (0.00)

CRM
Binary 29.2 3.7 12.6 40.0 68.8 31.57 23.24 (0.04)

Ordinal 44.7 49.9 69.4 90.5 71.3 32.77 23.33 (0.00)
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