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Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has
challenged the research community globally to innovate, interact, and integrate findings across
hierarchies. Research on SARS-CoV-2 has produced an abundance of data spanning multiple
parallels, including clinical data, SARS-CoV-2 genome architecture, host response captured through
transcriptome and genetic variants, microbial co-infections (metagenome), and comorbidities.
Disease phenotypes in the case of COVID-19 present an intriguing complexity that includes a broad
range of symptomatic to asymptomatic individuals, further compounded by a vast heterogeneity
within the spectrum of clinical symptoms displayed by the symptomatic individuals. The clinical
outcome is further modulated by the presence of comorbid conditions at the point of infection.
The COVID-19 pandemic has produced an expansive wealth of literature touching many aspects of
SARS-CoV-2 ranging from causal to outcome, predisposition to protective (possible), co-infection to
comorbidity, and differential mortality globally. As challenges provide opportunities, the current
pandemic’s challenge has underscored the need and opportunity to work for an integrative approach
that may be able to thread together the multiple variables. Through this review, we have made an effort
towards bringing together information spanning across different domains to facilitate researchers
globally in pursuit of their response to SARS-CoV-2.

Keywords: SARS-CoV-2; host response; co-infection; comorbidity; integrative genomics; drugs;
therapeutics; vaccines

1. Introduction

The outbreak of COVID-19 in late 2019 in China soon transformed into a pandemic with global
implications. In March 2020, the World health organization (WHO) declared the disease as a Public
Health Emergency of International Concern (PHEIC). The cause of the SARS-like disease was attributed
to a new zoonotic beta-coronavirus, named SARS-CoV-2 [1]. Human to human transmission of the virus
is highly efficient. The clinical symptoms of the disease are much like other respiratory virus infections,
including atypical pneumonia. Radiologically, however, COVID-19 is characterized by multifocal
ground-glass opacification of the lungs [2]. Patients diagnosed with SARS-CoV-2 infection present a
spectrum of clinical symptoms, typically dry cough and fever, and less commonly myalgia, anosmia,
loss of taste, and occasional diarrhea, while severe cases progress to acute respiratory distress syndrome
(ARDS) and pneumonia [3,4]. COVID-19 presents contradictions in the sense that while the majority
(nearly 80%) of laboratory-confirmed cases remain mild or at most moderately affected, others upon
infection progress rapidly to severe disease (nearly 14%) or critical illness, including death [5].
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Strategizing and designing the response against the current SARS-CoV-2 pandemic requires an
in-depth integrative understanding of hierarchical aspects of both host and pathogen. Thus, the review
starts with understanding the virus itself on different levels. It is layered upon with other important
modulators like the role of host response and predisposition by existing comorbid conditions.
Through this review, we make an effort towards facilitating our knowledge of COVID-19 disease by
integrating the available information.

2. Epidemiology of COVID-19

First seen as idiopathic pneumonia cases in Hubei Province in Wuhan, China, the disease
COVID-19 is caused by the SARS-CoV-2 virus. SARS-CoV-2 is primarily transmitted via aerosols,
but there is mounting evidence of its airborne transmission as well, enhancing the possibility of its
spread. A recent report has highlighted that SARS-CoV-2 remains viable in aerosols for up to three
hours [6]. The incubation period refers to the period from when a person is first infected up to the time
when the individual first presents the symptoms of the associated disease. For SARS-CoV-2, the median
incubation period is observed to be 5–6 days, although it can range from 1–14 days, with outlier
cases showing incubation periods up to 24 days [7]. The serial interval, which is the time a virus
takes to transmit from one affected individual to another, is 3.96 days, with a standard deviation of
4.75 days [8–10]. Studies report that the SARS-CoV-2 mean basic reproductive number (R0) ranged
from 2.28 on the Diamond Princess cruise ship [11] up to 5.7 in Wuhan, China [12]. The effective
reproductive number (Re) better reflects the viral reproduction with control measures that have been
estimated to significantly reduce the calculated R0. In Germany, an approximate Re of 1 has been
seen since 22 March 2020. Such reductions have also been seen in other European countries following
non-pharmaceutical interventions such as social distancing, masks, and sanitization (SMS) [13].

Nextstrain and the Global Initiative on Sharing All Influenza Data (GISAID https://www.gisaid.org/)
are two open-source tools for the collection and visualization of pathogen genome data that help us
understand pathogen evolution and epidemic spread (Figure 1). For SARS-CoV-2, 140,502 genomic
sequences have been submitted to GISAID (8 October 2020). For tracking the flow of viral strains
through the world, certain stable mutations are used to define a clade of the virus which can be
identified by genomic surveillance of the virus. Such classification aids in epidemiological studies to
quantify the spread of a virus in a population. The existing clades, as defined by Nextstrain, and their
global distribution are shown in Table 1.
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Table 1. Nextstrain clade information.

Clade Primary Countries Mutations Max Frequency (2020)

19A Asia: China/Thailand Root clade 65–47% globally in January
19B Asia: China C8782T T28144C 28–33% globally in January
20A N America/Europe/Asia: USA, Belgium, India C14408T A23403G 41–46% globally April-May
20B Europe: UK, Belgium, Sweden G28881A G28882A G28883C 19–20% globally Mar-April
20C N America: USA C1059T G25563T 19–21% globally April

3. The Virus

SARS-CoV-2, a positive-sense, single-stranded, enveloped RNA virus belonging to the
Coronaviridae family in the genus Betacoronavirus, is the cause of the 2019 pandemic of COVID-19
disease [1,14]. The virus has similar genetic ancestry and belongs to the genus of SARS-CoV that
led to the 2003 epidemic and Middle East respiratory syndrome-related coronavirus (MERS-CoV)
2011 pandemic outbreak. The novel virus is closest to its evolutionary relative, bat SARS/SARS-like
coronaviruses (RaTG13, ZXC21, and ZC45) [15]. The spike protein structure of SARS-CoV-2 is seen
to be much more closely related to pangolin CoV, thus indicating the existence of a secondary host
reservoir of SARS-CoV-2 in pangolins (Order: Pholidota) [16]. However, these findings await conclusive
evidence to establish the pangolin as a candidate for SARS-CoV-2 origin. Homologous recombination,
an established evolutionary force behind the emergence of new variants, seems to be the plausible
cause for the origin of this novel pathogenic virus [17,18]. A total of 380 amino acid substitutions have
been observed in SARS-CoV-2 compared to SARS-like CoVs [19]. The highest level of alteration of
~19% is seen in the spike protein (S), which is essential for viral anchoring and entry into host cells,
whereas only one mutation is observed in the RNA-dependent RNA polymerase (RdRP) gene of the
virus [20].

SARS-CoV-2 has a 30 kb unfragmented genome that replicates continuously but undergoes
discontinuous transcription in the host cell. Viral genomes can be divided into three sections that
have two open reading frames (ORFs) at the 5′ end, ORF1a and ORF1ab, and 12 ORFs at the 3′ end
consisting of four structural genes and eight accessory genes ORFs [9] (Figure 2). ORF1a and ORF1b
produce 15 non-structural proteins (nsps) that are co- and post-translationally processed to produce
vital proteins such as RdRp. These two ORFs are directly translated from the viral RNA upon entry
into the host cell, thus generating pp1a and pp1ab polypeptide by ribosomal switching at the 3′ end
of ORF1a. The proteolytic processing of these ORFs happens due to proteases produced by ORF1a,
such as nsp3 and nsp5 [21].

Pathogens 2020, 9, x  3 of 34 

 

Table 1. Nextstrain clade information. 

Clade Primary Countries Mutations Max Frequency (2020) 
19A Asia: China/Thailand Root clade 65–47% globally in January 
19B Asia: China C8782T T28144C 28–33% globally in January 

20A 
N America/Europe/Asia: USA, 

Belgium, India 
C14408T A23403G 41–46% globally April-May 

20B Europe: UK, Belgium, Sweden G28881A G28882A G28883C 19–20% globally Mar-April 
20C N America: USA C1059T G25563T 19–21% globally April 

3. The Virus 

SARS-CoV-2, a positive-sense, single-stranded, enveloped RNA virus belonging to the 
Coronaviridae family in the genus Betacoronavirus, is the cause of the 2019 pandemic of COVID-19 
disease [1,14]. The virus has similar genetic ancestry and belongs to the genus of SARS-CoV that led 
to the 2003 epidemic and Middle East respiratory syndrome-related coronavirus (MERS-CoV) 2011 
pandemic outbreak. The novel virus is closest to its evolutionary relative, bat SARS/SARS-like 
coronaviruses (RaTG13, ZXC21, and ZC45) [15]. The spike protein structure of SARS-CoV-2 is seen 
to be much more closely related to pangolin CoV, thus indicating the existence of a secondary host 
reservoir of SARS-CoV-2 in pangolins (Order: Pholidota) [16]. However, these findings await 
conclusive evidence to establish the pangolin as a candidate for SARS-CoV-2 origin. Homologous 
recombination, an established evolutionary force behind the emergence of new variants, seems to be 
the plausible cause for the origin of this novel pathogenic virus [17,18]. A total of 380 amino acid 
substitutions have been observed in SARS-CoV-2 compared to SARS-like CoVs [19]. The highest 
level of alteration of ~19% is seen in the spike protein (S), which is essential for viral anchoring and 
entry into host cells, whereas only one mutation is observed in the RNA-dependent RNA 
polymerase (RdRP) gene of the virus [20]. 

SARS-CoV-2 has a 30 kb unfragmented genome that replicates continuously but undergoes 
discontinuous transcription in the host cell. Viral genomes can be divided into three sections that 
have two open reading frames (ORFs) at the 5′ end, ORF1a and ORF1ab, and 12 ORFs at the 3′ end 
consisting of four structural genes and eight accessory genes ORFs [9] (Figure 2). ORF1a and ORF1b 
produce 15 non-structural proteins (nsps) that are co- and post-translationally processed to produce 
vital proteins such as RdRp. These two ORFs are directly translated from the viral RNA upon entry 
into the host cell, thus generating pp1a and pp1ab polypeptide by ribosomal switching at the 3′ end 
of ORF1a. The proteolytic processing of these ORFs happens due to proteases produced by ORF1a, 
such as nsp3 and nsp5 [21]. 

 
Figure 2. Schematic representation of SARS-CoV-2 viral particle and genomic architecture. The 
colored region shows the viral genes and the regions in black represent the interspersed regulatory 
elements. 

Figure 2. Schematic representation of SARS-CoV-2 viral particle and genomic architecture. The colored
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3.1. Transcription

After the initial translation and processing of all the nsp, RdRP along with associated proteins,
start to transcribe the viral RNA to produce subgenomic mRNAs (sgmRNAs). SARS-CoV-2 has been
shown to produce nine sgmRNAs that encode viral structural proteins. SARS-CoV-2 is also seen to
generate a set of nested sgmRNAs of the 3′ end of the genome by a discontinuous mode of transcription
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similar to other coronaviruses. Complexity is furthered by the transcription of nested RNAs which
have been observed to contain a common leader sequence that is only seen at the 5′ end of the viral
genome that is at least two ORFs away from the site of sgmRNAs in the genome [22]. The initiation of
transcription is regulated by transcription regulatory sequences (TRSs) present before every viral gene
and the 3′ end leader sequence of the viral genome. TRSs contain a 6–7 nucleotide long core sequence
that is conserved in all TRSs, enabling the negative strand of TRS body (TRS-B) to bind with TRS
leader (TRS-L) of the non-transcribed genomic RNA. Factors other than sequence complementarity
are understood to be involved in aiding TRS-B and TRS-L binding, such as accessory proteins and
double-stranded loop-forming capacity of TRS-L. Upon binding, the RdRp switches to the TRS-L
sequence, hence creating a discontinuously transcribed RNA with the leader sequence at the 3′ end
of the negative sense, thus producing sgmRNA (Figure 3). These RNAs are then again replicated to
create positive-sense strands required for translation [23].

Pathogens 2020, 9, x  4 of 34 

 

3.1. Transcription 

After the initial translation and processing of all the nsp, RdRP along with associated proteins, 
start to transcribe the viral RNA to produce subgenomic mRNAs (sgmRNAs). SARS-CoV-2 has been 
shown to produce nine sgmRNAs that encode viral structural proteins. SARS-CoV-2 is also seen to 
generate a set of nested sgmRNAs of the 3′ end of the genome by a discontinuous mode of 
transcription similar to other coronaviruses. Complexity is furthered by the transcription of nested 
RNAs which have been observed to contain a common leader sequence that is only seen at the 5′ end 
of the viral genome that is at least two ORFs away from the site of sgmRNAs in the genome [22]. The 
initiation of transcription is regulated by transcription regulatory sequences (TRSs) present before 
every viral gene and the 3′ end leader sequence of the viral genome. TRSs contain a 6–7 nucleotide 
long core sequence that is conserved in all TRSs, enabling the negative strand of TRS body (TRS-B) to 
bind with TRS leader (TRS-L) of the non-transcribed genomic RNA. Factors other than sequence 
complementarity are understood to be involved in aiding TRS-B and TRS-L binding, such as 
accessory proteins and double-stranded loop-forming capacity of TRS-L. Upon binding, the RdRp 
switches to the TRS-L sequence, hence creating a discontinuously transcribed RNA with the leader 
sequence at the 3′ end of the negative sense, thus producing sgmRNA (Figure 3). These RNAs are 
then again replicated to create positive-sense strands required for translation [23]. 

 
Figure 3. Coronavirus transcription strategy for subgenomic mRNA (sgmRNA) generation. 
Transcription regulatory sequences (TRSs) are present before each gene, TRS-B, and also before the 5′ 
leader sequence of the genome (TRS-L). Dotted lines show the base pairing of TRS-B and TRS-L 
conserved sequences. The base pairing thus leads to a switch in the RNA-dependent RNA 
polymerase (RdRp) replication strand to the leader sequence present at the 5′ end of the coronavirus 
genome. 

3.2. Cellular Pathogenesis 

The first interaction of a virus with the host is via its entry receptor. Coronaviruses interact with 
cell surface proteins using spike protein, a type 1 glycoprotein with two subunits, S1 and S2. S2 acts 
to facilitate viral envelope fusion, with the cell membrane and the S1 C- and N-terminal domains 
directly binding to cellular receptors [24]. While the majority of coronaviruses use aminopeptidase N 
(APN) for initial binding, a subset of viruses, including SARS-CoV and SARS-CoV-2, utilize 
angiotensin-converting enzyme 2 (ACE-2) as the receptor for cell entry [25,26]. MERS-CoV, on the 
other hand, binds with dipeptidyl peptidase 4/CD26 to facilitate cell entry [27]. Presently, a few 
studies have also shown that basigin or CD147 can also act as an alternate entry point for 
SARS-CoV-2. Co-immunoprecipitation studies have shown that viral spike protein and CD147 bind 
with each other [28]. The blocking of CD147 by the monoclonal antibody meplazumab has been seen 
to significantly inhibit viral entry into host cells. A study on 17 patients (NCT number: 

Figure 3. Coronavirus transcription strategy for subgenomic mRNA (sgmRNA) generation.
Transcription regulatory sequences (TRSs) are present before each gene, TRS-B, and also before
the 5′ leader sequence of the genome (TRS-L). Dotted lines show the base pairing of TRS-B and TRS-L
conserved sequences. The base pairing thus leads to a switch in the RNA-dependent RNA polymerase
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3.2. Cellular Pathogenesis

The first interaction of a virus with the host is via its entry receptor. Coronaviruses interact with
cell surface proteins using spike protein, a type 1 glycoprotein with two subunits, S1 and S2. S2 acts to
facilitate viral envelope fusion, with the cell membrane and the S1 C- and N-terminal domains directly
binding to cellular receptors [24]. While the majority of coronaviruses use aminopeptidase N (APN) for
initial binding, a subset of viruses, including SARS-CoV and SARS-CoV-2, utilize angiotensin-converting
enzyme 2 (ACE-2) as the receptor for cell entry [25,26]. MERS-CoV, on the other hand, binds with
dipeptidyl peptidase 4/CD26 to facilitate cell entry [27]. Presently, a few studies have also shown that
basigin or CD147 can also act as an alternate entry point for SARS-CoV-2. Co-immunoprecipitation
studies have shown that viral spike protein and CD147 bind with each other [28]. The blocking of
CD147 by the monoclonal antibody meplazumab has been seen to significantly inhibit viral entry into
host cells. A study on 17 patients (NCT number: NCT04275245) conducted in China showed improved
clinical outcomes after treatment with meplazumab [29]. The mechanism of CD147 interaction with
SARS-CoV-2 is believed to be similar to the ones seen in other viruses such as human immunodeficiency
virus (HIV) [30], Kaposi’s sarcoma-associated herpesvirus (KSHV), and hepatitis B virus (HBV) [31],
which is through interaction with cyclophilin A (CyPA). Data from hospitalized patients treated with
azithromycin showed a reduction in viral load, possibly through the modulation of ligand/CD147
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receptor interactions [32]. Azithromycin is known to halt CD147 downstream pathways by inhibiting
metalloproteinases. The idea of an entry receptor other than ACE2 can explain the varied symptoms of
COVID-19 but further research is required to validate CD147 and SARS-CoV-2 interaction.

After gaining entry to the host cells, the interplay between host and viral machinery modulates
the outcome of the infection. The endoplasmic reticulum (ER) is closely associated with the replication
cycle of the coronavirus in several stages, hence it is hypothesized that stress in the ER may occur
due to infection by a coronavirus. ER stress induced in coronavirus-infected cells can be due to
heavily glycosylated S protein expression [33], thus leading to unfolded protein response (UPR)
that ultimately triggers apoptosis by triggering translational inhibition through eukaryotic initiation
factor-2α (eIF2α) [34].

Interestingly, positive RNA viruses have been repeatedly shown to synthesize their RNA in virus-induced
structures of cellular endomembrane. These organelles are called “replication organelles” [35,36].
Although the exact mechanism of the formation of these vesicles is not understood, there is a
consensus on the role of ER membranes in their formation. This has been validated by studies that
have observed ER markers such as Sec61α and protein disulfide isomerase (PDI) on the surface of these
viral-induced vesicles [37–39]. With respect to the pathways involved in vesicle formation, studies have
indicated that coatomer protein (COP)-dependent processes of the secretory pathway play a vital
role, along with associated factors such as Golgi-specific brefeldin A-resistance guanine nucleotide
exchange factor 1 (GBF-1) in the replication of various viral species [40,41]. In SARS-CoV infection,
the depletion of COPB1 and GBF1 has been shown to significantly affect viral replication [42,43].

Another set of hypotheses points to the involvement of the autophagy pathway in
double-membrane vesicle (DMV) formation, although there are arguments for and against the
hypothesis. A study by Denison et al. showed the co-localization of DMVs with microtubule-associated
protein light chain 3 and Atg12 proteins that are involved in autophagy [44]. However, another study
shows that autophagy-related 5 (Atg5) is not essential [45]. Many proteins have been observed to
co-localize with viral genome’s secondary structures, as the 5′ and 3′ ends of the viral genome are
involved in viral RNA synthesis regulation. Some of the host proteins involved in viral replication in
other coronaviruses studied in this context are summarized in Table 2. These candidates can act as
markers for understanding cell and tissue type susceptibility for viral infection. For a recent review on
this subject, refer to [46].

Table 2. Host proteins interacting with viral replication.

Protein Coronavirus Proposed Interaction Protein Function References

Annexin A2 Infectious bronchitis virus (IBV) Regulates frameshifting efficacy RNA binding [47]
MADP1 SARS-CoV, IBV Binding to viral 5′UTR RNA splicing [48]
NONO IBV Interacts with the nucleocapsid protein RNA splicing [49]

hnRNP A1 Mouse hepatitis virus (MHV) Binding to intergenic ORF7 regulatory
region and negative-strand leader RNA splicing, transport [50]

The alveolar septa are identified as the primary site of viral infection by histopathological
studies. Computerized tomography (CT) scan images reveal the presence of characteristic pulmonary
ground-glass opacification even in asymptomatic patients [3,51]. High ACE2 expression is seen in
epithelial cells of alveolar spaces consistent with the SARS-CoV-2-associated destruction of distal
airway spaces [52].

4. Host–Pathogen Interaction

ACE2 has been identified as an important host factor receptor mediating binding of the viral spike
protein towards the entry of SARS-CoV-2 into the cell [53,54]. Transmembrane protease serine protease
2 (TMPRSS2), the cell surface enzyme, cleaves the S protein and primes, thereby regulating the viral
uptake [55,56]. Subsequently, the extracellular peptidase domain of ACE2 recognizes the receptor
domain of S protein, providing molecular recognition and infection [55,57]. Followed by endocytosis,
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translation activation of viral accessory and structural proteins occurs in the cytoplasm. Here, the virus
particles are produced and packaged. The fusion of the virion-containing vesicles with the cell
membrane releases the virus in the subsequent local environment. This also leads to the activation of
various host central cellular pathways and transductional activation of the immune response.

4.1. Host Gene and Genetic Network-Driven COVID-19 Modulation

The integrated systems biology approach is important to support and address the cross-disciplinary
understanding towards the elucidation of viral regulation mechanisms using host cellular circuitry,
as it contributes to disease severity and mortality. The virus–host interaction has been investigated by
several studies to tease out the influence of the virus and host genome, genetic variation, and diversity
on infection, pathogenesis, severity, and mortality, among a plethora of other aspects (Figure 4).
Translatomics and proteomics of the human cell culture (Caco-2) system infected with a clinical
isolate of SARS-CoV-2 revealed the reshaping of the core cellular pathways, including nucleic acid
metabolism, translation splicing, and proteostasis. An experimental data-driven approach aided in the
identification of viral replication inhibition by ribavirin, NMS-873 [58]. Similarly, the protein interaction
map of SARS-CoV-2 and human proteins identified 332 high-confidence protein–protein interactions.
The study identified 26 SARS-CoV-2 proteins interacting with human proteins involved in multiple
biological processes, including innate immunity, such as NSP13 and ORF9c targeting the interferon and
nuclear factor κB (NF-κB) pathways, respectively [59]. Functional regions of SARS-CoV-2 proteins are
evolutionarily conserved based on large-scale structural genomics and interactomics roadmaps [60].
Network-based approach analysis of the virus–host interactome revealed high structural similarity
among human coronaviruses, although the S-glycoprotein and amino acid sequences were different [61].Pathogens 2020, 9, x  7 of 34 
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A genome-wide association study (GWAS) and meta-analysis of an equal number of participants,
approximately 2000 each for positive (COVID 19 and respiratory failure) and controls in cohorts from
Italy and Spain, identified genetic susceptibility in the locus 3p21.31 gene cluster and showed ABO
blood group system association with respiratory failure [62]. A recent genomic and immunological
study suggested the disease severity was mainly attributed to lymphocytopenia and age (host factors)
since variation in the viral genome did not confer significant association [63]. Sequence analysis of
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two Indian isolates of SARS-CoV-2 identified a conversion mutation in the receptor-binding domain
(RBD) of the spike protein at position 407 in one isolate. The mutation changed the secondary
structure of the protein with the potential alteration of the receptor binding of the virus [64].
Transcriptomic data identified a wide distribution of ACE2, and TMPRSS2 expression across various
human tissues in specific cell subtypes, with higher expression levels in various cell subtypes of
the lungs, colonocytes, liver cholangiocytes, and nasal goblet secretory cells, among others [65,66].
Expression of ACE2 and TMPRSS2 in these cells is indicative of potential sites of infection for
SARS-CoV-2, validated experimentally using cell lines and organoid models of cells of different
subtypes of tissues, including the brain, colon, gut, ileum, liver, lung, eye, and kidney, and also in
animal models, as shown in Figure 5 [67–77]. High expression of ACE2 observed in intestinal cells [78]
is understood to be the reason for COVID-19-associated digestive symptoms such as diarrhea, nausea,
pharyngalgia, abdominal pain, and vomiting [79].Pathogens 2020, 9, x  8 of 34 
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4.2. DNA and RNA Editing: Impact on Accelerated/Forced Genome Evolution

A gradual process of accumulation of random mutations drives genome evolution.
Conversely, active modification of genome-encoded information also accelerates evolution [80,81].
Highly regulated RNA editing plays a crucial role in various cellular pathways, including responses to
viral infection and innate immunity.

Host RNA editing has been known to change the base composition and cause viral
structural modifications in RNA viruses [82–85]. The apolipoprotein B mRNA editing enzymes,
catalytic polypeptide-like (APOBECs) and adenosine deaminases that act on RNA (ADARs) are two
deaminase families expressed in mammalian species, which target single-stranded RNA (ssRNA) and
single-stranded DNA (ssDNA) for the deamination of cytidine to uracil (C to U) and the deamination
of adenine (A) to inosine (I) on double-stranded RNA, respectively. The rapid increase in various
platforms for high-throughput sequencing [86], the sharing of genomic data (GISAID, JHU Dashboard,
Nextstrain), and data analytical tools (Viral track; [87]) with open access enable the availability of
unmatched resources for the investigation of interactomics of host and pathogen using transcriptome
sequencing data.
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Analysis of SARS-CoV-2 RNA sequencing datasets of bronchoalveolar lavage fluids from
COVID-19 patients confirmed the editing of SARS-CoV-2 RNA by host machinery [88,89]. Although the
mutation level percentage observed was low (~1%), it correlated with the rate of RNA editing by
the ADAR and APOBEC enzymes in the human genome. This was further validated in the study
when the mutational patterns remained consistent in different strains (SARS-CoV and MERS-CoV) of
Coronaviridae from human hosts. The observed A to I and C to U nucleotide changes were indicative
of the deaminase enzyme-based RNA editing [88].

The RNA editing of the virus would either force it to evolve, as it directly affects the genetic
information. ADAR and APOBEC gene family polymorphisms have been studied in depth for their
influence in the progression, as well as the susceptibility of microbial (including viral) infection
among other human diseases [90–94], thus necessitating the elucidation of role of the identified
single nucleotide variants (SNVs) in SARS-CoV-2 genomes for functional study to give us a better
understanding of their role in the spread of infection.

4.3. Immune Response to SARS-CoV-2

Accumulating evidence suggests that the immune response to SARS-CoV-2 results in innate
and adaptive immune cell activation in the infected host. Viral nucleic acids can be recognized as
invaders by alveolar epithelial cells and alveolar macrophages by pattern recognition receptor
(PRR) families, such as Toll-like receptors (TLRs), retinoic acid-inducible gene-I (RIG-I)-like
receptors (RLRs), and nucleotide-binding oligomerization domain (NOD)-like receptors [95–98].
PRRs detect RNA structure aberrations formed during the replication of the virus, leading to
its oligomerization and downstream transcriptional activation of interferon regulatory factors
(IRFs) and NF-κB [99]. Two antiviral programs are set in motion due to transcriptional activation
of IRFs and NF-κB. Firstly, transcriptional induction of type I and III interferons (IFN-I and
IFN-III, respectively) upregulate the IFN-stimulated genes (ISGs) mediating the cellular antiviral
defense [100]. Secondly, chemokine secretion orchestrates the recruitment of a subset of leukocytes,
including neutrophils [101].

At the site of infection, epithelial cells, endothelial cells, and alveolar macrophages, along with
the accumulation of neutrophils [102], release pro-inflammatory chemokines and cytokines.
The released interleukin (IL)-1 beta, IL-1ra, IL-2, IL-4, IL-6, IL-7, IL-8, IL-9, IL-10, IL-13, IL-17,
monocyte chemoattractant protein (MCP)-1 macrophage inflammatory protein (MIP)-1 alpha,
MIP-1 beta, and IP-10 further promote inflammation by recruiting other cells such as monocytes,
macrophages, and T cells. The feedback loop for pro-inflammation is established with IFN-gamma
produced by CD4+ and CD8+ T cells, resulting in cytokine storm syndrome [103–109].

Recruitment of these cells in most individuals with mild and moderate cases clears the infection,
which lessens the immune response with the recovery of patients. The dysregulation of immune cells in
COVID-19 patients [103,104] and characteristic lymphocytopenia in severe cases [105] trigger a cytokine
storm [104,105,108,110]. This is supported by the increased levels of IL2, IL7, IL10, IP10, MCP1, MIP1A,
and tumor necrosis factor α (TNFα), along with an increased level of granulocyte colony-stimulating
factor (G-CSF), fibroblast growth factor (FGF), granulocyte macrophage colony-stimulating factor
(GM-CSF), vascular endothelial growth factor (VEGF), MCP-1, platelet-derived growth factor (PDGF),
MIP-1 alpha, MIP-1 beta, and IP-10 in comparison to milder/non-intensive care unit (ICU) patients [107].

Although the exact mechanism by which SARS-CoV-2 evades the innate immune response
is still unclear, a combination of 5′ cap methylation at the N7 position and sequence mutation
(m6A methylation) in the S1 fragment of SARS-CoV-2 may facilitate the evasion of recognition by
the ACE2 binding site [111]. Translational inhibition mediated by non-structural protein 1 (Nsp1) of
SARS-CoV-2 effectively blocks the RIG-I-dependent innate immune response [112].

Cytokine storms and increased levels of TNF, among other cytokines, along with local damage,
may also cause septic shock. In cases of mortality, respiratory failure is seen to be the leading cause,
followed by multiple organ failure, cardiac arrest, hemorrhage, and renal failure [113].
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5. Role of Host Genetics in Susceptibility to SARS-CoV-2

Disease outcomes of SARS-CoV-2 infection are heterogeneous, depending on several factors.
Various hypotheses have been formulated and studied to investigate the cause of observed differences.
As is the case with many complex diseases, there is likely a combination of genetic and non-genetic
factors responsible for variable clinical symptoms and disease progression in COVID-19. Analysis of
epidemiological and demographic data has highlighted the role of age, male gender (Figure 6), history of
smoking, and underlying disease comorbidities (cardiovascular disease, hypertension, type 2 diabetes)
as factors responsible for disease aggravation [114]. A meta-analysis of 13 studies, including over
3000 patients with COVID-19, corroborated the above observation [115]. However, the occurrence of
severe disease or mortality in young adults, previously known to be without any underlying health
condition, has presented a glaring discrepancy.

Early studies to explain this variability of symptom severity among people diagnosed with
COVID-19 focused on the epidemiology and genomic characterization of SARS-CoV-2 [116]. The role
of host genetics in impacting the severity and susceptibility to COVID-19 received less attention in
the initial phase. However, more recent studies emphasizethe importance of elucidating the role of
host genetic variants with variability in clinical outcome and viral genome features. Researchers in
Shanghai, who examined clinical, molecular, and immunological data from over 300 COVID-19 patients,
highlighted the evolution of the ancestral SARS-CoV-2 virus into two major lineages with differential
exposure history. However, viral genetic variations did not exhibit significant differences with respect
to virulence and clinical outcomes. The study attributed the variation of disease severity and disease
outcome to host factors rather than viral genetic variation [63].
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5.1. Host Genetic Markers Associated with COVID-19 Susceptibility

Large variability in the clinical features of COVID-19 point towards the selectivity of SARS-CoV-2
across human genetic variations [121]. The underpinnings of susceptibility to infection may be
partially explained by variations in host genes associated with viral replication processes and immune
modulatory processes. Table 3 summarizes some of the prominent host genetic loci associated with
susceptibility and disease outcomes for SARS-CoV and SARS-CoV-2.

The focus on viral dynamics in the host helped to establish the ACE2 gene as the human receptor
for the novel coronavirus, much like the earlier SARS-CoV [14,122,123]. Differential expression patterns
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of the ACE2 receptor in different ethnicities and its variation with age and gender are believed to
affect the susceptibility, symptoms, and outcome of COVID-19 [124,125]. A study by Chen et al.
further established a negative correlation between ACE2 expression and COVID-19 fatality at both
population and molecular levels [126]. The individual variation in ACE2 levels is also determined by
inducing factors such as smoking. Leung et al. found that ACE2 expression is increased in the small
airway epithelia of smokers, predisposing them to a higher risk of infection with SARS-CoV-2 [127,128].
Variation in disease outcome, including susceptibility to fatal lung injury and myocardial injury, is also
believed to be linked to distributional and functional aspects of the ACE2 receptor in populations [129].

Much like other viral infections, COVID-19 pathogenesis is also a result of the interplay between
viral transmission dynamics and host response. Studies done in the past have established the role of
human leukocyte antigen (HLA) alleles in conferring differential susceptibility [130] and severity [131]
for several viral infections. A comprehensive in silico analysis attempted to construct an HLA
susceptibility map for SARS-CoV-2 [132]. The study included patients of Asian descent and found that
the presence of the HLA-B*46:01 allele was associated with severe cases of infection. However, the study
lacked validation with respect to clinical data and was entirely based on computational analysis.

Susceptibility to viral infections has been previously linked to antigenic determinants of ABO
blood groups in the case of SARS-CoV. Individuals with blood group O were less likely to be infected
by the virus than non-O blood groups (odds ratio, OR, of 0.18) [133]. Extrapolating this knowledge,
Zhao et al. investigated the relationship between ABO blood groups and the incidence of COVID-19.
The preprint article reported that blood group A had a significantly higher risk for COVID-19 (OR 1.21;
p = 0.027) and blood group O had a significantly lower risk for SARS-CoV-2 infection (OR 0.67; p < 0.001)
when compared to other blood group types. They also found a higher mortality risk associated with
blood group A in comparison to blood group O (OR 1.482; p = 0.008), while blood group O was found
to carry a lower mortality risk (OR 0.660; p = 0.014) when compared to non-O blood groups [134].
The findings were replicated separately in another study by Li et al. [135].

Table 3. Summary of human genetic loci related to SARS-CoV-2 infection and disease outcomes.

Functional Group Associated Gene/Loci Key Findings References

Host target proteins

ACE2 (cell entry receptor for
SARS-CoV-2)

ACE2 localization on X-chr,
SARS-CoV-2 infection in males.

ACE D allele (In/Delpolym), hypoxemia
in SARS-CoV-1 patients.

[136,137]

TMPRSS2 (cell surface serine protease
involved in S protein priming)

rs12329760, genetic susceptibility to
SARS-CoV-2. [136]

Host immune response genes

HLA (human leukocyte antigen genes) HLA-B* 4601, severity of SARS-CoV-1 &
SARS-CoV-2 infection [132,138]

IL-6 (interleukin-6, a
pro-inflammatory mediator)

IL-6-174C, higher IL-6 level,
pneumonia severity (C allele

vs. G allele).
[139]

Virus targeting host proteins

OAS1, viral RNA degradation and
inhibition of viral replication

rs2660 and rs3741981, susceptibility to
SARS-CoV-1. [140,141]

MBL, innate immunity, as an
ante-antibody before Ig response

rs1800450 (MBL) along with CCL2
rs1024611, associated with SARS-CoV-1
susceptibility. Serum MBL was lower in

SARS-CoV-1 patients than controls.

[142–144]

FCGR2A, encodes Ig receptor present
on surface of phagocytic cells

Homozygosity for FCGR2A
rs1801274 and

FCGR2A-RR131 predispose towards
severe SARS-CoV-1 infection.

[145]

MX1, antiviral protein induced by IFN
alpha and beta

MX1 rs2071430, a polymorphism in the
MX1 gene promoter associated with
lower risk of SARS-CoV-1 infection

and hypoxemia.

[140,142,146,147]
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5.2. International Efforts in Studying Host Contribution to SARS-CoV-2 Susceptibility

COVID-19, as a disease with global ramifications, has underscored the urgency and need for a
global effort and transparent data sharing across countries to enable better understanding and the
development of containment strategies for the virus. At the international level, the focus of COVID-19
research has drifted towards finding the host genetic determinants responsible for the large variability
in disease outcome and confer susceptibility or resistance to the development of critical illness and or
death. These investigations build upon the resources of already existing public and private databases,
while also establishing new study cohorts. Recognition of this need has driven the launch of many
collaborative and multi-country efforts to bring together the genetic community across the world to
generate, share and analyze data to discover the host genetic contributors of COVID-19 susceptibility,
severity, and disease outcomes (Table 4).

Table 4. Summary of global efforts to study the role of host determinants in SARS-CoV-2 infection
and pathology.

Study Name and
Location Objectives Proposed Methodology Study Population Web Link

COVID-19 Host
Genetics Initiative

(global collaborative
effort involving over

200 studies across
continents).

Platform to generate,
share, and analyze
data to identify the

genetic determinants
of COVID-19

susceptibility, severity,
and outcomes.

Common and rare variants
identified through GWAS
array, exome and genome

sequencing will be
considered for

bioinformatic and
statistical analysis. Many
studies may also include

immune and antibody
profiling.

Includes both retrospective
and prospective cohort

studies. The retrospective
collection group includes the
retrieval of genetic data from
existing biobanks and health

care systems.
The prospective collection

studies actively enroll
incoming COVID-19

patients.

https://www.
covid19hg.org/

COVID Human
Genetic Effort

(multi-country effort
led by Rockefeller

University)

Identify the monogenic
inborn errors of

immunity, which
predispose previously

healthy individuals
younger than 50 years

old and even older
individuals without

any overt
comorbidities to
life-threatening

COVID-19. To identify
monogenic variations
that make individuals
resistant SARS-CoV-2

infection.

Whole exome sequencing
(WES) and whole genome

sequencing (WGS) to
identify candidate

disease-causing variants.
Functional biochemical

studies to characterize the
role of candidate variant
genes and their effect on

cellular immunology.

Previously healthy young
patients (< 50 years old)

with severe COVID-19 and
their family members, and

seropositive individuals
who have remained

asymptomatic as controls.
Individuals not infected by

SARS-CoV-2 despite
repeated exposure, as

confirmed by lack of disease
and antibody titers.

https:
//www.covidhge.

com/about

GenOMICC COVID-19
study

(GenOMICC
Consortium led by the

University of
Edinburgh)

To find out whether
people’s genetics affect

their experience of
COVID-19.

Whole genome sequencing
of DNA from study

subjects.

20,000 SARS-CoV-2-infected
patients with severe

symptoms of COVID-19;
15,000 SARS-CoV-2 infected

individuals who are
asymptomatic or display

mild symptoms as controls.

https://www.
genomicsengland.

co.uk/covid-19/

IMPACC study
(at 10 research sites
across the United

States)

To determine how
certain immunological
measures correspond

to, or may even predict,
the clinical severity of
COVID-19. To identify

new targets and
optimal timing for

experimental
treatments.

Immunological and
serological analysis,

GWAS.

2000 individuals
hospitalized with COVID-19

will enroll in the study
within 36 h of admission and

will be followed up to
one year.

https:
//www.niaid.nih.

gov/clinical-trials/
immunophenotyping-
assessment-covid-
19-cohort-impacc

https://www.covid19hg.org/
https://www.covid19hg.org/
https://www.covidhge.com/about
https://www.covidhge.com/about
https://www.covidhge.com/about
https://www.genomicsengland.co.uk/covid-19/
https://www.genomicsengland.co.uk/covid-19/
https://www.genomicsengland.co.uk/covid-19/
https://www.niaid.nih.gov/clinical-trials/immunophenotyping-assessment-covid-19-cohort-impacc
https://www.niaid.nih.gov/clinical-trials/immunophenotyping-assessment-covid-19-cohort-impacc
https://www.niaid.nih.gov/clinical-trials/immunophenotyping-assessment-covid-19-cohort-impacc
https://www.niaid.nih.gov/clinical-trials/immunophenotyping-assessment-covid-19-cohort-impacc
https://www.niaid.nih.gov/clinical-trials/immunophenotyping-assessment-covid-19-cohort-impacc
https://www.niaid.nih.gov/clinical-trials/immunophenotyping-assessment-covid-19-cohort-impacc


Pathogens 2020, 9, 912 12 of 32

6. COVID-19 and CoMorbidities

The global pandemic due to SARS-CoV-2 has once again challenged the health care system
worldwide and multi-dimensional coverage of this on-going crisis revealed the significance of healthy
host response in combating infectious diseases. Host competency is often considered a key factor in
deciding the prognosis of a disease. Hence, disease trajectories and resolution are not only governed
by pathogen virulence but also attributed to the overall health of the host. Comorbid conditions
antagonize the host response against the index disease that furthers the exaggeration of otherwise
treatable symptoms (Figure 7).

Earlier epidemiological correlative studies with other RNA viruses like influenza and dengue
emphasize the strong correlation between the existence of comorbidity or polymorbidity with disease
severity [148,149]. A comprehensive analysis of cumulative cases of influenza subtype strains in
12 Catalan hospitals during 2010–2016 establishes a strong correlation. In influenza subtype B infection,
ICU admission was significantly associated with chronic obstructive pulmonary disease (COPD),
whereas those with chronic cardiovascular diseases were the least likely to be admitted to an ICU [148].
Small sample sizes have been an impeding factor for any logical deduction in the case of MERS,
however, in a study of 226 patients, diabetes followed by hypertension were frequent comorbidities [150].
To date, SARS-CoV-2 has spread in more than 200 countries and has been able to cause systemic infection
in human hosts, and the most common complications are ARDS, acute renal injury, acute coronary
injury, etc. An exhaustive analysis which includes 27 different studies with a total of around 22,000 cases
has shown some interesting facts underlying an important aspect of SARS-CoV-2 pathophysiology [151].
The prevalence of comorbidity worsens the symptoms 10-fold but does not always translate into
a fatality. Fifty-seven percent of patients have been reported to possess some comorbid condition,
with hypertension and diabetes among the most prevalent ones [151].

Pathogens 2020, 9, x  13 of 34 

 

identify new targets 
and optimal timing 

for experimental 
treatments. 

6. COVID-19 and CoMorbidities 

The global pandemic due to SARS-CoV-2 has once again challenged the health care system 
worldwide and multi-dimensional coverage of this on-going crisis revealed the significance of 
healthy host response in combating infectious diseases. Host competency is often considered a key 
factor in deciding the prognosis of a disease. Hence, disease trajectories and resolution are not only 
governed by pathogen virulence but also attributed to the overall health of the host. Comorbid 
conditions antagonize the host response against the index disease that furthers the exaggeration of 
otherwise treatable symptoms (Figure 7). 

Earlier epidemiological correlative studies with other RNA viruses like influenza and dengue 
emphasize the strong correlation between the existence of comorbidity or polymorbidity with 
disease severity [148,149]. A comprehensive analysis of cumulative cases of influenza subtype 
strains in 12 Catalan hospitals during 2010–2016 establishes a strong correlation. In influenza 
subtype B infection, ICU admission was significantly associated with chronic obstructive pulmonary 
disease (COPD), whereas those with chronic cardiovascular diseases were the least likely to be 
admitted to an ICU [148]. Small sample sizes have been an impeding factor for any logical deduction 
in the case of MERS, however, in a study of 226 patients, diabetes followed by hypertension were 
frequent comorbidities [150]. To date, SARS-CoV-2 has spread in more than 200 countries and has 
been able to cause systemic infection in human hosts, and the most common complications are 
ARDS, acute renal injury, acute coronary injury, etc. An exhaustive analysis which includes 27 
different studies with a total of around 22,000 cases has shown some interesting facts underlying an 
important aspect of SARS-CoV-2 pathophysiology [151]. The prevalence of comorbidity worsens the 
symptoms 10-fold but does not always translate into a fatality. Fifty-seven percent of patients have 
been reported to possess some comorbid condition, with hypertension and diabetes among the most 
prevalent ones [151]. 

 
Figure 7. Comorbidity predisposition across (a) SARS-CoV-2, (b) MERS, (c) H1NI, all subtypes. 
Differential percentage of comorbidities associated with viral infection types indicate their potential 
functional role in disease outcome. 

6.1. Diabetes 

The syndromic nature of diabetes is manifested through its effects on many organs [152]. In 
previous outbreaks, diabetes is known to confer an increased risk of infection, and patients having 
pre-existing conditions of diabetes were reported to have more severe outcomes than patients with 
no morbidities [153,154]. Diabetic patients are most susceptible to dermatological and urinary 
tract-associated complications, but its systemic nature has exposed much vulnerability in various 
viral outbreaks [155–158]. Diabetes is accompanied by increased levels of several pro-inflammatory 

Figure 7. Comorbidity predisposition across (a) SARS-CoV-2, (b) MERS, (c) H1NI, all subtypes.
Differential percentage of comorbidities associated with viral infection types indicate their potential
functional role in disease outcome.

6.1. Diabetes

The syndromic nature of diabetes is manifested through its effects on many organs [152].
In previous outbreaks, diabetes is known to confer an increased risk of infection, and patients
having pre-existing conditions of diabetes were reported to have more severe outcomes than patients
with no morbidities [153,154]. Diabetic patients are most susceptible to dermatological and urinary
tract-associated complications, but its systemic nature has exposed much vulnerability in various
viral outbreaks [155–158]. Diabetes is accompanied by increased levels of several pro-inflammatory
cytokines, including TNF-α, IL-6, and IL-1β [159]. An enhanced flux of electrons to the respiratory
chain causes electrons to leak and form reactive oxygen species and glycation adduct, which is
capable of eliciting the pro-inflammatory response through nuclear localization of NF-κB [160–162].
During hyperglycemia, certain glycolytic intermediates like dihydroxyacetone phosphate accumulate
and eventually transform into diacylglycerol. Protein kinase C is activated through diacylglycerol
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and results in the synthesis of TNF-α and nitric acid synthase, exaggerating an already activated
pro-inflammatory response that can lead to altered tissue pathophysiology [163,164]. At the cellular
level, mobility and phagocytosis were found to be hampered in polymorphonuclear leukocyte (PMN)
cells isolated from diabetic patients [165,166]. Hyperglycemia is also a cause of a reduction in levels of
adhesion molecules like ICAM-1 and VCAM-1 that systemically affect cellular movements to counter
various viral and bacterial attacks [166].

6.2. Hypertension

The interplay of diverse genetic factors and environmental conditions determines the complex
trait of blood pressure [167]. Abnormal variations in blood pressure are a cause that predisposes many
tissues to further damage by internal and external insults. These changes in hypo- or hypertensive
patients subject them to severe clinical complications that are likely a cause of a strong association of
hypertension with SARS-CoV-2 infection, which is to some extent due to the higher expression profile of
ACE2, a surface receptor necessary for SARS-CoV-2 entry [122,168,169]. In other respiratory disorders
which cause a collection of symptoms, together called ARDS, hypertension is already a well-established
comorbidity and can be fatal. The interplay between hypertension and COVID-19 could lead to a
synergistically increased risk for adverse outcomes due to a decrease in levels of expression of ACE2,
due to the use of its of inhibitors that facilitate further entry of SARS-CoV-2 [170]. Understanding the
underlying pathophysiology in hypertension is aided by the development of genetically developed
and experimentally induced animal models (spontaneously hypersensitive rat, Dahl salt-sensitive
rat), characterized by excessive sympathetic activation, glomerular injuries, and cardiac hypertrophy.
Pathophysiology in the above-mentioned animal models emphasized the infiltration of immune cells,
presence of oxidative stress, and enhanced levels of pro-inflammatory cytokines, which may adversely
affect SARS-CoV-2 infection outcomes, similar to diabetes [171–175].

7. Co-Infection Associated with SARS-CoV-2

Viral, bacterial, and fungal co-infections in hospitalized SARS-CoV-2 patients are poorly
understood to date. It is essential to differentiate between hospital-acquired infection and the co-presence
of other pathogens. This can be either a secondary infection due to a compromised immune system
or pre-existing commensal/s with probable functional roles. Thus, samples collected during the first
report to the hospital would be ideal to study the role of co-infections. Co-infection can stimulate
and inhibit the immune system of the host, altering the disease profile upon co-infection with other
microorganisms [176–179]. It has been observed during previous influenza pandemics that the bacterial
and viral co-infections were one of the major causes of mortality. For example, in community-acquired
pneumonia (CAP) cases, the influenza-related bacterial infection alone may account for up to 30% of
total cases [180]. Several reports indicate that viral infections have some bearing on infections/diseases
and increase the susceptibility of patients towards other diseases [181]. As the viral respiratory
infections are mostly of short duration, so the majority of the studies have focused on chronic infections
such as HIV and hepatitis A and B; thus presenting an opportunity to explore and elucidate the role
of co-pathogens during SARS-CoV-2-induced ARDS [182,183]. The prevalence of co-infection is not
uniform among SARS-CoV-2 patients across studies. However, it is observed that around 50% of the
non-survivors were carrying the co-pathogens [183]. In the majority of the studies, the co-pathogens of
SARS-CoV-2 included mainly bacteria and viruses (Figures 8 and 9).
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Figure 8. SARS-CoV-2-associated co-pathogens reported in various studies. Accounting for all the
viruses, bacteria, and fungal pathogens, we found a total of 40 respiratory co-pathogens reported by
various studies [117,182,184–187].

Clinically, it is challenging to differentiate between SARS-CoV-2-related viral infection and other
possible bacterial and fungal infections. Several studies from Wuhan have reported secondary bacterial
infections in SARS-CoV-2 patients [117,182,186,187]. Studies around co-infection will help to determine
the various viruses in the etiologic treatment of respiratory diseases and can potentially suggest various
therapeutic aspects of it.

Among all the other influenza pandemics, SARS-CoV-2-positive samples show co-infections
for Aspergillus spp., Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae.
However, the source of infection remains unclear to date. Influenza A virus was one of the common
co-pathogens observed in SARS-CoV-2 patients. It is also reported that patients with influenza
A virus showed false-negative results for SARS-CoV-2 infections [188,189]. Other than influenza,
rhinovirus/enterovirus has also been reported by several studies. Similarly, Legionella pneumophila,
Mycoplasma pneumoniae, S. pneumoniae, and Chlamydia pneumoniae were identified as bacterial
co-pathogens but very few studies have found a statistical significance for the presence of these
co-pathogens [190].

A retrospective study by Xiaojuan Zhua et al. highlighted that there are different co-pathogens
present in patients with symptomatic, mild, moderate, and severe cases of COVID-19, with a
predominance of bacterial pathogens. The reported co-pathogens Escherichia coli, Klebsiella pneumoniae,
H. influenzae, S. pneumoniae, Aspergillus spp., Epstein–Barr virus (EBV), and S. aureus were common for all
four categories, but a higher incidence of co-infections was reported in severe cases of COVID-19 [188].
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Figure 9. A co-pathogen dendrogram representing the classification of reported co-pathogens
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studies [183,184,191,192], with 104, 116, and 40 samples, respectively.

8. CRISPR-Based Interventions for COVID-19

The clustered regularly interspaced short palindromic repeats (CRISPR) system has been
extensively used since its discovery and has genome-wide applications [193]. A recent study at
Stanford University, by Stanley Qi et al., devised a strategy based on CRISPR-Cas13 called prophylactic
antiviral CRISPR in human lung epithelial A549 cells (PAC-MAN) for the inhibition of SARS-CoV-2.
The Qi lab designed a group of CRISPR RNAs (crRNAs) that targeted conserved regions in the viral
genome and spotted functional crRNAs directed against synthetic SARS-CoV-2 (Figure 10). It revealed
that the crRNA pool targeting RdRP was able to suppress reporter expression to some extent as
compared to control. The study found that Cas13d PAC-MAN could be used as a therapeutic tool
to target and degrade SARS-CoV-2 sequences in human cells by designing crRNAs for the efficient
inhibition of SARS-CoV-2 (Figure 11). However, the possible roadblock for using the PAC-MAN
strategy is in vivo delivery of the CRISPR-Cas system to cells and the use of live SARS-CoV-2 instead
of the synthetic virus [194].

The CRISPR/Cas9-mediated gene editing approach may be used for engineering B cells, as proposed
by Faiq et al. He further proposed that the substitution of endogenously encoded antibodies in
human B cells with antibodies directed against SARS-CoV-2-specific antigens generated via the
CRISPR/Cas9 system may prove to be an efficient strategy. This might be a promising tool to develop
long-lasting and effective vaccines against SARS-CoV-2 and other pathogens, including HIV, EBV,
ebola, and dengue [195].
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Figure 10. Clustered regularly interspaced short palindromic repeats (CRISPR) based antiviral targeting
strategy, PAC-MAN. The crRNAs directed against the RdRP gene and N-gene of SARS-CoV-2. Due to
the inhibition of the RdRP gene, no proliferation of the viral RNA genome will occur and due to
inhibition of the N-gene, no viral genome packaging occurs.
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Figure 11. Schematic representation of experimental workflow for crRNA-based inhibition of
SARS-CoV-2. A stable A549 cell line expressing Cas13d through lentiviral infection was developed.
Transduction with the crRNA pool was done, followed by transfection or transduction of Cas13d
A549 cells with SARS-CoV-2 reporters. After 24 hours of reporter transfection, flow cytometry was
performed to assess GFP protein expression.
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CRISPR-Based Detection Kits

Researchers across the globe are racing against time to develop rapid and innovative COVID-19
detection kits. Besides its use as an antiviral strategy, CRISPR-based systems are being harnessed
as a diagnostic tool to detect SARS-CoV-2 infection. A detection tool based on CRISPR employs an
isothermal amplification procedure within it, such as loop mediated isothermal amplification (LAMP),
recombinase polymerase amplification (RPA), or others (Figure 12). CRISPR-based detection kits utilize
the CRISPR/Cas system combined with a reporter molecule to detect the presence of SARS-CoV-2.
The readout signal is usually measured by detecting fluorescence or colorimetric change on lateral flow
strips (dipsticks). Some of the most promising CRISPR-based detection kits in use are shown in Table 5.Pathogens 2020, 9, x  19 of 34 
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Table 5. CRISPR-based detection assays.

Test Name Cas Involved/Target Sample Type Time Features References

Specific high-sensitivity
enzymatic reporter

unlocking (SHERLOCK)

Cas13a/S-gene and
Orf1ab-gene Nasopharyngeal swab 60 min

Cleaves ssRNA reporter.
Lateral flow strip-based

detection.
[196]

DNA endonuclease-targeted
CRISPR trans reporter

(DETECTR)

Cas12a/E-gene and
N-gene Nasopharyngeal/Oropharyngeal swab 30 min

Cleaves ssDNA.
Lateral flow strip-based

detection.
[197]

Combinatorial arrayed
reactions for multiplexed

evaluation of nucleic acids
(CARMEN)

Cas13a Plasma, nasal, or throat swabs <8 h Detects ssRNA.
Fluorescent readout. [198]

All-in-one dual
CRISPR-Cas12a
(AIOD-CRISPR)

Cas12a/N-gene Nasopharyngeal swab 40 min Cleaves ssDNA.
LED/UV-based detection. [199]

(FnCas9 editor linked
uniform detection assay)

(FELUDA)

FnCas9/NSP8 and
N-gene Nasopharyngeal swab 90 min

Cleaves ssDNA.
Lateral flow strip-based

detection.
[200]

CRISPR-Cas12b-mediated
DNA detection (CASdetec) Cas12b/RdRP gene Nasopharyngeal swab 40–60

min
Cleaves ssDNA.

LED/UV-based detection. [201]
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9. Pharmacological Interventions in SARS-CoV-2

9.1. Drugs and Therapeutics

Since the outbreak of COVID-19, considerable research effort has gone into unraveling the
unique viral structure, its lifecycle, and its pathogenesis to decipher key targets that may be crucial in
inhibiting the spread of SARS-CoV-2. Scientists across the globe have been struggling to develop and
design efficacious treatments to contain the disease. Most of the effort in developing a treatment for
SARS-CoV-2 is driven by relying on the experience and knowledge gained previously with SARS and
MERS viruses, all of which belong to the family of Betacoronavirus [185].

Due to the absence of definitive treatment for SARS-CoV-2 to date, clinical management of the
disease is primarily aimed at symptomatic relief and supportive care [202]. The research fraternity,
including academic labs and the pharmaceutical industry, are working hard to find a cure that may
contain the spread of SARS-CoV-2 in humans. The development of novel drugs/therapeutic agents
is an arduously long process, taking years, from preclinical to the clinical trial stage, including the
determination of its safety and efficacy. Given the urgency of the current situation, most of the global
effort is directed towards the identification and evaluation of known drugs and therapeutics that may
be repurposed for the treatment of COVID-19. An added benefit of repurposed drugs is the ease
of accessibility, known pharmacokinetic and pharmacodynamic parameters, well-established safety
profiles, and dosing regimens [203].

The most promising therapeutic options currently being explored against SARS-CoV-2 include
agents targeting critical steps in the viral life cycle, such as viral entry into host cells involving
membrane fusion and endocytosis, key structural proteins, and enzymes involved in processes such
as viral replication, transcription, assembly, and release of the virus [204,205]. Another major line of
treatment includes adjunctive therapies that target the fundamental immune regulation pathways
affected in response to SARS-CoV-2 infection. Figure 13 represents the target points of various drugs
and adjunctive therapies of some of the most promising treatments that are in an advanced stage of
clinical trials.

9.2. Vaccines

Vaccines, conventionally and traditionally, are considered major ammunition in countering viral
infections and providing protection against them. Previous work on SARS-CoV and MERS-CoV
has provided crucial scientific evidence in support of the potent immunogenicity of S protein
in raising neutralizing antibodies when compared with other proteins like M protein, N protein,
and E protein [206–208]. In both MERS and SARS-CoV, full-length S1 protein was found to be capable
of eliciting the adequate immune response but brought along some adverse physiological reactions
such as focal necrosis in the liver and pulmonary perivascular hemorrhage in animal models, leading to
the evolution of more focused programs revolving around subunit vaccines with the RBD as a potential
immunogen [208–211]. Nevertheless, all possible platforms (replicating and non-replicating viral
vector vaccines, DNA and RNA vaccines, inactivated and protein subunit vaccines) are being currently
explored and are in various phases of clinical trials (Figure 14). Herein, we discuss preclinical studies
of three vaccines that have evolved using different templates for vaccine development. In phase
3 of clinical trials, the adenovirus-based ChAdOx1nCoV-19 vaccine encodes full-length S protein
and is being developed by the University of Oxford. In rhesus macaques, the ChAdOx1nCoV-19
vaccine reduces the viral load in bronchoalveolar lavage fluid and the lower respiratory tract and
also prevents pneumonia. A balanced TH1/TH2 humoral and T cell response was observed with a
higher TH1-type cytokine titer after the first injection [212]. Using the RNA platform, the National
Institute of Health partnered with Moderna Inc. to produce an mRNA-based vaccine expressing
the prefusion-stabilized SARS-CoV-2 S protein trimer (rnRNA-1273). In preclinical studies in mice,
mRNA-1273 was found to be potent enough to elicit significant levels of neutralizing antibodies without
any sign of vaccine-associated enhanced respiratory disease [213]. PiCoVacc is another candidate in
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advanced stages of clinical trials, using an inactivated virus developed by the China-based company
Sinovac. PiCoVacc, in a combination of alum adjuvant, was mixed and injected into mice to assess the
immune correlates. Both S protein and RBD domain-specific antibodies were observed with significant
levels in sera [214].
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Figure 13. Schematic representation of the SARS-CoV-2 infection cycle within host cells and
virus-induced host immune response and possible targets of anti-COVID-19 drugs. The left section
represents the infection stage wherein, SARS-CoV-2 infects the host cells. Telmisartan and losartan are
ACE2 blockers that inhibit viral binding to it. Convalescent plasma has antibodies against the S protein
of SARS-CoV-2, dampening S protein–ACE2 interaction. Camostat mesylate inhibits TMPRSS2 and
prevents S protein priming for binding to ACE2. Chloroquine, hydroxychloroquine, and ouabain
inhibit viral fusion with host cell membranes and endocytosis. Lopinavir/ritonavir is an inhibitor of
3CL protease, blocking proteolysis of viral polypeptide chains. Favipiravir, remdesivir, and ribavirin
are inhibitors of RNA-dependent RNA polymerase (RdRp) which is required for the replication
of the viral genome. The right section depicts the host immunological response to SARS-CoV-2
infection at the pulmonary and systemic level. Here, iNO reduces pulmonary hypertension by
inducing vasodilation. Heparin is an anticoagulant that blocks thrombus formation. Toclizumab and
sarilumab are monoclonal antibodies that prevent IL-6-mediated inflammation. Baricitinib inhibits
the JAK/STAT signaling pathway involved in the inflammatory response. Corticosteroids also work
to reduce inflammation. Abbreviations: S protein: spike protein; ACE2: angiotensin converting
enzyme 2; TMPRSS2: type 2 transmembrane serine protease; ssRNA: single-stranded RNA;
Nsp: non-structural proteins; RdRp: RNA-dependent RNA polymerase; iNO: inhaled nitric oxide;
IL: interleukin; TNF: tumor necrosis factor.
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Vertical bars represent a template and at least one of the academic institutions or industries involved in the
process of developing a vaccine. Horizontal bars represent clinical trial phases. Source: DRAFT landscape
of COVID-19 candidate vaccine, WHO.

10. Future Perspectives

Targeted and large-scale genomic studies provide valuable insights into the gene, pathway,
and expression shifts, which may render people differentially susceptible to infection from SARS-CoV-2.
When combined with gene expression datasets and drug response studies, the study of host genomic
sequences further encourages the search for candidate compounds to target the viruses as they infect
human cells. Knowledge of virus dynamics combined with host response is essential for formulating
strategies for antiviral treatment, vaccinations, and epidemiological control of COVID-19 (Figure 15).
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Figure 15. Application of genomics in the management of infectious diseases. The approach integrates
the idea of “discover–understand–mechanistic elucidation–application” towards the bigger goal of
public health with patient management at the core.

The Indian population is a genetically heterogeneous group comprising more than 1.4 billion
people in over 4000 communities, several endogamous groups, and natives of many ethnicities.
The Council of Scientific and Industrial Research (CSIR) led the first large-scale comprehensive study
of the of the Indian population’s genomic substructure in the form of the Indian Genome Variation
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Consortium. The study aimed at cataloging the variations in over a thousand genes implicated in
disease and drug response, in 15,000 individuals drawn from Indian subpopulations for the discovery
of predictive markers to address the questions about ethnic diversity of the Indian population [215,216].
The IGVBrowser containing a vast database of Indian subpopulations may serve as a useful resource
for driving studies on host genetics [216]. The basal level variation data may also explain the observed
differences in mortality and morbidity rates across Indian states, mostly characterized by the presence
of distinct ethnic groups.

A program on host genetics building on the information from the IGVBrowser database for the
Indian population (similar for other population-level databases) will be a huge step towards addressing
the spread of the disease and minimizing the costs of diagnosis and treatment. An insight into potential
host contributors to SARS-CoV-2 susceptibility and characterization of genetic markers for COVID-19
is essential for many reasons. Firstly, it will allow the development of a prognostic stratification tool
to determine patients most at risk of developing severe disease and efficient patient management.
Secondly, following the development of a vaccine against SARS-CoV-2, individuals at high risk could
be prioritized for vaccination. Last but not least, it will also give a boost to treatment personalization,
precision medicine, and drug discovery.

A pan-India genomic study for COVID-19 would serve as a primer for other infectious disease
outbreaks in the future. This will also inch the Indian scientific community one step closer towards
setting up a national biobank for collecting tissue specimens from patients, along the lines of those
existing in the USA and European nations. A biobank for the genomic profiling of patients containing
data for thousands of participants will provide empirical evidence to improve clinical care during this
pandemic and later.

11. Conclusions

SARS-CoV-2 is not the first virus (pathogen) to pose a health scare for the public but, possibly the
footprint of SARS-CoV-2 infection has persuaded us to work towards an integrative approach.
Specifically, the frequency with which the RNA viruses have led to health challenges requires
broad understanding of the infection mediated by RNA viruses as well as the virus themselves.
Learnings from the current situation would potentially feed into long-term understanding of the
host–pathogen paradigm.
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