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SUMMARY

Pluripotency is a unique developmental state that lays the founda-

tion upon which the entire embryo is built. Pluripotent cells

possess the unique capacity to generate, in an exquisitely defined

sequence, all the distinct cell types comprising the fetal and adult

organism. The discovery of pluripotent stem cells and now the

ability to generate them from differentiated cells has had a pro-

found impact on a vast array of scientific disciplines. In addition

to their clinical potential as a source of therapeutic cell types,

pluripotent stem cells provide scalable access to otherwise experi-

mentally inaccessible development- and disease-associated

biology. Here I providemyperspective on the continuumof plurip-

otency in the early mammalian embryo. I also discuss how novel

genomic technologies are now enabling the capture of molecular

‘‘snapshots’’ of the several distinct pluripotent states that stem cells

undergo during this pivotal developmental period.

The Continuum of Pluripotency in the Mouse Embryo

The development of placental mammals is unique in that

embryos are nourished by interfacing with the mothers’

reproductive tract, in contrast to embryos of other classes

of vertebrates that develop outside the womb. Thus,

mammalian embryos must generate extra-embryonic cell

types to mediate their implantation into the uterus, while

at the same time maintain a distinct population of unspec-

ified pluripotent cells to form the embryo proper. To do so,

within 5 days of fertilization, the mouse zygote partitions

itself into three separate cell populations, the trophoecto-

derm, primitive endoderm, and epiplast, which carry out

these diverse tasks in concert. The developmental potential

of each of these cell populations was defined by seminal ex-

periments in which chimeric embryos were generated by

cell transplantation into host blastocysts (Gardner, 1968;

Gardner and Rossant, 1979; Rossant et al., 1978). These

studies, among others, showed conclusively that trophec-

toderm cells form the bulk of the fetal portion of the

placenta, primitive endoderm cells generate the parietal

and visceral yolk sac endoderm, and epiblast cells generate

the entire embryo proper as well as additional extra-embry-

onic tissues such as the amnion and allantois.

Several pioneering studies have shown that epiblast cells

in thepre- andpost-implantationepiblast function tomain-

tainpluripotencyuntil theonset of gastrulation.During im-

plantation, the trophectoderm invades thematernaluterine

tissue to provide sustained access to nutrient and waste ex-

change for the remainder of gestation. At this point, the
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post-implantation epiblast changes from a small cluster of

cells into a pseudostratified epithelium that must remain

unspecified while it prepares to differentiate into all of the

early somatic and germ cell fates that appear during gastru-

lation. Evidence that that the post-implantation epiblast is

capable of generating cell fates from each of the three pri-

mary germ layers was provided by experiments in which it

was transplanted to ectopic sites in adult mice (Diwan and

Stevens, 1976). Thesedatawere later supportedby fate-map-

ping studies revealing that individual cells of the post-im-

plantation epiblast were not lineage restricted and could

contribute to all three germ layers, even when transplanted

from one spatial region of the post-implantation epiblast to

another (Lawson et al., 1991; Tam and Zhou, 1996).

Historically, pluripotency was considered a single state,

yet it was clear quite early on that epiblast cells before

and after implantation were morphologically and func-

tionally dissimilar. In contrast to cells of the pre-implanta-

tion epiblast, cells of the post-implantation epiblast did not

readily incorporate back into host blastocysts or contribute

to the developing embryo in standard chimera assays

(Gardner et al., 1985). In retrospect, this observation

demonstrated a clear developmental distinction between

pre- and post-implantation epiblast cells and provided

the first indication that more than one shade of pluripo-

tency might exist.
The Two Dominant Pluripotent Attractor States

It only became possible to study pluripotency and its prop-

erties when, in 1981, two groups concurrently reported

that they had derived pluripotent cells from mouse pre-

implantation blastocyst stage embryos, and that these

cells could be expanded indefinitely in culture in an undif-

ferentiated state (Evans and Kaufman, 1981; Martin,

1981). Remarkably, these mouse embryonic stem cells

(mESCs), later shown to originate from the pre-implanta-

tion epiblast (Brook and Gardner, 1997), could be induced

to differentiate into a plethora of functional cell types

spanning all three germ layers. Later, stringent in vivo as-

says confirmed the pluripotency of mESCs by showing

that when injected into host blastocysts, they integrated

into the developing embryo and contributed to all cell

types of the resulting chimeric mice, including the germ-

line (Bradley et al., 1984; Nagy et al., 1993). Since then,

pluripotent stem cell lines have been derived from earlier
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blastomere and morula stage mouse embryos, as well as

primordial germ cells (Matsui et al., 1992; Resnick et al.,

1992; Tesar, 2005). Later, in a series of groundbreaking

studies, it was shown that even adult somatic cells can

be ‘‘reprogrammed’’ to a pluripotent state by forcing

expression of what are now known as core pluripotency

transcription factors, yielding induced pluripotent stem

cells (iPSCs) (Takahashi and Yamanaka, 2006). Pluripotent

cells derived from each of these methods are subtly

different in terms of their epigenome, yet remarkably,

they show almost identical functional properties. Collec-

tively, these studies support the notion that a single

pluripotent state, referred to as naive pluripotency, can
164 Stem Cell Reports j Vol. 6 j 163–167 j February 9, 2016 j ª2016 The Au
be captured in vitro from mouse embryos or reprog-

rammed from mouse somatic and germ cells.

In the meantime, pivotal advances were being made in

defining pluripotency in human cells. In 1998, human

ESCs (hESCs) were isolated for the first time from human

blastocyst stage embryos and, like their mouse counter-

parts, could be renewed indefinitely in culture while main-

taining their pluripotent state (Thomson et al., 1998). This

achievement marked the beginning of the path for

advancing pluripotent stem cells into the clinic for regener-

ative medicine. In a remarkably short time, this goal has

been realized, with a number of clinical trials using hESCs

to regenerate damaged or diseased tissues and organs now

underway.

Yet despite being derived from identical blastocyst stages,

hESCs were perplexingly distinct from their murine coun-

terparts in their morphology, molecular profiles, and their

need for different signaling molecules to maintain them

in an undifferentiated state (Daheron et al., 2004; James

et al., 2005; Smith et al., 1988; Vallier et al., 2005; Ying

et al., 2003, 2008). Initially, these differences were largely

overlooked and attributed to minor species-specific varia-

tion, as opposed to reflecting true significance in the

inherent developmental origin and capacity of each cell

type.

Then, in 2007, two studies reporting a new type ofmouse

stem cell type transformed the understanding of pluripo-

tency (Brons et al., 2007; Tesar et al., 2007). The cells,

termed epiblast stem cells (EpiSCs), were initially isolated

from early post-implantation mouse and rat embryos just

prior to gastrulation. In contrast, mESCs characterized in

earlier studies were derived from pre-implantation em-

bryos. However, although mouse EpiSCs showed striking

similarity to native post-implantation epiblast cells, they

did not readily incorporate into the developmentally

earlier blastocyst in mouse chimeric embryos. Yet EpiSCs

were clearly pluripotent, as demonstrated by in vitro differ-

entiation, teratoma generation, and transplantation into

the peri-gastrulation epiblast of in vitro cultured whole

mouse embryos (Brons et al., 2007; Huang et al., 2012;

Tesar et al., 2007).

These data led to a major shift in how pluripotency is

defined. What had previously been defined as the pluripo-

tent state based on the earlier mouse ESC studies repre-

sented only a common attractor state inherent to pluripo-

tent cells derived from the mouse pre-implantation

epiblast, referred to as naive pluripotency (Nichols and

Smith, 2009). EpiSCs, on the other hand, represent a

distinct pluripotent state, referred to as primed pluripo-

tency, based on morphological, molecular, and functional

criteria. Most strikingly, EpiSCs derived from mice shared

defining properties with hESCs. This observation led to

the current understanding that standard hESC lines
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represent a later stage in development than the blastocyst

embryos from which they are derived.

Once it was recognized that distinct pluripotent subtypes

do exist, the study of epiblast-derived pluripotent stem

cells soared. Now there is an exciting body of work showing

that EpiSCs represent a previously undefined attractor state

of pluripotency. To date, EpiSCs have been derived from a

spectrum of post-implantation stages up through the early

phase of gastrulation (Bernemann et al., 2011; Han et al.,

2010; Kojima et al., 2014; Wu et al., 2015). In addition,

induced EpiSCs (iEpiSCs) have been derived by reprogram-

ming somatic cells with core pluripotency transcription

factors in culture conditions distinct from iPSC derivation

(Han et al., 2011). Surprisingly, by controlling the culture

environment, EpiSCs could even be isolated from pre-im-

plantation mouse blastocysts, which strongly supports

the notion that what are currently defined as hESCs prog-

ress in culture to this second pluripotent attractor state

representative of the post-implantation epiblast (Hanna

et al., 2009; Najm et al., 2011).

Why mammals in particular evolved to have more than

one pluripotent state during embryogenesis remains an

open question. Other vertebrates such as fish and frogs

have what appears to be a single pluripotent state akin to

themouse post-implantation epiblast just prior to gastrula-

tion. While purely speculative, it is tempting to consider

that the pre-implantation pluripotent state evolved as a

mammalian-specific trait to ensure fidelity of the pluripo-

tent cells until a sustained source of nourishment upon im-

plantation in the uterus could be acquired. In line with this

idea,manymammals are known to be able to delay implan-

tation of embryos and maintain them in a dormant state,

termed embryonic diapause, until favorable conditions

are present that enhance the survival of the mother and

offspring (Renfree and Shaw, 2000). Upon implantation,

the pluripotent cells then transition from a naive state of

cellular fidelity to a primed state in which the cells are pre-

pared to rapidly respond to developmental cues and transi-

tion into the full complement of somatic and germ cells

fates during gastrulation.

Importance of Naive and Primed Pluripotent Stem

Cells

The array of pluripotent stem cell lines derived directly

from mouse and human blastocysts and through reprog-

ramming provides a scalable source of differentiated cells

representing the full spectrum of cell fates, embryonic

and extra-embryonic. The ability to readily derive these

cells from healthy and diseased mice and humans is trans-

forming cell-based regenerative medicine and providing

unprecedented tools for modeling and developing drugs

for a variety of previously intractable, incurable chronic

diseases. Thus, a pressing question for the field is whether
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these tasks and for use as experimental tools for under-

standing the mechanistic basis for pluripotency and

differentiation.

All pluripotent stem cell lines are capable of providing a

source of scalable somatic cell fates for studying their

biology, and for disease modeling and cell-based regenera-

tive medicine. Initially, experimenters decided whether to

use naive versus primed pluripotent stem cells based on

technical advantages that varied depending on the experi-

mental requirements, including the ability to expand them

from isolated single cells, their amenability to homologous

recombination-based genome editing, their genetic acces-

sibility, and the uniformity of their differentiation

response. However, recent advances in culture conditions

and nuclease-mediated genome editing have largely obvi-

ated technical limitations for both cell types, enabling

focus on their true biological differences.

Consequently, the door has now been opened for com-

plementary studies employing both of these distinct

pluripotent states, providing unprecedented access to the

molecular events occurring at the earliest phases of

mammalian development that were not possible by study-

ing naive or primed cells in isolation.

In particular, global epigenetic and transcriptome com-

parisons between mESCs and mEpiSCs have revealed new

insights into naive and primed pluripotency including the

molecular mechanisms that maintain pluripotent cells in

an undifferentiated statewhile remaining permissive to dif-

ferentiation into all somatic and germ cell lineages. While

these two pluripotent states exhibit a relatively small num-

ber of differentially expressed genes, they differ substan-

tially in the organization of their chromatin landscape,

particularly with respect to covalent histone modifications

of cis-regulatory elements such as enhancers, DNAmethyl-

ation, and the binding pattern of pluripotency transcrip-

tion factors (Buecker et al., 2014; Factor et al., 2014).

Surprisingly, in each of the two cell states, mESCs and

EpiSCs, genes with the same levels of expression, including

core pluripotency factors such as Oct4, are controlled by

distinct enhancer elements (Factor et al., 2014; Tesar et al.,

2007; Yeom et al., 1996). Moreover, naive pluripotent cells

such as mESCs do not require expression of any of the cata-

lytically active DNA methyltransferases, whereas primed

cells show a clear dependence on proper establishment

and maintenance of DNA methylation (Liao et al., 2015).

Collectively, these global comparisons suggest that the

transition from naive to primed pluripotency is predomi-

nantly controlled by changes in chromatin organization.

Initially, in naive pluripotent cells, the chromatin is

organized is such a way that it that safeguards the cells

from inappropriate differentiation, maintaining them in a

pluripotent state. Then as the cells become primed, the
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chromatin switches to anorganization that enables the cells

to transition to a somatic regulatory program during

gastrulation.

Our understanding of the mechanisms controlling addi-

tional developmental events in the early mammalian em-

bryo has been uniquely advanced by the combined utility

of naive and primed pluripotent stem cell biology. For

example, there exists a narrow window in the early post-

implantation embryo when a handful of founder primor-

dial germ cells (PGCs) are specified from the epiblast (Hay-

ashi et al., 2007). In the past, attempts to generate PGCs

directly from naive and primed pluripotent stem cells

yielded limited success. But recently, by leveraging under-

standing of the two pluripotent stem cells states, groups

have now robustly generated mouse and human primor-

dial germ cell-like cells in vitro from cells in a transitionary

state between naive and primed termed epiblast-like cells

(EpiLCs) (Hayashi et al., 2007; Irie et al., 2015). In addition,

comparison of female naive mESCs and primed EpiSCs has

enabled new understanding of the initiation and mainte-

nance of X chromosome inactivation in female somatic

cells (Gayen et al., 2015).

Conclusions

The two dominant pluripotent stem cells states have pro-

vided powerful in vitro snapshots of the mammalian plu-

ripotency continuum. Utilization of these in vitro cell

states provides unprecedented access to fundamental

developmental events that have previously been inacces-

sible to large-scale molecular analyses. Although we have

already seen pluripotent stem cell studies yield two Nobel

Prizes, we have likely only scratched the surface of what

pluripotent stem cell biology will yield in terms of funda-

mental understanding of development and disease as well

as clinical applications.
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