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A B S T R A C T

In December 2019, a new coronavirus was identified in the Hubei province of central china and named SARS-
CoV-2. This new virus induces COVID-19, a severe respiratory disease with high death rate. A putative target to
interfere with the virus is the host transmembrane serine protease family member II (TMPRSS2). This enzyme is
critical for the entry of coronaviruses into human cells by cleaving and activating the spike protein (S) of SARS-
CoV-2. Repositioning approved, investigational and experimental drugs on the serine protease domain of
TMPRSS2 could thus be valuable. There is no experimental structure for TMPRSS2 but it is possible to develop
quality structural models for the serine protease domain using comparative modeling strategies as such domains
are highly structurally conserved. Beside the TMPRSS2 catalytic site, we predicted on our structural models a
main exosite that could be important for the binding of protein partners and/or substrates. To block the catalytic
site or the exosite of TMPRSS2 we used structure-based virtual screening computations and two different col-
lections of approved, investigational and experimental drugs. We propose a list of 156 molecules that could bind
to the catalytic site and 100 compounds that may interact with the exosite. These small molecules should now be
tested in vitro to gain novel insights over the roles of TMPRSS2 or as starting point for the development of second
generation analogs.

1. Introduction

A novel coronavirus (SARS-CoV-2) began spreading in December
2019 in the city of Wuhan, China, causing a major outbreak of fatal
pneumonia (Zhou et al., 2020). The Covid-19 disease mediated by
SARS-CoV-2 is currently detected in most countries around the world
and for the time being, there are no approved treatments or vaccines
available. Cell entry of coronaviruses relies on the binding of the viral
spike (S) proteins to cellular receptors after S protein cleavage by host
cell proteases. Like SARS-CoV, SARS-CoV-2 was also found to use the
receptor angiotensin-converting enzyme 2 (ACE2) for entry and the
serine protease TMPRSS2 for S protein activation (Hoffmann et al.,
2020). Interestingly, the S protein of SARS-CoV-2 was found to show a
higher cell membrane fusion capacity compared to SARS-CoV
(Xia et al., 2020), suggesting that this feature may contribute to the
higher contagion and transmissibility of SARS-CoV-2 compared to
SARS-CoV. Thereby, interfering between spike (S) and its receptor may

constitute a potential antiviral approach to target Covid-19 disease. The
importance of TMPRSS2 in these processes (Iwata-Yoshikawa et al.,
2019; Matsuyama et al., 2010; Simmons et al., 2004) suggests that this
protein could be a valuable therapeutic target to fight SARS-CoV-2 in-
fection.

TMPRSS2 is a protein that contains several domains: a LDL-receptor
like domain, a scavenger receptor cysteine-rich (SRCR) domain and a
serine protease domain. It is co-expressed in the lung tissue with the
virus receptor angiotensin converting enzyme 2 (Bertram et al., 2012;
Heurich et al., 2014). Two main serine protease inhibitors, camostat
and nafamostat, have been shown to block the catalytic site of
TMPRSS2, highlighting the importance of this human protein as ther-
apeutic target (Hoffmann et al., 2020; Kawase et al., 2012; Yamamoto
et al., 2016). Nafamostat inhibited S-mediated membrane fusion of
MERS-CoV while camostat appeared to inhibit the entry SARS-CoV or
SARS-CoV-2 into human lung cells. While most proteins from SARS-
CoV-2 are currently being screened, it would seem beneficial to also
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investigate proteins from the host. In the face of this major crisis, a
possible strategy is to reposition known drugs on viral or human protein
targets. Such compounds should be valuable as possible treatments or
to shed light over the mechanisms involved in the disease pathway.
Experimental screening (e.g., phenotypic screening) can obviously be
used, but the approach is time consuming and may miss some inter-
esting molecules that may not work on cells but that can still be in-
teresting starting points. In front of this emergency crisis, it is thus
reasonable to use in silico methods to try to identify putative binders
and inhibitors acting on a selected target or pathway. Indeed, compu-
tational drug repositioning can be of interest to find new indications to
approved, investigational or experimental drug compounds (Cereto-
Massague et al., 2015; Ekins et al., 2019; Farha and Brown, 2019;
Klimenko et al., 2016; Oprea and Overington, 2015; Sam and
Athri, 2019; Singh et al., 2020; Stumpfe and Bajorath, 2020;
Villoutreix et al., 2013). From the above comments, we here propose to
carry out in silico drug repositioning on the serine protease domain of
TMPRSS2.

Serine protease proteins are endopeptidases that cleave peptide
bonds and present with a serine residue in the active site that acts as a
nucleophile (Patel, 2017). This family of proteins has many functions in
the organism, from metabolism, digestion, blood coagulation, apop-
tosis, to immunity among others. Based on substrate specificity, serine
proteases are ramified into numerous types such as trypsin-like, chy-
motrypsin-like, etc. Serine proteases are characterized by an active site
that is generally made of three highly conserved amino acids, Ser, His
and Asp, that form the so-called catalytic triad and work by charge
relay network. TMPRSS2 belongs to the trypsin-like type, these en-
zymes usually cleave peptide bonds at Lys or Arg residues. This so-
called P1 residue fits into a negatively charged S1 pocket (Fig. 1). This
pocket displays a conserved Asp residue at the bottom and as such tends
to prefer a positively charged residue at the P1 position. Numerous
molecules (peptides, proteins, small molecules) can naturally block the
catalytic site or have been designed specifically to inhibit the catalytic
site of various serine proteases. Yet, it is also known that many serine
proteases possess exosites. For example, thrombin, a critical serine
protease of the blood coagulation system, has two major exosites,
exosite I and exosite II (Fig. 1). These exosites can bind negatively
charged molecules such as heparin (e.g., thrombin exosite II), protein
substrates, protein cofactors and natural or rationally designed in-
hibitors (e.g., thrombin exosite I) (Huntington, 2014). The binding of
molecules to these exosites can for instance inhibit the activity of the
enzyme through structural changes that propagate up to the catalytic
site (allosteric mechanism) or by blocking the binding of a protein
substrate (e.g., some act as protein-protein interaction inhibitors).
Finding molecules that do not block the active site but bind to exosite
regions can be valuable for many protein families for therapeutic in-
terventions or to probe molecular mechanisms involved in the health
and disease states (Nicola et al., 2020; Sperandio et al., 2008;
Villoutreix and Miteva, 2016). Thrombin is not the only one serine
protease to have exosites and we have for instance identified via
structure-based virtual screening and in vitro screening small molecules
that bind to an exosite of protein C, an anticoagulant serine protease.
These compounds interfere with the function of protein C by inhibiting
the binding of protein substrates (Sperandio et al., 2014). Considering
these observations, we believe that it is here important to not only in-
vestigate the catalytic site of TMPRSS2 but also potential exosite(s).

To carry out structure-based virtual drug repositioning over the
serine protease domain of TMPRSS2, we followed the workflow de-
picted in Fig. 2. As there is no experimental structure for TMPRSS2,
comparative modeling was used. The search for druggable pockets at
the surface of the 3D models obviously suggested to screen the catalytic
site and one main possibly important functional exosite. Two different
collections of drugs were used and two docking engines were applied on
the two selected 3D models of TMPRSS2. Structural analysis taking into
account various binding scores obtained with three different scoring

functions, consensus scoring results and other rescoring approaches
took place to select a list of putative catalytic site inhibitors and a list of
compounds that could bind to the exosite of the serine protease domain
of TMPRSS2 and perturb the catalytic site and/or interfere with sub-
strate binding or protein partner binding.

2. Methodology

2.1. Homology modeling

The sequence of human TMPRSS2 serine protease domain was ob-
tained from the UniProt database (ID: O15393, residue number 256-489)
(UniProt, 2019). Structural templates were searched using the SWISS-
MODEL server (Waterhouse et al., 2018) and using BLASTp
(Altschul et al., 1997). Multiple sequence to structure alignments were
carried out using the MAFFT-DASH server (Rozewicki et al., 2019). Var-
ious templates were investigated and BLASTp e-values were analyzed so as
to select the best structural template to build the TMPRSS2 model. After
appropriate investigations, we built the serine protease domain of
TMPRSS2 using as template the experimental structure of human plasma
kallikrein co-crystallized with a small molecule catalytic site inhibitor,
RCSB Protein Data Bank (PDB) (Burley et al., 2019) file ID: 6O1G
(Partridge et al., 2019) (resolution 2.2 Å). The SWISS-MODEL server
(Waterhouse et al., 2018) and the MODELLER v9.16 (Sali and
Blundell, 1993) package were used to build initial models. One model was
built with SWISS-MODEL and 100 models with MODELLER. All of the
models generated by MODELLER were assessed on the basis of the nor-
malized Discrete Optimized Protein Energy (z-DOPE) score. The top-

Fig. 1. Overview of a serine protease domain. Thrombin is used here as an
example of serine protease. The protein is shown as a cartoon diagram with a
view down the active site. The catalytic triad residues are shown and a con-
served Asp residue present at the bottom of the S1 pocket is also displayed for
orientation. A small molecule with a positively charged chemical group (the so-
called P1 residue) plugs into the S1 pocket. In thrombin, two major exosites are
known, exosites I and II. These regions can bind some specific molecules such as
heparin or be important for protein-protein interactions (e.g., interactions with
protein substrates, protein receptors and cofactors, designed or naturally oc-
curring inhibitors. The crystal structure of thrombin bound to heparin (octo-
saccharide chain interacting with residues of the exosite II) and with a small
peptide-like inhibitor is shown (PDB file 1XMN (Carter et al., 2005)). A small
nonadecapeptide (ribbon in red) belonging to the fight EGF domain of throm-
bomodulin (TM, an integral membrane protein expressed on the surface of
endothelial cells that serves as cofactor for thrombin allowing efficient cleavage
and activation of another serine protease named protein C) co-crystallized with
thrombin (PDB file 1HLT (Mathews et al., 1994)) was grafted onto the
thrombin-heparin structure to highlight the region of exosite I.
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ranked model showed a Z-DOPE score of -0.55, implying that > 70% of its
Cα atoms are within 3.5 Å of their accurate positions, thus indicating a
reliable predicted structure (Eramian et al., 2008). The protonation state of
the titratable residues of the two selected 3D models was investigated with
our PCE server (computation of pKa) (Miteva et al., 2005). The quality of
the 3D models was also investigated using the PSVS server
(Bhattacharya et al., 2008) that implements numerous packages including
PROCHECK (Laskowski et al., 1996). Secondary structures were computed
via the PDBsum service (Laskowski et al., 2018). Interactive structural
analysis was performed with using UCSF Chimera or ChimeraX
(Goddard et al., 2018; Pettersen et al., 2004), PyMOL Schrodinger and the
ICM-Browser (Molsoft LLC, San Diego, USA).

2.2. Approved, investigational and experimental drug collections

In order to identify advanced molecules acting on TMPRSS2, two
different collections of approved, investigational and experimental
drugs were used: Drugs-lib and AIEfd-Db. We have reported recently
the Drugs-lib collection (Lagarde et al., 2018). Briefly, about 22,000
approved and investigational drugs (and a few experimental com-
pounds) were obtained from DrugBank (Wishart et al., 2018), Drug-
Central (Ursu et al., 2019), SuperDrug2 (Siramshetty et al., 2018), and
ChEMBL (Mendez et al., 2019). Molecules were curated, duplicates
were removed and filtering was performed to reject compounds with
documented toxicophores using FAF-Drug4 (Lagorce et al., 2017). Only
molecules with less than 20 rotatable bonds and a MW below 1000 Da
were kept (i.e., docking accuracy decreases significantly when mole-
cules are too flexible/large, thus we kept molecules within the men-
tioned thresholds). Further, in Drugs-lib, only molecules that could be
found in chemical vendor catalogs were kept, leading to about 4600
unique molecules. The protonation state was predicted using Che-
mAxon (https://chemaxon.com/) and the 3D structures were built
using Corina (https://www.mn-am.com/).

For the present study, we generated a newer and different collection
of small molecules that we call AIEfd-Db (Approved, Investigational
and Experimental compounds for docking database) using the following
protocol: about 30,000 non-unique approved, experimental and

investigational compounds were downloaded from the last release of
DrugBank (Wishart et al., 2018), DrugCentral (Ursu et al., 2019), e-
Drug3d (Douguet, 2018), SuperDrug2 (Siramshetty et al., 2018),
SWEETLEAD (Novick et al., 2013) and ChEMBL (Mendez et al., 2019).
Some drugs accepted by the FDA at the end of 2019 and early 2020
were added manually. Some of the molecules present in these databases
have been withdrawn from the market but some compounds are now in
clinical trials and thus belong to the investigational set. In addition,
over 17,500 molecules were extracted from Wikipedia Chemical
Structures using utilities implemented in the DataWarrior package
(Sander et al., 2015). Molecules were also filtered using our FAF-Drug4
server (Lagorce et al., 2017) but only to remove compounds with in-
organic atoms. In this electronic library, drug compounds with putative
toxicophores were only flagged and kept in the collection. Also, by
contrast to the Drugs-lib collection, molecules that could not be found
in major commercial vendor catalogs (Lagarde et al., 2018) were kept
as they might be available from some companies not included in our
initial search. Molecules were curated, salts and duplicates were re-
moved as for the Drugs-lib collection. Manual inspection took place,
further guided by considering a drug-likeness score and several others
computed physicochemical properties such as logP. In addition, as for
the Drugs-lib collection only molecules that could be docked with a
reasonable chance of success were kept (e.g., molecules with less than
20 rotatable bonds and with a MW below 1000 Da). The selected mo-
lecules were generated in 3D and protonated using Surflex tools
(Jain et al., 2019).

2.3. Structure-based virtual screening

Prediction of likely binding pockets for small molecules was per-
formed with the P2Rank (Krivak and Hoksza, 2018), a machine
learning-based tool that proposes putative ligand binding sites using as
input a protein 3D structure. Analysis of the prediction together with
comparisons with other serine proteases indicated, obviously, that the
catalytic site was interesting to screen but that a major exosite, next to
the catalytic site, could also be valuable to investigate by docking. The
MTiOpenScreen web-server with the Drugs-lib collection

Fig. 2. Structure-based virtual screening workflow. The main approaches used to model the serine protease domain of TMPRSS2 and to screen the catalytic site and
main exosite are shown. Two different structural models were selected, two different collections of approved drugs, investigational and experimental compound
collections were used and the docking was performed using the MTiOpenScreen server and the standalone application Smina (see the method section).
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(Lagarde et al., 2019; Lagarde et al., 2018) was applied on the two
structural models of TMPRSS2 on the catalytic site and the main pre-
dicted exosite. This server implements AutoDock Vina for structure-
based virtual screening and scoring tool (Forli et al., 2016). Similar
computations were carried out with the standalone tool Smina
(Koes et al., 2013), a fork of AutoDock Vina, that implements different
types of scoring function including Vinardo, an approach that was
shown to outperform the Vina scoring function on several targets
(Quiroga and Villarreal, 2016). In this case, the AIEfd-Db collection
described above was used. For all computations, the three best energy
poses were kept initially. Rescoring of all the poses (the ones obtained
from the MTiOpenScreen server and from Smina on the two structural
models and two binding pockets) was carried out with Smina, using the
same protocol for all molecules, and applying the implemented Vina
(hybrid scoring function, empirical + knowledge-based) (Trott and
Olson, 2010) and Vinardo (physics-based) (Quiroga and
Villarreal, 2016) scoring functions so as to have all the molecules
evaluated with the same parameters. In addition, rescoring was also
carried out using the random forest scoring function (RF-Score-VS-v2)
(Wojcikowski et al., 2017) so as to gain additional information about
the molecules with yet a different type of scoring function (Ain et al.,
2015).

There are different solutions to perform consensus scoring (re-
viewed in (Feher, 2006)). With this approach, the predicted binding
affinities or scores of each compound for a binding pocket are predicted
by using more than one scoring method. In this study, a consensus
scoring approach using the ‘rank-by-rank’ method (Wang and
Wang, 2001) was applied to evaluate the hits obtained from high
throughput docking. All the candidates were ranked by the average
ranks predicted by all the scoring functions. This strategy uses relative
ranks rather than absolute binding affinities for ranking. Since the
compound docking scores obtained from Vina, Vinardo, and RF-Score-
VS programs are of different natures, data were normalized to bring all
the scores in a common scale ranging from 0 to 1 using Eqs. 1 and 2.

=

(For positive scores); Normalized Score
Docking Score Docking Score

Docking Score Docking Score
min

max min (1)

=

(For negative scores); Normalized Score

1 Docking Score Docking Score
Docking Score Docking Score

min

max min (2)

The hits were then ranked based on the normalized docking scores
from the three scoring functions (or two scoring functions). Finally, the
results were combined by averaging the rank of each molecule obtained
from the individual scoring function (Eq. 3). The compounds were
ranked from best to worst based on their consensus rank.

= + +Consensus Rank Vina Vinardo RF Score VS
3

rank rank rank

(3)

In addition to scores and consensus scoring, an interactive analysis
of the docked molecules was also performed to guide further the se-
lection of molecules. Indeed, scoring or ranking the compounds is a
weak point in structure-based virtual screening. This interactive ana-
lysis took into consideration ligand energy strains (i.e., ligands with
favorable binding scores but high internal energy due, for instance, to
unfavorable torsion angles). Also, some large molecules eventually
making meaningless contacts with the target can have a high score but
the removal of such compounds via computational means is difficult
(Zhu et al., 2013). Thus we analyzed the docked pose interactively
while looking not only at the scores but also at the scores divided by the
number of non-hydrogen atoms (Pan et al., 2003) or the scores divided
by the molecular complexity index as computed with DataWarrior
(Sander et al., 2015). There are many ways of computing diversity

(Mendez-Lucio and Medina-Franco, 2017), here, the approach cut
molecules in different types of fragments (each fragment has 7 bonds
unless the molecule has less than 14 bonds in total) and counts the
number of diverse fragments. This number tends to grow exponentially
with the size of the molecule. The fragment count was then normalized
by the method by taking the logarithm of the fragment count divided by
the size of the compound.

For compounds expected to bind in the exosite cavity, as this region
of the protease is more solvent-exposed than the catalytic site pocket
and that molecules binding to superficial pockets tend to have different
physico-chemical properties than compounds binding to deep cavity
(Trisciuzzi et al., 2019), we decided to flag the docked compounds
using a random forest classifier built using as a training a collection of
solvent-exposed (about 1,000 molecules) and buried (about 1,000
molecules) ligands (Trisciuzzi et al., 2019). These molecules were re-
ported previously and extracted from about 15,000 co-crystal structures
downloaded from the PDBbind database (Liu et al., 2015). The random
forest classifier reported previously (Trisciuzzi et al., 2019) was applied
to all the molecules docked into the TMPRSS2 exosite so as to annotate
the molecules as putative “solvent-friendly or superficial” binders (i.e.,
molecules that have molecular descriptors that make them belong to
the class of co-crystallized compounds that we found in more solvent-
exposed pockets).

3. Result

3.1. Homology modeling

The serine protease domain is well-conserved and considering a
sequence identity of 44% between the serine protease domain of
TMPRSS2 and the plasma kallikrein structural template, and the lack of
major insertion or deletion, accurate 3D models for TMPRSS2 can be
built (Suppl. Fig 1). We decided to keep two best models (Fig. 3a and
3b) with small variations in the orientation of some side chains or in the
backbone atoms of some loops in the catalytic site and exosite area so as
to have a small conformational ensemble for the subsequent structure-
based virtual screening computations. This is usually considered valu-
able as a way to indirectly take into account receptor flexibility during
docking computations. By contrast, using too many many receptor
structures (often above 3 structures) tend to increase the noise and limit
the chance of finding bioactive compounds (Rueda et al., 2010). The
overall stereochemical quality of the two selected models is seen in the
Ramachandran plot (suppl. Fig. 2) as most residues are in favorable and
allowed regions of the plot. In addition, the root-mean-square deviation
(rmsd) between the backbone atoms and the experimental template
kallikrein structure is very low (around 0. 39Å), indicating further that
the amino acids of TMPRSS2 can easily accommodate in the selected
template (e.g., the rmsd among experimental structures in the serine
protease family is often between 0.5 to 1 Å as the fold is very con-
served). The catalytic site region of TMPRSS2 is similar to the one of
plasma kallikrein while several aromatic residues appear solvent-ex-
posed in the area of the main exosite (see below). Such regions are
generally important for protein-protein interactions. Overall, the
structural analysis suggests that the two selected homology models are
of good quality and can be used for virtual screening studies.

3.2. Approved, investigational and experimental drug collections

To identify putative small molecules (approved drugs, FDA ap-
proved or approved in other countries than the US, investigational or
experimental compounds) we used two different collections. The Drugs-
lib collection has been described previously and contains about 4600
unique molecules (Lagarde et al., 2018). The protonation state and 3D
structures for this collection were predicted using ChemAxon and
Corina, respectively. The newly developed collection, AIEfd-Db, con-
tains about 10,000 unique compounds (7864 approved in some
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countries and investigational, 2073 experimental) and was protonated
and generated in 3D with the Surflex tools. As such, by using two dif-
ferent collections (although 4600 molecules are present in both col-
lections) prepared differently (3D generation and predicted protonation
states), we expect to identify more putative hit compounds as compared
to using only one input collection.

3.3. Structure-based virtual screening

While the catalytic site is an obvious zone to perform virtual

screening computations, we were also interested in screening other
regions of the protein. Predictions of alternative binding pockets was
performed with P2Rank. Only one key exosite was found, it is located
nearby the catalytic site, in a region that is often used in the serine
protease family to bind substrates, protein cofactors or inhibitors
(Fig. 3a). The volumes of the other predicted sites were small and most
likely unable to bind drug-like compounds (i.e., they might bind small
fragments). Docking computations were thus performed on the catalytic
site and on the key exosite of both TMPRSS2 models with MTiO-
penScreen (Drugs-lib collection) and Smina (AIEfd-Db collection). For

Fig. 3. TMPRSS2 serine protease homology models
Fig. 3a: Two selected models for TMPRSS2. Two best
models were selected and are shown with a view down the
catalytic site. They differ slightly in some loop regions and
in the orientation of some side chains in the catalytic site.
These two structures were selected to mimic receptor
flexibility during the structure-based screening step. Pre-
dictions of binding pockets were performed. A major
binding pocket was obviously found and corresponds to
the catalytic site. Another critical binding pocket was
predicted; it is here simply called exosite. This binding
pocket, likely involved in protein-protein interaction, is
somewhat similar to thrombin exosite I.
Fig. 3b: Molecular surface of the two structural models.
The molecular surface for the two selected homology
models of TMPRSS2 is shown with a view down the cat-
alytic site. The exosite is labeled and so are the catalytic
site and S1 binding pockets. Small differences in the loops
and in the orientation of some side chains are visible in the
areas of the exosite and of the catalytic pocket. This should
help to explore better the protein during the subsequent
docking computations.
Fig. 3c: Camostat docked into the catalytic site of
TMPRSS2. Camostat is a known inhibitor of TMPRSS2. It
was docked in a proper orientation with both MTiO-
penScreen (that performs docking with AutoDock Vina)
and Smina. The positively charged group of camostat
plugs into the S1 pocket and makes favorable interactions
with a conserved Asp residue located at the bottom of the
pocket.
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each compound, three best poses were initially kept.
In order to investigate our virtual screening results, it was inter-

esting to first analyze independently the scores obtained with the three
different scoring functions (Vina scores, Vinardo scores, RFScoreVs) as
well as the docked poses obtained with Autodock Vina and Smina on
the two models and on the catalytic site and exosite and then in-
vestigate consensus scoring and related strategies.

We started by analyzing the results obtained for the catalytic site.
For this region, it is easier to analyze the data as two serine protease
inhibitors (approved or investigational-experimental), nafamostat
(Yamamoto et al., 2016) and camostat (Hoffmann et al., 2020) are
known. These compounds can be used to assess the poses and the
predicted scores. Camostat mesylate (MW= 399, rotatable bonds = 9),
presently in clinical trials for Covid-19 treatment, is well-positioned in
the binding groove of our 3D models (Fig. 3c). The compound positively
charged group points toward the highly conserved negatively charged
Asp at the bottom of the S1 pocket and fill the pocket in a similar
manner as numerous small molecules co-crystallized in the catalytic site
of serine proteases. Yet, this molecule was ranked at position 1052
using Vina rescoring, at position 361 via rescoring with Vinardo and at
position 185 when using RF-Score-VS. Definitively, some larger mole-
cules that are absolutely not compatible with a binding into the
TMPRSS2 catalytic site were creating noise. Analysis of nafamostat
(MW = 349, rotatable bonds = 5) showed that it fits also very well in
the binding pocket (data not shown), it was ranked at position 130 after
rescoring with the Vina scoring function implemented in Smina, while
it was at position 53 with Vinardo and position 41 with RF-Score-VS.

Consensus scoring can in some situations help selecting likely
bioactive molecules but not always (Masters et al., 2020). For camostat
and nafamostat, consensus scoring improved the ranking but still, some
very unlikely catalytic site binders such as some approved or experi-
mental antibiotics (e.g., apramycin approved for animal use,
MW = 540, rotatable bonds = 6) had better scores and could be found
in the top 20-100 best compounds depending on the scoring functions
or on the consensus scoring results. Clearly, these scores for antibiotics
should be due to a scoring artifact. The ranking of these antibiotics or of
some other, relatively large, molecules that do not appear after struc-
tural analysis to be likely catalytic site binders such as tirilazad
(MW = 625, rotatable bonds = 6; an experimental molecule proposed
to be used to treat acute ischaemic stroke that worked in animal models
but failed in humans (van der Worp et al., 2002)) was problematic and
expected (i.e., scoring is a weak point in structure-based screening).
Indeed, most of these molecules were well-ranked by each independent
scoring function while their chemistry does not seem compatible with
the catalytic site. The strategy of dividing the binding scores by the
number of non-hydrogen atoms (Pan et al., 2003) to disqualify larger
compounds was not efficient in our study as this led to a large number
of small molecules, equally unlikely to bind to the catalytic site, ranked
among the top 200-300 scores. With this calibration of the scores (di-
viding by the number of non-hydrogen atoms), the known active
compounds, camostat and nafamostat, were then found at position
2399 and 571, respectively, using for instance Vinardo.

However, we observed that some highly unlikely catalytic site
binders were not much larger or much more flexible than some serine
protease inhibitors, but they had a high computed complexity index. It
is known that, for instance, antibiotic molecules are usually chemically
complex (Bottcher, 2016). As such, we divided our scores with the
molecular complexity index computed by DataWarrior and found that
most of the very complex structures, containing fused rings and several
sugar moieties, were then ranked toward the bottom of the list while
camostat was at position 106 and nafamostat at position 57 (e.g., with
Vinardo re-scoring). On the other hand, a molecule like tirilazad which
was initially ranked at position 47, for instance with Vinardo, was now
found at position 1403 while apramycin, found for instance at position
115 with Vinardo, was then at position 1529.

While we did not reject compounds based on this empirical

calibration of the scores, we used this information during our inter-
active analysis. Thus, all the docked poses on the two structural models
were interactively analyzed in the light of the various scores, consensus
scores and calibrated scores by the molecular complexity. Further, in-
ternal ligand energy values (e.g., that can reflect high energy strains in
the docked ligands and thus unlikely candidate) as computed in Smina
were also considered during the interactive analysis. The different in-
vestigations led to different lists of compounds that were all merged
into a single list, resulting in the selection of 156 compounds that could
be inhibitor of the catalytic site of TMPRSS2 (Suppl. Fig. 3 and sup-
plement Table 1). In this list, among the top 20 molecules, 8 molecules
are known to inhibit serine proteases.

For the exosite, we could not calibrate the poses or the scores as we
have no reference compounds. Yet, consideration of the scores, con-
sensus scoring, ligand internal energies, non-covalent interactions and
the results of our random forest classifier expected to flag superficial
binders versus compounds that should prefer to bind to buried pockets
helped in the rational selection of 100 compounds (Suppl Fig 4 and
Suppl Table 2). Some selected molecules were found after our structural
analysis to be protein-protein interaction inhibitors (e.g., venetoclax
(Yap et al., 2017)) or peptidomimetics (e.g., anamorelin (Currow et al.,
2018)) and were also flagged as putative superficial binder with our
random forest classifier.

4. Discussion

Numerous strategies can be used to carry out in silico drug re-
positioning (Cereto-Massague et al., 2015; Ekins et al., 2019; Farha and
Brown, 2019; Klimenko et al., 2016; Oprea and Overington, 2015;
Sam and Athri, 2019; Singh et al., 2020; Stumpfe and Bajorath, 2020;
Villoutreix et al., 2013). The small molecules identified via such ap-
proaches can be assessed experimentally and if valuable be used in
clinical trials or to probe physiopathological mechanisms or else used as
a starting point to design second generation analogs. With regard to
finding small molecules that could block the activity of TMPRSS2,
structure-based approaches appear to be well-suited. We used the
protocol summarized in Fig. 2 to search for putative approved, in-
vestigational or experimental drugs that could interfere with the ac-
tivity of TMPRSS2. Indeed, as the serine protease domain is highly
conserved in 3D, it was possible to build reasonable models for this
region of TMPRSS2 (Fig. 3; Suppl Fig. 1 and 2). On these predicted 3D
models, the catalytic site was found to be well-conserved as compared
to the plasma kallikrein X-ray template while we could predict a
binding pocket possibly involved in protein-protein interaction that we
name here exosite (Fig. 3). Such a region could have some similarities
with the exosite 1 of thrombin in terms of interaction with protein
partners and substrates. As the 3D models were built using a template
that had a co-crystallized ligand, the situation should be favorable for
docking computations in the catalytic site as it is known that homology
models can be used for screening and that better results are observed
when docking into holo structures as compared to docking in apo
conformations (Cavasotto, 2011; Phatak et al., 2009; Rognan, 2017).
Docking into well-defined binding pocket allows in general to identify
bioactive compounds (Willems et al., 2020) within the top 50-1000
scores, however, docking molecules into more solvent-exposed exosites,
is more challenging (Bienstock, 2012; Kruger et al., 2012; Nero et al.,
2014; Perot et al., 2010; Trisciuzzi et al., 2019; Villoutreix et al., 2014).
This is due to the fact that more exposed binding pockets involved in
protein-protein interactions are more flat and are composed of several
small cavities and because some plasticity is often present in such re-
gions. To indirectly consider flexibility, we carried out our docking
experiments on two different models that vary in the orientation of
some side chains in the catalytic site area and of some loops in the main
exosite region (Fig. 3).

It is well-known that scoring is a weak point in structure-based
virtual screening (Rognan, 2017). Different strategies have been used,
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such as rescoring with different types of scoring functions, consensus
scoring or using more CPU-demanding free energy computations, but in
all cases, it turns out that the approaches are target-dependent and that
it is difficult to predict which strategy is going to perform best unless
one has numerous true active and inactive compounds to calibrate the
methods or to select the best docking-scoring protocols.

Here we used different approaches to select the compounds in-
cluding rescoring, consensus scoring, consideration of ligand-internal
energies, modification of the scores by taking into account the com-
plexity of the molecules and the use of a random forest classifier to try
to distinguish molecules that like to bind in more solvent exposed
binding pockets. All the data were considered while performing inter-
active analysis of the docked poses in the two different models with two
different methods, namely Autodock Vina as implemented in the
MTiOpenScreen server that used the Drugs-lib collection and Smina, a
standalone application, that used the AIEfd-Db collection. After ex-
tensive investigations, we propose a list of 156 molecules that could
bind to the catalytic site of TMPRSS2 (Suppl Fig 3 and Suppl Table 1)
and 100 compounds that could fit into the main serine protease domain
exosite (Suppl Fig 4 and Suppl Table 2). In fact, considering potential
scoring errors due to positioning, lack of appropriate treatment of
flexibility or the potential role of water molecules, we believe that it is
more appropriate to present a more extended list of compounds than
the top 5-10 best scoring molecules. While we have no reference
compounds to judge the quality of docking into the exosite region, we
are confident that some molecules predicted to inhibit the catalytic site
are likely to be true binders. Indeed, during our selection of the mole-
cules, the names and the potential therapeutic activities and intended
targets of the molecules were not considered initially but for camostat
and nafamostat. Of interest, we could find in the list of putative cata-
lytic site inhibitors several known serine protease inhibitors. Yet, pro-
posing serine protease inhibitors to inhibit a serine protease is not
sufficient in our hands to probe the function of TMPRSS2 and this is
why many other types of compounds are reported in the Suppl Table 1.
Further, in the list of molecules proposed to bind to the TMPRSS2
exosite (Suppl Table 2), some molecules are known protein-protein
interaction inhibitors or peptidomimetics. The suggested exosite bin-
ders appear to be reasonable starting points to probe this region of
TMPRSS2 as it should bind a linear peptide, either from a substrate or a
protein partner.

5. Conclusion

In silico drug repositioning results could be of interest to assist the
design of a treatment for SARS-CoV-2 infection. We provide two lists of
molecules, one for the catalytic site of TMPRSS2 and one for a main
binding exosite expected to be part of a protein-protein interaction
region. The lists of molecules that we propose contain different types of
approved drugs, experimental and investigational compounds, with
favorable predicted binding scores and/or interesting non-covalent in-
teractions within the binding site regions. Some of these molecules
should be valuable to probe the molecular functions of TMPRSS2 for
research purposes, some might be of interest as potential treatments
while others could be used as starting points to develop novel mole-
cules, starting from advanced compounds for which numerous in-
formation are available (e.g., pharmacokinetics, adverse drug reactions
in human or animal models). While at present we can not test experi-
mentally these molecules, we believe that our two lists of molecules can
be valuable to other research groups.
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