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Abstract

Background: Secondary metabolites ranging from furanone to exo-polysaccharides have been suggested to have
anti-biofilm activity in various recent studies. Among these, Escherichia coli group II capsular polysaccharides were
shown to inhibit biofilm formation of a wide range of organisms and more recently marine Vibrio sp. were found
to secrete complex exopolysaccharides having the potential for broad-spectrum biofilm inhibition and disruption.

Results: In this study we report that a newly identified ca. 1800 kDa polysaccharide having simple monomeric
units of a-D-galactopyranosyl-(1®2)-glycerol-phosphate exerts an anti-biofilm activity against a number of both
pathogenic and non-pathogenic strains without bactericidal effects. This polysaccharide was extracted from a
Bacillus licheniformis strain associated with the marine organism Spongia officinalis. The mechanism of action of this
compound is most likely independent from quorum sensing, as its structure is unrelated to any of the so far
known quorum sensing molecules. In our experiments we also found that treatment of abiotic surfaces with our
polysaccharide reduced the initial adhesion and biofilm development of strains such as Escherichia coli PHL628 and
Pseudomonas fluorescens.

Conclusion: The polysaccharide isolated from sponge-associated B. licheniformis has several features that provide a
tool for better exploration of novel anti-biofilm compounds. Inhibiting biofilm formation of a wide range of
bacteria without affecting their growth appears to represent a special feature of the polysaccharide described in
this report. Further research on such surface-active compounds might help developing new classes of anti-biofilm
molecules with broad spectrum activity and more in general will allow exploring of new functions for bacterial
polysaccharides in the environment.

Background
Most species of bacteria prefer biofilm as the most com-
mon means of growth in the environment and this kind
of bacterial socialization has recently been described as
a very successful form of life on earth [1]. Although
they can have considerable advantages in terms of self-
protection for the microbial community involved or to
develop in situ bioremediation systems [2], biofilms
have great negative impacts on the world’s economy and
pose serious problems to industry, marine transporta-
tion, public health and medicine due to increased resis-
tance to antibiotics and chemical biocides, increased
rates of genetic exchange, altered biodegradability and

increased production of secondary metabolites [3-8].
Therefore, based on the above reasons, development of
anti-biofilm strategies is of major concern.
The administration of antimicrobial agents and

biocides in the local sites to some extent has been a use-
ful approach to get rid of biofilms [9], but prolonged per-
sistence of these compounds in the environment could
induce toxicity towards non-target organisms and resis-
tance among microorganisms within biofilms. This
aspect has led to the development of more environment
friendly compounds to combat with the issue. It has been
found that many organisms in the marine areas maintain
a clean surface. Most of the marine invertebrates have
developed unique ways to combat against potential inva-
ders, predators or other competitors [10] especially
through the production of specific compounds toward
biofilm-forming microorganisms [11]. Nowadays, it is
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hypothesized that bioactive compounds previously
thought to be produced from marine invertebrates might
be produced by the associated microorganisms instead.
Various natural compounds from marine bacteria, alone
or in association with other invertebrates, are emerging
as potential sources for novel metabolites [12] and have
been screened to validate anti-biofilm activity. The
quorum sensing antagonist (5Z)-4-bromo-5-(bromo-
methylene)-3-butyl-2(5H)-furanone (furanone) from the
marine alga Delisea pulchra inhibits biofilm formation in
E. coli without inhibiting its growth [13]. The metabolites
of a marine actinomycete strain A66 inhibit biofilm for-
mation by Vibrio in marine ecosystem [12]. Extracts from
coral associated Bacillus horikoshii [14] and actinomy-
cetes [15] inhibit biofilm formation of Streptococcus pyo-
genes. The exoproducts of marine Pseudoalteromonas
impair biofilm formation by a wide range of pathogenic
strains [16]. Most recently, exo-polysaccharides from the
marine bacterium Vibrio sp. QY101 were shown to con-
trol biofilm-associated infections [17].
Compounds secreted or extracted from marine micro-

organisms having anti-biofilm activity range from fura-
none to complex polysaccharide. Although bacterial
extracellular polysaccharides synthesized and secreted by
a wide range of bacteria from various environments
have been proven to be involved in pathogenicity [18],
promotion of adherence to surfaces [19-21] and biofilm
formation [22,23], recent findings suggest that some
polysaccharides secreted from marine and non marine
organisms also possess the ability to negatively regulate
biofilm formation [17,24-27].
In this study, we show that an exo-polysaccharide pur-

ified from the culture supernatant of bacteria associated
to a marine sponge (Spongia officinalis) is able to inhibit
biofilm formation without affecting the growth of the
tested strains. Phylogenetic analysis by 16S rRNA gene
sequencing identified the sponge-associated bacterium
as Bacillus licheniformis. The mechanisms behind the
anti-biofilm effect of the secreted exo-polysaccharide
were preliminarily investigated.

Results
Bacillus licheniformis culture supernatant inhibits biofilm
formation by Escherichia coli PHL628
Starting from a Spongia officinalis sample, it has been
possible to distinguish, among one hundred colonies of
sponge-associated bacteria, ten different kinds in terms
of shape, size and pigmentation. They were screened for
production of bioactive anti-biofilm metabolites. One
colony for each phenotype was grown till stationary
phase and the filtered cell-free supernatants obtained
were used at a concentration of 3% (v/v) against a sta-
tionary culture of the indicator strain E. coli PHL628
(Figure 1). Supernatants derived from strains SP1 and

SP3 showed a strong anti-biofilm activity (65% and 50%
reduction, respectively). SP1 was chosen to study the
nature of the biofilm inhibition mechanism. Sequencing
of the 16S RNA revealed that the SP1 gene showed 99%
similarity with Bacillus licheniformis.

Isolation and purification of active compounds
The active fraction of SP1 cell free supernatant was initi-
ally found to be of polysaccharidic composition. Preli-
minary spectroscopic investigations indicated the
presence of a compound with a simple primary structure;
the 1H and 13C NMR spectra suggested that the polymer
was composed by a regular-repeating unit; the monosac-
charide was identified as an acetylated O-methyl glyco-
side derivative and the compositional analysis was
completed by the methylation data which indicated the
presence of 4-substituted galactose; in fact the sample
was methylated with iodomethane, hydrolized with 2 M
triofluoroacetic acid (100°C, 2 h), the carbonyl was
reduced by NaBD4, acetylated with acetic anhydride and
pyridine, and analyzed by GC-MS. The molecular mass
of the polysaccharidic molecule was estimated to be
approximately 1800 kDa by gel filtration on a Sepharose
CL6B. In TOCSY, DEPT-HSQC, and HSQC-TOCSY
experiments, additional signals of a -CHO- and two -CH2

O- spin system proved the presence of not only a galac-
tose residue but also of a glycerol residue (Gro); the rela-
tively deshielded value for the glycerol methylene
carbons at 65.6 and 65.4 ppm was consistent with a phos-
phate substitution at C1 of glycerol. 31P-NMR spectrum
confirms the presence of a phosphodiester group.
The position of the phosphate group between the

a-D-galactopyranosyl and the glycerol residue was
unambiguously confirmed with 2D 1H 31P-HSQC
experiments. In fact, correlations between the 31P reso-
nance and H4 (3.827 ppm) of galactose were observed.
This fact established the connectivity of the phosphate
group to the respective carbon atoms. It follows that the
repeating unit contains the phosphate diester fragment.
Galactose was present as pyranose ring, as indicated by
1H- and 13C-NMR chemical shifts and by the HMBC
spectrums that showed some typical intra-residual scalar
connectivities between H/C (Table 1). The connection
between galactose and glycerol into repeating unit was
determined using HMBC and NOE effects. The anome-
ric site (99.47 and 5.071 ppm) of galactose presented
long-range correlations with glycerol C2’ (70.76 ppm)
and H2’ (4.120 ppm), and allowed the localization of
galactose binding at C2’ of glycerol. NOE contacts of
anomeric proton at 5.071 ppm with the signal at 3.839
ppm (Gro H23’, table 1) confirmed this hypothesis.
Thus, the polysaccharide is composed of a-D-galacto-

pyranosyl-(1®2)-glycerol-phosphate monomeric units
(Figure 2).
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Figure 1 Anti-biofilm activity of supernatants from different strains (SP1-SP10) associated with Spongia officinalis. Biofilms of Escherichia
coli PHL628 were allowed to develop in the presence of supernatants (3% v/v) from marine sponge-associated isolates in 96 well microtiter well.
The plate was incubated at 30°C for 36 h, followed by crystal violet staining and spectrophotometric absorbance measurements (OD570). The
absorbance was used to calculate the “biofilm formation” on the y axis. × axis represents cell free supernatants from different Spongia officinalis
isolates. The 100% is represented by E. coli PHL628 produced biofilm.

Table 1 1H, 13C and 31P NMR chemical shift of polysaccharide(p.p.m). Spectra in D2O were measured at 27°C and
referenced to internal sodium 3-(trimethylsilyl)-(2,2,3,3-2H4) propionate (δH 0.00), internal methanol (δC 49.00)
and to external aq. 85% (v/v) phosphoric acid (δP 0.00)

Residue Nucleus 1 2 3 4 5 6

® 4)-a-D-Galp-(1 ®
1H 5.071 H3Gro

(3.7 Hz)a
3.690 3.784 3.827C6,4Gal 3.917C3Gal 3.671H1Gal

13C 99.47H1Gro 69.37 69.95 78.32H1Gal

(7.8 Hz)b
70.19 62.18H5Gal

Gro-1-P-(O ®
1H 3.865 C4Gal -3.906 4.120C3, 5Gro 3.839-3.770
13C 65.63*H1Gro

(4 Hz)a -65.41*
(4.5)a

70.76 H1Gal

(7.9 Hz)c
67.15
(~2 Hz)d

31P 1.269

*diastereotopic carbons; a 3J H1, H 2;
b 2J C-P ; c 3J C-P ; d 4J C-P; in italics, the signals showing C-H long-range correlations with the positions in superscripts;

underlined are the NOE contacts with positions in superscripts.
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The anti-biofilm activity does not result from
reducing E. coli and P. fluorescens growth
In order to check whether the anti-biofilm activity of the
sponge-associated SP1 strain is dependent on the con-
centration used in the microtiter plate assay, the cell
free supernatant from this strain was tested against
biofilm formation by two organisms, E. coli PHL628 and
Pseudomonas fluorescens. The results of Figure 3 clearly
show that the anti-biofilm activity raises as the concen-
tration of the supernatant increases. The anti-biofilm
activity of the SP1 supernatant against the two test

strains was comparable and perhaps slightly higher for
E. coli PHL628, as in the presence of 5% (v/v) superna-
tant, inhibition was about 89% and 80% on biofilm for-
mation by E. coli PHL 628 (Figure 3A) and Pseudomonas
fluorescens, respectively (Figure 3B).
To evaluate whether the anti-biofilm effect of cell-free

supernatant from sponge-associated B. licheniformis was
related to reduction of growth rate of the target strains,
growth curves of both strains were measured in
presence and absence of 5% (v/v) supernatant. The
resulting growth rates were found to be the same in the
two conditions for both E. coli PHL628 (0.51 ± 0.02 h-1)
and P. fluorescens (0.69 ± 0.02 h-1), clearly indicating
that the supernatant has no bactericidal activity against
the cells of biofilm-producing E. coli PHL628 or
P. fluorescens. These data were further confirmed by the
disc diffusion assay. No inhibition halo surrounding the
discs was observed, thereby indicating that the superna-
tant has no bacteriostatic or bactericidal activity against
E. coli PHL628 and P. fluorescens.
The efficiency of the sponge-associated SP1 superna-

tant for anti-biofilm activity was evaluated also by
microscopic visualization. This approach confirmed
that the inhibitory effect of the supernatant on biofilm
formation increases with the increase of its concentra-
tion. Ten-fold concentrated supernatant completely
inhibited biofilm formation by E. coli PHL628. Less
concentrated supernatant also showed significant
reduction of biofilm formation as compared to the
control (Figure 4A). Very similar effects were observed
with P. fluorescens (Figure 4B).

Inhibitory effect of the supernatant on various strains
To evaluate further the inhibitory effect of the SP1
supernatant on biofilm development, multiple strains
regardless of pathogenicity were tested (Figure 5).
Among the strains, 5 out of 10 appeared to be more
than 50% inhibited in their biofilm development by the
SP1 supernatant. Very interestingly, in the case of
Staphylococcus aureus, the inhibition was almost 90%.
Among the four Bacillus species, B. amyloliquefaciens
was the most affected one, whereas B. pumilis and
B. cereus were less affected in the inhibition of biofilm
development. Not a single strain was stimulated or unaf-
fected in biofilm development by the supernatant.

Preliminary characterization of the bio-active component
of SP1 supernatant
The SP1 cell free supernatant gradually loses its
efficiency in decreasing biofilm formation after its pre-
treatment at temperatures ranging from 50°C to 80°C.
When the supernatant was treated at 50°C, the inhibi-
tory activity towards E. coli PHL628 remained 100%, but
at 60°C it started to decrease (95%). Treatment at 70°C

Figure 2 Repeating unit of the bacterial polysaccharide having
anti-biofilm activity.

Figure 3 Anti-biofilm activity is concentration-dependent .
Stationary cells of E. coli PHL628 (A) or P. fluorescens (B) were
incubated along with the SP1 supernatant at different
concentrations in 96-well microtiter plate. The plate was incubated
at 30°C for 36 h, followed by crystal violet staining and
spectrophotometric absorbance measurements (OD570). The ratio of
biofilm absorbance/planktonic absorbance was calculated, and this
value was used to calculate the “biofilm formation” on the y axis. ×
axis represents the concentration of supernatant used in the wells.
Bars represent means ± standard errors for six replicates.
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and 80°C, resulted in 41% and 29% of the anti-biofilm
activity respectively. At 90°C the inhibitory activity was
completely lost (data not shown).
To preliminarily characterize the mechanism of action

of the SP1 supernatant, this was added to bacterial cells
together with the quorum sensing signals obtained from
two days supernatant of an E. coli PHL628 culture in
order to understand if there is a competition for the
quorum sensing receptor. The use of the two superna-
tants together had almost the same effect on biofilm
inhibition as the SP1 alone (data not shown).
To analyze whether inhibition of biofilm production is

related to reduced adherence of target cells to surfaces,
we tested (see Methods) the effects of SP1 supernatant
on the degree of cell surface hydrophobicity of E. coli
PHL628 and P. fluorescens. As shown in Figure 6, the
supernatant inhibits significantly the surface hydropho-
bicity of E. coli and to a lesser extent also that of
P. fluorescens.

Pre-coating with SP1 supernatant inhibits initial
attachment to the abiotic surface
The polysaccharide present in the SP1 supernatant
might modify the abiotic surface in such a way that
there might be a reduction or inhibition of irreversible
attachment of the biofilm forming bacteria to an inani-
mate object. We tested this hypothesis by analyzing

whether there is an effect on biofilm production by
E. coli PHL628 if the polystyrene wells of the microtiter
plate are pre-coated with SP1 supernatant. We observed
that after 36 h, while biofilm formation was inhibited by
75% in the un-coated wells and in presence of superna-
tant, in the pre-coated wells the biofilm assay performed
an inhibition of 92.5% (Figure 7). In addition, to evaluate
further the mechanism of action in the initial attach-
ment stage of biofilm development, the supernatant was
added in the already formed biofilm. The effects were
found to be much lower compared to that of the initial
addition or pre-coating of the supernatant in the micro-
titer wells. A possible conclusion of this experiment is
that the supernatant modifies the target surface in a way
that prevents biofilm formation and that the initial
attachment step is most important for biofilms produc-
tion, at least by the organisms studied in this work.

Discussion
Marine biota is a potential source for the isolation of
novel anti-biofilm compounds [12]. It has been esti-
mated that among all the microbes isolated from marine
invertebrates, especially sponge associated, Bacillus spe-
cies are the most frequently found members so far [28].
Therefore the identification, in the present study, of a
sponge-associated Bacillus licheniformis having anti-bio-
film activity is not surprising. Our study demonstrates

Figure 4 Microscope observation of biofilm inhibition. Biofilm inhibition of E. coli PHL628 (A) and Pseudomonas fluorescens (B) on glass cover
slip under a phase-contrast microscope at a magnification of 40X. Bacterial cells were incubated with (1) 1X SP1 supernatant, (2) 2 × SP1
concentrated supernatant, (3) 5 × SP1 concentrated supernatant, (4) 10 × SP1 concentrated supernatant. No difference in biofilm production was
observed in the presence of 1X, 2X, 5X and 10X M63K10 sterile medium (not shown).
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the occurrence of anti-biofilm activity of a previously
uncharacterized polymeric polysaccharide having mono-
meric structure of galactose-glycerol-phosphate. To our
knowledge, no literature has ever reported the finding of
such a bioactive compound from marine or other
sources.
We found that the polysaccharide is secreted in the

culture supernatant by the sponge-associated B. licheni-
formis and its addition to a range of Gram-positive and
Gram-negative bacteria results in negative effect on
their biofilm development. This broad spectrum of anti-
biofilm activity might help B. licheniformis during a
competitive edge in the marine environment to establish
itself on the surface of host sponges and critically influ-
ence the development of unique bacterial community.
It has been previously reported that bacterial extracel-

lular polysaccharides can be involved both in biofilm and
anti-biofilm activities. For example EPSs from V. cholera
containing the neutral sugars glucose and galactose are
important architectural components of its biofilm

[29-31]. On the other hand, EPSs from E. coli (group II
capsular polysaccharide) [26], V. vulnificus (capsular
polysaccharide) [32], P. aeruginosa (mainly extracellular
polysaccharide) [27,33] and marine bacterium Vibrio sp.
QY101 (exopolysaccharide) [17] display selective or
broad spectrum anti-biofilm activity. However, the
potentiality of the polysaccharide described in this study
over a wide range of pathogenic and non pathogenic
organisms suggests that the compound might be a
powerful alternative among the previously identified
polysaccharides in multispecies biofilm context.
Based on the findings, we hypothesize that our poly-

saccharide might interfere with the cell-surface influen-
cing cell-cell interactions, which is the pre-requisite for
biofilm development [34], or with other steps of biofilm
assembling. It has been reported in other cases that
polysaccharides can produce anti-adherence effects
between microorganisms and surfaces [35]. The E. coli
group II CPS and exo-polysaccharides of marine Vibrio
sp. were reported to inhibit biofilm formation not only

Figure 5 Inhibitory effect of the SP1 supernatant over a range of Gram-positive and Gram-negative bacteria. Biofilms of various Gram-
positive and Gram-negative bacteria were developed in the presence or absence of the SP1 supernatant (5% V/v) in 96-well microtiter plate. The
plate was incubated at 30°C for 36 h, followed by crystal violet staining and spectrophotometric absorbance measurements (OD570). The ratio of
biofilm absorbance/planktonic absorbance was calculated, and this value used to calculate the “biofilm formation” on the y axis. The various
Gram-positive and Gram-negative bacteria used in the wells are listed on X axis. Bars indicate means ± standard errors for six replicates.
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by weakening cell-surface contacts but also by reducing
cell-cell interactions or disrupting the interactions of
cell-surfaces and cell-cell [26,17]. In all the previously
described polysaccharides having anti-adherence prop-
erty, highly anionic nature was proposed to be the cause
of interference with the adherence of cell-surface and
cell-cell [26,17,36]. The B. licheniformis compound
reported here has also high content of phosphate groups
and thus it can be proposed that the electronegative
property of the compound might modulate the surface
of the tested organism in such a way that there is a
reduction or complete inhibition of the attachment of
cell-surface or cell-cell.
It might be possible that the compound can modify

the physicochemical characteristics and the architecture
of the outermost surface of biofilm forming organisms
which is the phenomenon observed for some antibiotics
[37]. Reduction of cell surface hydrophobicity of E. coli
PHL628 and P. fluorescens clearly indicates the modifi-
cation of the cell surface, resulting in reduced coloniza-
tion and thereby significant contribution to anti-biofilm
effect. Almost similar results were obtained with coral-

associated bacterial extracts for the anti-biofilm activity
against Streptococcus pyogenes [14].
Anti-biofilm effects were reported to be accompanied

in most cases by a loss of cell viability or the presence of
quorum sensing analogues. Interestingly, the polysac-
charide in the present study is devoid of antibacterial
effect, which was demonstrated by the growth curve ana-
lysis and disc diffusion test with E. coli PHL628 and
P. fluorescens. An almost similar observation has been
reported with the exo-polysaccharide from the marine
bacterium Vibrio sp. which displayed anti-biofilm nature
without decreasing bacterial viability [17]. However,
further experiments suggest that the present polysacchar-
ide enhances the planktonic growth of E. coli PHL628 in
the microtiter plate wells during biofilm production (data
not shown). Another interesting phenomenon of the
bioactive compound reported here is the absence of com-
petition with the quorum sensing signals presumably pre-
sent in supernatants of the target biofilm-forming
bacteria used in this study. In addition, none of the pre-
viously reported quorum sensing competitors is structu-
rally related to the polysaccharide reported here.

Figure 6 Cell surface hydrophobicity (CSH) assay for E. coli PHL628 and P. fluorescens. E. coli PHL628 and P. fluorescens were grown in
minimal medium M63K10 and M63, respectively, in the presence (light tan bars) and absence (gray bars) of SP1 supernatant. Bars represent
means ± standard errors for six replicates.
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In the cover slip experiment, biofilm inhibition was
also evidenced and displayed a gradual decrease of bio-
film development with the increase of the concentration
of the polysaccharide in the culture of E. coli PHL628
and P. fluorescens. In addition, pre-coating the wells of
the polystyrene microtiter plate with the compound also
effectively inhibits biofilm formation. To our knowledge,
coating with the polysaccharide from sponge-associated
bacteria for inhibition of biofilm formation has been
reported for the first time here, although there are some
reports on the use of pre-coating surfaces with different
surfactants and enzymes [38-41].
In conclusion, the polysaccharide isolated from sponge-

associated B. licheniformis has several features that pro-
vide a tool for better exploration of novel anti-biofilm
compounds. Inhibiting biofilm formation of a wide range
of bacteria without affecting their growth represents a
special feature of the polysaccharide described in this
report. This characteristic has already been described for
other polysaccharides in a few very recent articles

[40-42]. Further research on such surface-active com-
pounds might help developing new classes of anti-biofilm
molecules with broad spectrum activity and more in gen-
eral will allow to explore new functions of bacterial poly-
saccharides in the environment.

Methods
Isolation of bacterial strains
The bacterial strains used in this study were initially
obtained from an orange-colored sponge, Spongia offici-
nalis, collected from Mazara del Vallo (Sicilia, Italy),
from a depth of 10 m. The sponge sample was trans-
ferred soon after collection to a sterile falcon tube and
transported under frozen condition to the laboratory for
the isolation of associated microbes. The sponge was
then mixed with sterile saline water and vortexed. A
small fraction of the liquid was serially diluted up to 10-3

dilutions and then spread on plates of Tryptone Yeast
agar (TY). The plates were incubated at 37°C for 2 days
till growth of colonies was observed. Single bacterial

Figure 7 Pre-coating with the SP1 supernatant reduces attachment during biofilm formation. Biofilms of E. coli PHL628 were developed
in 96-well microtiter plates in different conditions: no supernatant (A), wells pre-coated with supernatant (B), supernatant present (C), and
supernatant added to pre-formed E. coli biofilm (D). The plate was incubated for 36 h, followed by crystal violet staining and spectrophotometric
absorbance measurements (OD570). The ratio of biofilm absorbance/planktonic absorbance was calculated, and this value is presented as the
“biofilm formation” on the y axis. Bars represent means ± standard errors for six replicates.
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colonies were isolated on the basis of distinct colony
morphologies from the TY plates. Isolates were main-
tained on TY agar plates at 4°C until use.

Supernatant preparation
The isolated bacteria were sub-cultured on M63 (mini-
mal medium) agar plates and incubated at 37°C for two
days. A loopful of the bacterial culture from each plate
was inoculated into M63 broth (in duplicate), incubated
at 37°C for 24 h and then centrifuged at 7000× g for 20
minutes to separate the cell pellets from the fermenta-
tion medium. The supernatants were filtered through
0.2 μm-pore-size Minisart filters (Sartorius, Hannover,
Germany). To ensure that no cells were present in the
filtrates, 100 μl were spread onto TY agar plates, and
200 μl were inoculated in separate wells in the microti-
ter plate.

Screening for bioactive metabolites for biofilm inhibition
Filtered supernatants from the marine sponge-associated
isolates were used to perform the assay for biofilm for-
mation. The method used was a modified version of
that described by Djordjevic et al. [43]. Overnight cul-
tures of E. coli PHL628 strain grown at 37°C in M63K10

broth (M63 broth with kanamycine, 10 μg ml-1), were
refreshed in M63K10 broth and incubated again at 37°C
for 5 to 6 h. 200 μl of inocula were introduced in the 96
well polystyrene microtiter plate with an initial turbidity
at 600 nm of 0.05 in presence of the filtered superna-
tants from the different marine sponge associated iso-
lates. The microtiter plate was then left at 30°C for 36 h
in static condition.
To correlate biofilm formation with planktonic

growth in each well, the planktonic cell fraction was
transferred to a new microtiter plate and the OD570

was measured using a microtiter plate reader (Multi-
scan Spectrum, Thermo Electron Corporation). To
assay the biofilm formation, the remaining medium in
the incubated microtiter plate was removed and the
wells were washed five times with sterile distilled water
to remove loosely associated bacteria. Plates were air-
dried for 45 min and each well was stained with 200 μl
of 1% crystal violet solution for 45 min. After staining,
plates were washed with sterile distilled water five
times. The quantitative analysis of biofilm production
was performed by adding 200 μl of ethanol-acetone
solution (4:1) to de-stain the wells. The level (OD) of
the crystal violet present in the de-staining solution
was measured at 570 nm. Normalized biofilm was cal-
culated by dividing the OD values of total biofilm by
that of planktonic growth. Six replicate wells were
made for each experimental parameter and each data
point was averaged from these six.

Identification and purification of anti-biofilm compound
144 ml of cell free bacterial broth cultures were exten-
sively dialyzed against water for two days, using a mem-
brane tube of 12000-14000 cut-off; this procedure
allowed us to remove the large amount of glycerol in the
bacterial broth as confirmed by 1H- 13C-NMR experi-
ments recorded on lyophilized broth before and after
dialysis; the inner dialysate (25 mg) was fractionated by
gel filtration on Sepharose CL6B, eluting with water. Col-
umn fractions were analyzed and pooled according to the
presence of saccharidic compounds, proteins and nucleic
acids. Fractions were tested for carbohydrate qualitatively
by spot test on TLC sprayed with a -naphthol and quan-
titatively by the Dubois method [44]. Protein content was
estimated grossly by spot test on TLC sprayed with nin-
hydrin and by reading the column fractions absorbance
at 280 nm. The active fractions were tested by the Bio-
Rad Protein System, with the bovine serum albumin as
standard [45]. Finally, the presence of nucleic acids was
checked by analysis of fractions absorbance at 260 nm.
Furthermore, the grouped fractions were investigated by
1H-NMR spectroscopy. 1H and 13C NMR spectra, were
recorded at 600.13 MHz on a BrukerDRX-600 spectro-
meter, equipped with a TCI CryoProbeTM, fitted with a
gradient along the Z-axis, whereas for 31P-NMR spectra a
Bruker DRX-400 spectrometer was used.
The gel filtration fractions were tested for anti-biofilm

activity and the active fraction resulted positive to car-
bohydrate tests; this latter was a homogenous polysac-
charide (6.6 mg) material. Preliminary spectroscopic
investigations indicated the presence of a compound
with a simple primary structure; the molecular mass of
polysaccharidic molecule was estimated by gel filtration
on a Sepharose CL6B which had previously been cali-
brated by dextrans (with a Mw from 10 to 2000 kDa).
It’s worthy to notice that some resonances in 13C NMR
spectrum (78.32, 70.76, 65.63, 67.15 ppm) were split;
this suggested the presence of 31P (JC-P from 4 to 9 Hz,
see table 1) and its position into the polysaccharide
repeating unit.
The phosphate substitution was confirmed by record-

ing a 31P-NMR spectrum; it showed a single resonance
at 1.269 ppm [46].
The GC-MS analysis of the high-molecular-weight

polymer was carried out on an ion-trap MS instrument
in EI mode (70eV) (Thermo, Polaris Q) connected with
a GC system (Thermo, GCQ) by a 5% diphenyl (30 m ×
0.25 mm × 0.25 um) column using helium as gas car-
rier. Nuclear Overhauser enhancement spectroscopy
experiments (NOESY) were acquired using a mixing
time of 100 and 150 ms. Total correlation spectroscopy
experiments (TOCSY) were performed with a spinlock
time of 68 ms.
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Heteronuclear single quantum coherence (HSQC) and
heteronuclear multiple bond correlation (HMBC)
experiments were measured in the 1H-detected mode
via single quantum coherence with proton decoupling in
the 13C domain. Experiments were carried out in the
phase-sensitive mode and 50 and 83 ms delays were
used for the evolution of long-range connectivities in
the HMBC experiment. The 2D 1H-31P HSQC experi-
ment was recorded setting the coupling constants at 10
and 20 Hz.

Growth curve analysis
The effect of the bioactive compound on the planktonic
culture was checked by growth curve analysis on both
E. coli PHL628 and Pseudomonas fluorescens. The
supernatant of the isolate was added to a conical flask
containing 50 ml of M63 broth, to which a 1% inoculum
from the overnight culture was added. The flask was
incubated at 37°C. Growth medium with the addition of
bacterial inoculum and without the addition of the
supernatant was used as a control. OD values were
recorded for up to 24 h at 1-h intervals.

Antibacterial activity by disk diffusion assay
Antimicrobial activity of the supernatant was assayed by
the disc diffusion susceptibility test (Clinical and
Laboratory Standards Institute, 2006). The disc diffusion
test was performed in Muller-Hinton agar (MHA).
Overnight cultures of E. coli PHL628 and P. fluorescens
were subcultured in TY broth until a turbidity of 0.5
McFarland (1 × 108 CFU ml-1) was reached. Using a
sterile cotton swab, the culture was uniformly spread
over the surface of the agar plate. Absorption of excess
moisture was allowed to occur for 10 minutes. Then
sterile discs with a diameter of 10 mm were placed over
the swabbed plates and 50 μl of the extracts were loaded
on to the disc. MHA plates were then incubated at 37°C
and the zone of inhibition was measured after 24 h.

Microscopic techniques
For visualization of the effect of the sponge-associated
bacterial supernatant against the biofilm forming E. coli
PHL628 and Pseudomonas fluorescens, the biofilms were
allowed to grow on glass pieces (1 × 1 cm) placed in 6-
well cell culture plate (Greiner Bio-one, Frickenhausen,
Germany). The supernatant at concentrations ranging
from 1 to 10 times was added in M63K10 (for E. coli
PHL628) and M63 broth (for P. fluorescens) containing
the bacterial suspension of 0.05 O.D. at 600 nm. The
wells without supernatant were used as control.
The plate was incubated for 36 h at 30°C in static

condition. After incubation, each well was treated with
0.4% crystal violet for 45 minutes. Stained glass pieces
were placed on slides with the bio-film pointing up and

were inspected by light microscopy at magnifications of
×40. Visible bio-films were documented with an
attached digital camera (Nikon Eclipse Ti 100).

Anti-biofilm effect on various strains and growth
conditions
Some laboratory strains such as Acinetobacter, Staphylo-
coccus aureus, Staphylococcus epidermidis, Salmonella
typhimurium, Shigella sonneii, Listeria monocytogenes,
Bacillus cereus, Bacillus amyloliquefaciens, Bacillus
pumilus and Bacillus subtilis were selected. All strains
were grown in Tryptone Soya Broth (TSB) (Sigma) sup-
plemented with 0.25% glucose and the same medium
was used during the biofilm assay in the presence of
SP1 supernatant.

Competitiveness between quorum sensing factors
and bioactive compounds
For this experiment the E. coli PHL628 supernatant was
prepared by using the same conditions as for that of the
sponge-isolated strain. Equal volumes of the two super-
natants were added either in combination or alone in
the microtiter plate containing a culture of E. coli
PHL628 at an initial turbidity of 0.05 at 600 nm and
biofilm formation was measured as described above.
Each result was an average of at least 6 replicate wells.

Pre-coating of microtiter plate
Wells were treated with 200 μl of the B. licheniformis
supernatant for 24 h and then the un-adsorbed superna-
tant was withdrawn from the wells. Such pre-coated
wells were inoculated with E. coli PHL628 cultures hav-
ing an OD of 0.05 at 600 nm. In another set of wells
that were not coated with the supernatant, the fresh cul-
ture of E. coli PHL628 having the same density men-
tioned above were added together with the supernatant
(5% v/v). The microtiter plate was then incubated for 36
h in static conditions and biofilm formation was esti-
mated. The control experiments were carried out in
wells that were not pre-coated or initially added with
the supernatant. Each result was an average of at least 6
replicate wells and three independent experiments.
In a parallel microtiter plate, the supernatant was

added to the 36-h biofilm culture in the microtiter plate
and was then left at 30°C in static conditions for
another 24 h. The experiment was repeated six times to
validate the results statistically.

Microbial cell surface hydrophobicity (CSH) assay
Hydrophobicity of the culture of E. coli PHL628 and P.
fluorescens were determined by using MATH (microbial
adhesion to hydrocarbons) assay as a measure of their
adherence to the hydrophobic hydrocarbon (toluene)
following the procedure described by Courtney et al.
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2009 [47]. Briefly, 1 ml of bacterial culture (OD530 nm
= 1.0) was placed into glass tubes and 100 μl of toluene
along with the supernatant (5% v/v) was added. The
mixtures were vigorously vortexed for 2 min, incubated
10-min at room temperature to allow phase separation,
then the OD530 nm of the lower, aqueous phase was
recorded. Controls consisted of cells alone incubated
with toluene. The percentage of hydrophobicity was cal-
culated according to the formula: % hydrophobicity =
[1-(OD530 nm after vortexing/OD530 nm before
vortexing)]×100.
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