
Enhancing Ligand and Protein Sampling Using Sequential Monte
Carlo
Miroslav Suruzhon, Michael S. Bodnarchuk, Antonella Ciancetta, Ian D. Wall, and Jonathan W. Essex*

Cite This: J. Chem. Theory Comput. 2022, 18, 3894−3910 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The sampling problem is one of the most widely
studied topics in computational chemistry. While various methods
exist for sampling along a set of reaction coordinates, many require
system-dependent hyperparameters to achieve maximum efficiency.
In this work, we present an alchemical variation of adaptive
sequential Monte Carlo (SMC), an irreversible importance
resampling method that is part of a well-studied class of methods
that have been used in various applications but have been
underexplored in computational biophysics. Afterward, we apply
alchemical SMC on a variety of test cases, including torsional
rotations of solvated ligands (butene and a terphenyl derivative),
translational and rotational movements of protein-bound ligands, and protein side chain rotation coupled to the ligand degrees of
freedom (T4-lysozyme, protein tyrosine phosphatase 1B, and transforming growth factor β). We find that alchemical SMC is an
efficient way to explore targeted degrees of freedom and can be applied to a variety of systems using the same hyperparameters to
achieve a similar performance. Alchemical SMC is a promising tool for preparatory exploration of systems where long-timescale
sampling of the entire system can be traded off against short-timescale sampling of a particular set of degrees of freedom over a
population of conformers.

1. INTRODUCTION

The sampling problem presents one of the biggest challenges
in the field of classical computational chemistry, particularly
biomolecular simulation.1,2 Since current computational power
is insufficient for studying statistical mechanical problems of
systems with more than 10,000 atoms at the relevant
millisecond to minute timescales, enhanced sampling methods
have been an indispensable tool in the computational chemist’s
arsenal, trading dynamic detail for the sampling of relevant rare
transitions at short timescales.
More generally, the enhanced sampling problem can be

referred to as the multimodal global sampling problem, that is,
sampling from a probability distribution with multiple relevant
modes (i.e., highly populated states), which are highly
disconnected and whose locations are generally not known a
priori. In a typical physical application, multimodality
manifests itself through high kinetic barriers, where the
probability of surmounting them decreases exponentially with
their heights. As a result, many such transitions are practically
impossible at the currently achievable computational time-
scales. Enhanced sampling research encompasses two key
components: the optimal choice of important degrees of
freedom (collective variables, CVs), which is system-depend-
ent, and the method used to sample these degrees of freedom.
There are many such enhanced sampling methods,1 some of
the most widely known being replica exchange molecular

dynamics (REMD),3−6 metadynamics,7−9 and umbrella
sampling.10

A common challenge for enhanced sampling is the need for
some prior knowledge of the system under study, which
manifests itself beyond the need for a relevant CV. For
example, REMD and umbrella sampling benefit greatly from an
optimal spacing of the intermediate states, and methods
involving nonequilibrium switching11,12 are most efficient
when low-variance pathways are used. An obvious requirement
for a robust enhanced sampling method is therefore its ability
to adaptively tune itself to the system studied, irrespective of
the system complexity.
While there has been a considerable body of work in

developing adaptive versions of some of the above
methods,9,13−15 here, we shift our focus to another promising
alternativesequential Monte Carlo (SMC).16,17 With SMC
being one of the oldest enhanced sampling algorithms,16 it has
been rediscovered and further developed in many fields, such
as statistics,18 robotics,19 meteorology,20 solid-state
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physics,21,22 and quantum chemistry,23 often under different
names (particle filtering,24 weighted-ensemble annealing,25

population annealing,21 Rosenbluth sampling,16 configura-
tional bias Monte Carlo,26 and diffusion quantum Monte
Carlo23). While SMC has already been used in classical
computational chemistry as a way to improve sampling
methods utilizing nonequilibrium switching,27−29 its usage in
biomolecular systems has been mostly restricted to polymer
growing and protein folding,30−32 and its use with more
sophisticated force field models has been underexplored.
Most relevant to this work are the recent publications by

Christiansen et al.,33,34 where the authors used an adaptive
tempered version of SMC to explore peptide conformations
using molecular force field models. In this work, we will extend
this methodology to an alchemical setting, where instead of
uniformly increasing the temperature of the whole system, a
small subset of the molecular interactions will be completely
decoupled instead. This approach is particularly suitable for
exploring specific molecular degrees of freedom of interest and
has been utilized in other methods, such as Hamiltonian
replica exchange molecular dynamics (H-REMD)35,36 and
nonequilibrium candidate Monte Carlo,12,37 and is closely
related to alchemical free energy (AFE) methods.38 We will
also apply alchemical SMC on a variety of protein−ligand
complexes to measure its suitability for handling high-
dimensional systems of practical interest.
In the following, we will first present one of the most

popular SMC algorithms, sequential importance resampling
(SIR).17 The original version of SIR is not adaptive and
conceptually similar to REMD3,4 and simulated tempering.39,40

Afterward, we will discuss several modifications to the original
method, some of which have been extensively explored in the
field of statistics, while others have been derived from physical
considerations and nonequilibrium statistical mechanics. These
will allow us to apply SMC to practically relevant scenarios.
Finally, we will conclude with a variety of test cases, where we
will show examples of enhancing torsional angle sampling and
ligand binding mode exploration in systems with increasing
complexity.

2. FUNDAMENTALS OF SIR

The fundamental assumption behind SIR is that one starts
from a distribution that is trivial to sample from (e.g., a
uniform distribution). In most practical examples, where the
distributions have many correlated dimensions, this is not
possible and the initial distribution is chosen so that transitions
between a subset of the modes are more likely than in the
distribution of interest. Afterward, a population of samples is
propagated over a number of intermediate distributions that
connect the initial distribution to the final distribution of
interest.
The main focus of this work are Boltzmann-like distributions

of the form

x e( , ) u x f( , ) ( )π λ ⃗ = λ λ− ⃗ + (1)

where x ⃗ are the system coordinates; λ is an adjustable
parameter, such that 0 ≤ λ ≤ 1; u(λ,x)⃗ is the dimensionless
potential energy of the system, which can also contain
additional terms, such as a pressure−volume term in the case
of an isothermal−isobaric ensemble; and f(λ) is the
dimensionless free energy, which normalizes the distribution.

The coupling parameter λ is defined to be 0 at the initial
distribution and 1 at the final distribution of interest.
Each SIR iteration consists of three steps (Figure 1):

sampling, reweighting, and resampling. Any valid samplers can

be used in the first step, such as Markov chain Monte Carlo
(MCMC) or Langevin molecular dynamics (MD), to generate
a population of N locally decorrelated samples (walkers). The
second step determines the relative transition probability of the
j-th walker p(λi+1|λi,xj⃗) between the current distribution π(λi,x)⃗
and the next distribution in the sequence π(λi+1,x)⃗, 0 ≤ λi < λi+1
≤ 1. These relative transition probabilities are normalized and
converted into importance sampling weights wj(λi+1|λi), which
are then assigned to each walker
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The final step of an SIR iteration consists of weighted
resampling with replacement based on these weights to
generate a new set of equally weighted N walkers. This results
in the high-weight walkers being copied multiple times and the
low-weight walkers being annihilated. This three-step
procedure is then repeated for each consecutive distribution
until the final distribution has been reached.
One can readily see what sets SIR apart from other

enhanced sampling methods: the “survival of the fittest”
approach combined with the lack of reversibility and the fact
that the method does not satisfy the rather restrictive detailed
balance condition, meaning that SIR only explores the best
paths and that one can “peek into the future” and adapt the
hyperparameters of the method based on this knowledge. This
notwithstanding, SIR satisfies a more general stationarity
condition, balance,41 and is known to be completely rigorous
in terms of preserving the target distribution π(1,x)⃗ in the limit
of infinite walkers and infinite sampling at π(0,x)⃗.42 This makes
it an asymptotically valid sampling method, similar to all other

Figure 1. Three stages of each SIR iteration: sampling, reweighting,
and resampling. Each unique walker is shown with a different color,
and the size of the walker represents its weight. Here, π(0,x)⃗ and
π(1,x)⃗ represent the initial and final distributions, respectively.
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sampling methods requiring an infinite amount of samples for
convergence (e.g., all methods utilizing MD and/or MCMC).
It can be shown that the expectation value of the

unnormalized weights w e( )j i i
u x u x

1
( , ) ( , )i j i j1λ λ̃ | ≡ λ λ

+
⃗ − ⃗+ of the

samples generated from π(λi,x)⃗ is an unbiased estimator of

the partition function ratio eZ
Z

f f( )
( )

( ) ( )i

i

i i1 1=λ
λ

λ λ−+ + (Zwanzig

equation38). This means that Z(1)/Z(0) can also be estimated
in an unbiased way from the products of the consecutive
expectation values of the unnormalized weights. If one is
interested in obtaining unbiased expectation values over
separate SIR runs, then the final samples from each run need

to be reweighted by the total estimated Z
Z

(1)
(0)

̂
for this run,43

which can be interpreted as the collective relative weight of the
final samples. In effect, the samples are weighted by their free
energies, as reflected in the partition function ratio. In this case,
the unbiased expectation value ⟨O⟩ of an observable O over K
independent SIR simulations, each having M walkers, is
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where Oik is the observable evaluated on the i-th walker in the

k-th simulation and Z
Z k

(1)
(0)

̂ is the estimated collective walker

weight of the k-th simulation.
It is known that this sample reweighting procedure is not in

general unbiased for adaptive SIR, where the strides in the λ
space depend on the weights at each step.44 Although this
condition can be circumvented by running adaptive SIR once
and using the derived protocol for all consecutive repeats,45

this approach is not practical for running simulation repeats in
parallel, and in this study, we will apply the reweighting
procedure during analysis regardless of this and demonstrate
its sufficient precision in a wide range of test cases.

3. ADAPTIVE ALCHEMICAL SMC

This section highlights some important considerations about
performing SMC on a protein−ligand system, as well as several
changes to the base method, most of which have been
previously considered in the literature.33,34,46 Some of these
modifications allow us to substitute the system-dependent
hyperparameters (e.g., the exact sequence of optimal
intermediate distributions) with system-independent hyper-
parameters (e.g., adaptively choosing the intermediate
distributions based on a constant distribution overlap).
3.1. Alchemical Perturbation versus Tempering.

Enhancing sampling in the temperature space is valuable
when one wants to treat all degrees of freedom equally.
However, this approach becomes less feasible for large systems,
and enhancing specific degrees of freedom is often more
desirable whenever possible. In this work, we consider systems
where some degrees of freedom are of greater interest than
others. For example, when calculating solvation or protein−
ligand binding free energies, the small-molecule rotamers are
expected to influence the result more than any other degrees of
freedom. Therefore, the molecular torsions together with
center of mass (COM) translation and rotation constitute
arguably the most important degrees of freedom for most small

molecules. These are also the degrees of freedom that have
multiple minima, often separated by high-energy barriers.
In these cases, one can use an alchemical approach with a

coupling parameter λ, where λ = 0 denotes all relevant
interactions turned off and λ = 1 represents the target potential
energy function of the system (Figure 2). In this regime, one

can readily use any knowledge from the AFE literature. Most
notably, an often employed method for deriving the functional
form of the intermediate distributions is to introduce a soft-
core potential,47 which disposes of certain singularities in the
potential energy function, thereby improving the statistical
efficiency of any estimators dependent on the intermediate λ
states. This will be invaluable for the systems discussed later,
allowing us to make high-energy insertions and rotations
without much of a performance penalty.
There are two common ways to turn on the potential energy

interactions: the first is to use the soft-core potential only on
the Lennard-Jones (LJ) part of the perturbation, followed by a
linear coupling of the electrostatics (“split protocol”), and the
second method involves concurrent introduction of all relevant
potential terms (“unified protocol”), meaning that a soft-core
functional form needs to be used for both LJ and electrostatic
interactions. It is expected that a unified protocol is generally
less desirable due to the presence of soft-core electrostatic
terms, meaning that overlapping positive and negative charges
are highly energetically favorable and such unphysical
structures can dominate the sampling. On the other hand,
the split protocol is expected to produce structures biased
toward steric favorability since most of the resampling is
expected to take place before introducing the electrostatics. In
this work, we will explore and evaluate both protocols.

3.2. Adaptively Determining λi+1. One can use the
knowledge obtained from the distribution of the transition
probability weights to assess the quality of the configurational
space overlap between the current distribution π(λi,x)⃗ and the

Figure 2. Exploring conformational degrees of freedom with SMC
using an alchemical parameter λ. At λ = 0, all of the nonbonded
interactions involving the 3-aminophenyl group are fully decoupled,
and the distribution of the torsional angle is uniform. At λ = 0.5, the
3-aminophenyl group is partially coupled, and at λ = 1, it is fully
interacting, in both cases resulting in two main modes/states.
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next distribution in the sequence π(λi+1,x)⃗. In general, one can
use any measure of the distribution overlap to achieve this. In
the SMC literature, an overwhelmingly popular metric is the
effective sample size (ESS) estimator RESS

48
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( )

i i
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j i i
ESS 1
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λ λ
λ λ

| =
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A general problem with most overlap metrics is the difficulty
in defining what value range can be considered “good”.
Although ESS-based measures can be interpreted intuitively
more readily than other measures, it has been suggested49 that
RESS is not necessarily a reliable estimator for the true ESS and
should only be seen as a rough heuristic. Instead, one can use a
much more conservative measure Rmin, which acts as a lower
bound for the true ESS49

R
w w

1
max ( ), ..., ( )i i N i i

min
1 1 1λ λ λ λ

=
[ | | ]+ + (5)

After defining the desired system-independent value of this
measure, one can iteratively34,44,46 determine the next value in
the sequence (λi+1), which results in an overlap metric closest
to this threshold using a basic root finding algorithm, such as
bisection. Although each iteration of this adaptive algorithm
requires energy evaluations of each walker, they are in practice
much faster to perform than generating new samples using
dynamics, and the speed of this step will likely be limited by
the computational implementation.
The utility of adaptively determining the λ protocol in this

way is the guaranteed constant overlap between sequential
distributions and the independence of the resulting protocol
on the nature of the distributions. Furthermore, if one uses the
same overlap metric and value, more dissimilar initial and final
distributions will automatically result in a higher number of
intermediate distributions without any additional system-
specific input.
3.3. Adaptively Determining Optimal Sampling Time.

An overwhelmingly common way to generate new config-
urations in biomolecular simulations is MD. This method will
be very useful for generating locally decorrelated samples at
each λ value. While such decorrelation is not a requirement for
the sampling validity of the algorithm, it is in practice desirable
to do so since it improves the sample diversity decreased by
the resampling procedure. However, the decorrelation time is
typically dependent on the system and the nature of the
alchemical perturbation. Although it is common practice to
choose a value between 1 and 10 ps to achieve local
decorrelation, making this step adaptive as well could help
maintain the balance between obtaining valid locally
decorrelated samples independent of the system and spending
as little computational effort as possible.
Since in our typical systems of interest, the equilibrium

probability of observing a particular configuration xj⃗ at some λ
is solely a function of u(λ,xj⃗), a natural way to measure sample
decorrelation is to measure the Pearson correlation coefficient
rτ between the potential energies of all initial walkers (u(λ,xj⃗,0);
j = 1, ..., N) and the walkers decorrelated for τ timesteps
(u(λ,xj⃗,τ); j = 1, ..., N). Afterward, the sampling step can only
be terminated if rτ is within some acceptable range,46 for
example, |rτ| ≤ 0.1. In practice, this step also requires an energy
evaluation for every walker, and a conceivable implementation
could, for instance, involve evaluating these energies every 1 ps,
so as to minimize the computational overhead.

3.4. Sampling at λ = 0. SMC only converges to the
correct distribution at λ = 1 if the initial distribution at λ = 0
has been sampled exhaustively. In a protein−ligand system,
this means running long-timescale protein dynamicsa task
that itself often requires other sophisticated enhanced sampling
methods to produce satisfactory results. An additional problem
is the fact that a very small fraction of the generated structures
at λ = 0 will typically be relevant at λ = 1 due to the
diminishing phase space overlap. In this work, we will not be
concerned with long-timescale dynamics, and we will instead
explore ligand conformers from a limited set of locally
decorrelated equilibrated starting structures. The aim behind
this approximation is being able to quickly estimate
equilibrium populations biased to the initial structure either
as a qualitative tool or as a way to provide information to more
expensive methods, such as AFE calculations. Moving beyond
this approximation requires a more sophisticated SMC
algorithm, which can achieve adequate sampling over time
and is thus beyond the scope of this work.
Since this initial stage of SIR is the only checkpoint that

generates sample diversity, it is important to take advantage of
this. In the test cases we are going to consider, there are three
types of sampling moves, for which we know the underlying
distribution: torsional rotation, COM rotation, and translation.
In all of these cases, we can generate samples typically 1−2
orders of magnitude more than our desired number of walkers
due to the fact that all translational and rotational distributions
of the noninteracting atoms in these cases are uniform and
therefore trivial to sample.

3.4.1. Torsional Rotation. If one removes all nonbonded
interactions from at least one side of the torsional bond along
with all dihedral terms centered around it, then the initial
distribution with respect to the dihedral angle ϕ is uniform,
and one can generate configurations by simply drawing
random numbers between 0 and 2π. One can use any valid
sampling method to achieve this, and in this work, we opt for a
low-discrepancy alternative to pseudo-random number gen-
eration, which consists of generating equally spaced samples
between 0 and 2π with a pseudo-randomly generated offset. In
this way, we can be more certain in the representativeness and
quality of our samples.

3.4.2. COM Rotation. COM rotation requires all non-
bonded interactions between the molecule and the environ-
ment to be turned off, and it needs three degrees of freedom to
be defined: two spherical coordinate angles on the unit sphere,
defining the axis of rotation (θ and ϕ), and the amount of
rotation ψ around that axis. To generate uniform rotations on
the unit sphere, both ϕ and ψ need to be uniformly distributed
between 0 and 2π, while θ = arccos(2X − 1) for a uniformly
distributed variable X ∈ [0, 1). As in the previous example, one
can use different sampling methods to generate the uniformly
distributed variables, and although one can couple the different
degrees of freedom to reduce the multidimensional sample
discrepancy (i.e., sample “clumping”), in this study, we opt for
shuffled one-dimensional grid-based samples with a pseudo-
random offset for each degree of freedom. Further research will
be needed to test alternative low-discrepancy sampling
methods for COM rotation.

3.4.3. COM Translation. Much like COM rotation, COM
translation requires the molecule of interest to be decoupled
from its environment. The simplest case is COM translation
within a cuboidal region, in which case only three uniformly
distributed random numbers between −1 and 1 are needed to
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define the new reduced coordinates, which can be then scaled
to the dimensions of the region of interest. Alternatively, one
can uniformly generate points within a sphere with radius R.
To achieve this, we can generate the spherical angles θ and ϕ
in the same way as in the previous section, while the radius can
be expressed as r X3= for a uniformly distributed variable X
∈ [0, 1). Final scaling by R results in uniform spherical
sampling. Similar considerations about low-discrepancy sam-
pling apply here, and we again opt for the same routine for
uniform sample generation as in the previous section.
3.4.4. Coupled Moves. Since in all of our examples, we

generate random samples for each degree of freedom
independently of the others, this procedure is readily
extendable to multiple degrees of freedom. However, the
presence of more than a few degrees of freedom can quickly
lead to a combinatorial explosion, thereby reducing the
sampling efficiency, and in this case, one should consider
multidimensional low-discrepancy sampling alternatives. How-
ever, this approach is beyond the scope of this work, and we
will not be utilizing it.
3.5. Using a Conservative Resampling Method. One

drawback of SIR is that any loss of walker diversity is
irreversible, and in many cases, all of the final samples can be
traced to just a few initial samples.50 It is important, therefore,
to minimize unnecessary diversity loss during the resampling
step.
The most obvious way to perform weighted resampling is

multinomial resampling with replacement. In this case, one
draws each new walker independently from the others. This is
problematic since there is always a finite, albeit small,
probability that the same sample will be resampled in all
cases, resulting in sampling that is potentially not representa-
tive of the true weights.
More conservative resampling methods have been proposed,

the most deterministic and widely used of which is systematic
resampling.51 In this case, it is guaranteed that the number of
new samples corresponding to each weight wj(λi+1|λi) (derived
from eq 2) is between the rounded-down fractional number
and the rounded-up fractional number of walkers Mwj(λi+1|λi),
where M is the number of walkers in the next iteration. For
example, if the normalized weight of a particular walker is
determined to be 0.27 and the total number of walkers in the
next iteration is 10, then the fractional number of copies
allotted to this walker is 2.7, meaning that systematic
resampling will have a 70% probability of copying this walker
three times and 30% probability of copying it twice. Because of
this certainty, systematic resampling is highly reliable and will
be the algorithm of choice in this study.
3.6. SMC Workflow in Practice. The first step in

describing the problem of interest is identifying the relevant
degrees of freedom to be explored, which in turn define a set of
interactions to be decoupled at λ = 0. One then supplies an
initial structure, the desired number of walkers, and target
values for the correlation and decorrelation metrics to the
procedure, resulting in an ensemble of structures generated at
λ = 1 (Algorithm 1). While the choice of these hyper-
parameters is somewhat arbitrary and dependent on the
available computational resources, they can be used on a
variety of systems, and this is the approach that will be taken in
this work.

4. METHODS
4.1. System Setup and Simulation. All of the following

SMC simulations have been run using OpenMM 7.4.2,52

OpenMMTools53 0.19.0, and OpenMMSLICER 1.0.0, a plugin
for OpenMM developed during the course of this study,
available at https://github.com/openmmslicer/openmmslicer.
All proteins were protonated using PDB2PQR54 and
subsequently parameterized using the ff14SB55 protein force
field. GAFF256 with AM1-BCC charges57,58 was used for all
small molecules. All systems were solvated in cubic boxes of
TIP3P59 water with a length of 3 nm for the solvated ligand
systems or 7 nm for the protein−ligand systems. Each system
was run independently in six replicates from the same initial
coordinates. Each run consisted of an initial minimization,
followed by 100 ps of equilibration at λ = 0 before the SMC
run. During this equilibration, all protein backbone atoms were
harmonically restrained with force constants of 5 kcal mol−1

Å−2. 500 walkers were used for each replicate with 100 initial
conformers generated per walker, where all rotatable bonds
between alchemical atoms were rotated in addition to the main
alchemical moves. An energy decorrelation condition of |rτ,target|
≤ 0.1 alongside a minimum relative configurational space

overlap of
R

N
1
5

min,target

walkers
≥ was consistently used throughout the

simulations. These values were arbitrarily chosen with the goal
of providing a reasonable balance between the computational
cost and sampling quality. Systematic resampling was
performed in all cases, and all velocities were resampled
from the Maxwell−Boltzmann distribution after each iteration.
All short-range nonbonded interactions had a cutoff of 1.2

nm, while long-range electrostatics were calculated using the
particle mesh Ewald method.60 A BAOAB61 Langevin
integrator at 298 K with a 2 fs timestep and a collision rate
of 1 ps−1 was used, where all water molecules were constrained
using the SETTLE62 algorithm and all other bonds containing
hydrogen atoms were constrained using the SHAKE63 and
CCMA64 algorithms. A Monte Carlo barostat was used for
pressure control at 1 atm with rescaling attempts every 50 fs.
LJ and electrostatic interactions were switched on either
simultaneously (unified protocol) or consecutively from λ = 0
to λ = 0.8 and from λ = 0.8 to λ = 1, respectively (split
protocol). A soft-core potential was used for the LJ interactions
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in both cases and for the electrostatics during the unified
protocol with α = 0.5 using the following functional form

r r

r r

( (1 ) ) (sterics)

( (1 ) ) (electrostatics)

ij ij ij

ij ij ij

,eff
6 6 1/6

,eff
2 2 1/2

α λ σ

α λ σ

= − +

= − + (6)

where all interatom distances rij in the potential energy terms
involving alchemically modified atoms are replaced with rij,eff in
the potential energy function and σij is the “particle size”
parameter defined by the LJ potential for the ij-th particle pair.
In all cases, nonbonded interactions were completely
annihilated rather than decoupled from the environment at λ
= 0.
SMC was then validated against established methods in one

of two ways. The first approach involved a H-REMD
simulation in the λ space between 0 and 1 with multiple
intermediates defined similarly to SMC. The resulting
conformational populations were afterward obtained from
the averaged samples at λ = 1. The second approach involved
AFE calculations, which were only performed when there were
only two expected rotamers separated by a high kinetic barrier.
In this setting, two separate perturbations were performed in a
single-topology fashion from both initial conformations, where
the only difference was the rotation of the relevant torsion by
180°, to the nearest common physical intermediate (i.e., to
propene in the case of butene and to a phenyl group in place of
a substituted phenyl group). The corresponding dihedral terms
were not scaled during the AFE calculations so that no
unwanted transitions between the rotamers of interest would

be observed. The population ratio between both rotamers
p

p
state1

state2

was then calculated using the formula kT ln
p

p
state1

state2

=

ΔGstate1→intermediate
⊖ − ΔGstate2→intermediate

⊖ .
Both AFE and H-REMD calculations were performed in

sextuplicate in GROMACS65 2018.4 patched with PLUMED66

2.4.3 using ProtoCaller67 1.1 from the same initial structures as
those used for the SMC runs (and in the case of AFE, the
relevant manually generated rotameric states). In all cases, the
alchemically decoupled groups in the H-REMD simulations
were the same as those in the SMC simulations. The only
exceptions were the T4-lysozyme/3,5-difluoroaniline simula-
tions, where a single ligand carbon atom remained coupled at λ
= 0 to prevent diffusion away from the (closed) binding site
without the need of additional restraint potentials. In some
cases, several batches of H-REMD simulations were run from
different starting conformations to investigate initial structural
biasing. These will be indicated later in the text.
The split alchemical protocol was used during both AFE and

H-REMD calculations, with 30 initial λ windows used for co-
perturbing the soft-core sterics and the bonded interactions
and 10 subsequent windows for the electrostatics. All λ values
were equally spaced to two significant figures, except for the
initial values, which were more closely spaced in an attempt to
increase the phase space overlap: 0.001, 0.01, 0.02, 0.03, and
0.05. The Bennett acceptance ratio68 was used for free energy
analysis with snapshots every 5 ps.
The AFE protocol involved an initial 25,000-step steepest

descent minimization, followed by a 50 ps NVT equilibration

Figure 3. Two butene stereoisomers (a,b) and the two isomers of the terphenyl derivative (c,d) with populations measured via AFE and SMC (e,f)

using the split and unified protocols. The heights of the bars represent the mean values weighted using the estimated partition function ratio Z
Z

(1)
(0)

̂,
and the error bars represent one weighted standard deviation based on six independent runs (shown as individual data points), as described in
Section 4.2.
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and a 50 ps NPT equilibration before a 4 ns NPT production.
The Berendsen barostat69 was used for equilibration in all
cases, while the Parrinello−Rahman barostat was used for the
production runs.70 The LINCS algorithm71 was used to
constrain the non-water hydrogen atoms during both stages,
while the rest of the simulation settings matched the ones from
the SMC runs. In the H-REMD simulations, the above
equilibration schedule was only performed at λ = 1, and the
resulting volume was fixed for all replicas. This was followed by
an additional minimization and equilibration only in the NVT
ensemble and subsequent 4 ns simulations at constant volume.
During both H-REMD equilibration and production, adjacent
replica swaps were attempted every 1 ps.
4.2. Analysis. All of the measured populations in this study

were weighted by the estimated partition function ratio Z
Z

(1)
(0)

f̂or

the relevant simulation, as previously described in eq 3. These
were used to report weighted averages and weighted sample
standard deviations. Since the latter can be low even when
there is a high spread of data due to large discrepancies in the
replicate weights, all replicate data points will also be added to
the plots to visualize the unweighted spread of the resulting
values between the runs. On the other hand, the estimated
dimensionless free energies and the simulation times have been
reported as unweighted averages with unweighted standard
deviations in the main text.

To appropriately analyze the relevant kinetically separated
states, clustering on the degrees of freedom of interest was
performed. In most cases, this was achieved using manually
defined cluster boundaries determined from the observed
multimodal distributions of the angle of interest. The only
exception is the ligand common core clustering analysis
performed for transforming growth factor β (TGF-β), where
all trajectories at λ = 1 from the SMC and H-REMD
simulations were pooled together and aligned against the
protein backbone α-carbon atoms of the initial structure using
MDTraj72 and MDAnalysis.73,74 Afterward, the three Euler
angles providing the best alignment of the common core ligand
atoms against their initial coordinates were calculated using the
align_vectors routine implemented in SciPy.75 The sines and
cosines of these three Euler angles (six degrees of freedom in
total) were used to perform agglomerative clustering with
default settings, as implemented in scikit-learn.76 This analysis
resulted in two clusters, whose populations will be reported
later in the text alongside two representative structures
corresponding to each cluster.
Where applicable, the number of round trips of the H-

REMD simulations has been reported. These have been
calculated as the total number of round trips of all replicas,
where a round trip denotes the transition from λ = 1 to λ = 0
and back of a single replica.

Figure 4. Three Val111 rotamers (a−c) in T4-lysozyme/p-xylene and the relative populations of all states using split and unified SMC and H-
REMD from the three different initial rotamers (d). The heights of the bars represent the mean values weighted by the estimated partition function

ratio Z
Z

(1)
(0)

̂, and the error bars represent one weighted standard deviation based on six independent runs (shown as individual data points), as

described in Section 4.2.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01198
J. Chem. Theory Comput. 2022, 18, 3894−3910

3900

https://pubs.acs.org/doi/10.1021/acs.jctc.1c01198?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01198?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01198?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01198?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c01198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


In the following results, sampling times have been reported
as the aggregate time of all λ windows (AFE and H-REMD) or
the total of all walkers (SMC).

5. RESULTS

5.1. Butene in Water. One of the simplest systems
involving a high kinetic barrier is the cis−trans isomerization of
butene solvated in water (Figure 3). Although not of significant
practical interest, this test case is a good demonstration of
SMC’s capabilities in an ideal setting. To explore this kinetic
barrier, all atoms on one side of the double bond, together with
all corresponding dihedral terms, were decoupled from their
environment at λ = 0. This enabled us to directly sample this
dihedral angle from the uniform distribution at λ = 0.
The results from SMC using both the unified and split

protocols are presented in Figure 3e. Both protocols compare
favorably to the converged 160 ns AFE results (70 ± 0%
trans), with the split protocol resulting in 71 ± 5% and the
unified protocol yielding an average of 74 ± 5%. In addition,
both protocols result in similar performances, with 16 ± 1 ns
total computational for the adaptive split protocol and 15 ± 1
ns for the adaptive unified protocol. Finally, both protocols

result in comparable standard deviations of −ln Z1/Z0 (here
and henceforth referred to as “dimensionless free energy”) with
values of 4.79 ± 0.28 and 4.89 ± 0.15 for the split and the
unified protocols, respectively, indicating good convergence in
both cases.

5.2. Terphenyl in Water. A much more challenging test
case with an insurmountable kinetic barrier is the terphenyl
derivative shown in Figure 3. It is expected that only
alchemical methods can handle such a system since
approaching the kinetic barrier with all interactions turned
on will result in large repulsive forces and numerical instability.
Moreover, alchemically decoupling the tert-butylphenyl sub-
stituent is also likely to be challenging, making this system a
good example of a difficult enhanced sampling problem in
solution. Similar to the previous test case, one of the tert-
butylphenyl substituents, as well as all dihedral terms
corresponding to the rotatable bond, was completely
decoupled at λ = 0 to facilitate sampling.
Figure 3f demonstrates that both the split and unified

protocols yield similar results for the main cis conformer: 87 ±
7 and 83 ± 9%, respectively, compared to 83 ± 0% using 160
ns AFE. Moreover, both methods estimate the dimensionless

Figure 5. Two 3,5-difluoroaniline binding modes (a,b) bound to T4-lysozyme, the relative populations of both ligand states using the split and
unified SMC protocols and H-REMD (c), and the Val111 states from the same simulations (d). The heights of the bars represent the mean values

weighted by the estimated partition function ratio Z
Z

(1)
(0)

̂, and the error bars represent one weighted standard deviation based on six independent runs
(shown as individual data points), as described in Section 4.2.
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free energy very precisely: 35.60 ± 0.23 for the split protocol
and 35.64 ± 0.19 for the unified protocol, indicating good
sampling consistency between the SMC alchemical protocols
and repeats. Finally, both methods show similar performance,
with the split protocol being slightly slower on average (42 ± 2
ns) than the unified protocol (37 ± 3 ns). The longer average
simulation times compared to that of the butene perturbation
show that the adaptive protocol with the same hyper-
parameters automatically allocates more computational time
to a more difficult problem, as expected.
5.3. T4-Lysozyme/p-Xylene. A seemingly simple case that

nevertheless showcases the inability of regular MD to provide
adequate sampling is the exploration of the active site Val111
rotamers (Figure 4a−c) in model T4-lysozyme L99A with
bound p-xylene (PDB ID: 187L77). It has previously been
shown78 that MD results in highly insufficient rotamer
transitions even at 1 μs, suggesting that enhanced sampling
is indispensable for this system. We can handle this system
similarly to the previous test cases by completely decoupling
the Val111 isopropyl group and the corresponding dihedral
term to facilitate movement at λ = 0. In this setting, the
sampling of p-xylene was not enhanced.
The resulting SMC protocols are highly efficient, requiring

an average of 25 ± 2 and 21 ± 2 ns per repeat for the split and
unified protocols, respectively, while exploring all relevant
Val111 rotamers. Although the split protocol results in higher
variance than the unified protocol (Figure 4d), both methods
result in similar torsional populations and are qualitatively
consistent with one another. This is also demonstrated by the
relatively high precision of the dimensionless free energy:
−43.09 ± 0.85 and −44.32 ± 0.72 for the split and unified
protocols, respectively.
To test the accuracy of the results, they were compared

against six H-REMD simulations from each initial Val111
conformer (18 simulations in total) with 160 ns per repeat, or
4 ns per replica. As shown in Figure 4, even after an average of
252 ± 13 round trips per repeat, there is a significant bias in
the populations depending on the starting conformation. This
discrepancy can be partially attributed to the fact that the H-
REMD implementation used does not explicitly draw the

decoupled dihedral from the uniform distribution at λ = 0 but
instead relies purely on integrator decorrelation to achieve this,
meaning that any Val111 state transitions are effectively slowed
down even when there are no kinetic barriers. In contrast, the
SMC simulations are not biased toward the initial Val111
conformation since all simulations start from a completely
decoupled state. Nevertheless, the relative ranking of the
populations is consistent between different starting structures,
as well as with the SMC simulations using either the split
protocol or the unified protocol. Although the predicted
dominant rotamer (trans) does not correspond to that in the
crystal structure [gauche(−)], the agreement between both
enhanced sampling methods suggests that this discrepancy is
most likely related to the force field quality and/or long-
timescale populations shifts due to, for example, protein rare
events, which are beyond the scope of this work.

5.4. T4-Lysozyme/3,5-Difluoroaniline. A more difficult
test case is coupling the Val111 motion with translational and
rotational movements of the ligand. An example ligand is 3,5-
difluoroaniline bound to a L99A/M102Q T4-lysozyme
mutant. In this case, the ligand was completely decoupled in
addition to the Val111 isopropyl group and uniformly moved
at λ = 0 within a sphere with a radius of 0.5 nm centered on its
initial COM, suggested by the crystal structure (PDB ID:
1LGX79). Since there were two competing ligand binding
modes in the electron density, the one with the higher
experimentally determined occupancy was chosen for the
initial COM evaluation.
The SMC simulations required an average of 48 ± 2 ns

simulation time for the split protocol and 40 ± 2 ns for the
unified protocol. Both protocols resulted in two main binding
modes for the ligand, which are shown in Figure 5. The states
are approximately equally probable, with acceptable agreement
between the split protocol (57 ± 13: 43 ± 13%), the unified
protocol (38 ± 15: 62 ± 15%), 160 ns H-REMD (49 ± 5: 40
± 4%), and experiment (60:40%). The dimensionless free
energies are also consistent, averaging −266.32 ± 3.46 for the
split protocol and −266.68 ± 2.27 for the unified protocol.
It is interesting to note the sampling differences between

both SMC protocols during the intermediate λ values. As

Figure 6. Heat maps of 3,5-difluoroaniline COM angle populations relative to the initial dominant conformer using the split (a) and unified (b)
SMC protocols taken from a single representative repeat. The data at discrete λ values have been smoothed in both cases for visual purposes. The
solid red line in (a) indicates the alchemical intermediate with fully coupled sterics and fully decoupled electrostatics.
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shown in Figure 6a, the split protocol explores six different
binding modes with approximately equal probabilities during
the steric coupling step before collapsing into the two main
binding modes during the electrostatic coupling step. In
contrast, the unified protocol (Figure 6b) collapses almost
immediately into the two main binding modes, indicating that
in this case, there is higher monotonicity in the population
changes over λ.
The same SMC protocols were performed on the same

mutant using a different crystal structure (PDB ID: 1LGU79),
where only mercaptoethanol (part of the crystallization liquor)
was bound, making this crystal structure the closest
experimentally available structure to an apo form for this
mutant. Little difference in the results was observed using both
the split protocol (70 ± 8: 30 ± 8%) and the unified protocol
(65 ± 8: 35 ± 8%), indicating that the method is not strongly
dependent on the initial crystal structure in this case and the
results are therefore not biased in an obvious way.
Larger differences were observed for the Val111 rotamers,

where there were discrepancies between the populations from
both SMC protocols and H-REMD. Since both the native and
the apo structures exhibit significant differences between both
protocols, it can be concluded that the split and unified
protocol results are not consistent with each other in this case.
This can be attributed to the different ways in which the
different λ schedules affect the time-dependent dynamics of
each walker. Since the simulation time for each walker remains

very short, the lack of long-timescale sampling can therefore
result in biased populations.

5.5. Protein Tyrosine Phosphatase 1B. Another
commonly encountered problem is handling dihedral rotations
of flexible bound ligands, such as the thiophene derivative
bound to protein tyrosine phosphatase 1B (PTP1B) (PDB ID:
2QBS80), as shown in Figure 7. In this case, there are two main
states of interest (Figure 7a,b), and we can explore this
rotation by completely decoupling the 3-aminophenyl group
and the relevant dihedral terms at λ = 0.
Similar to the previous torsional rotation cases, there is a

good agreement between the dominant conformer in the split
protocol (88 ± 9%), the unified protocol (81 ± 0%), and AFE
(88 ± 2%) and the experimental crystal structure. However, in
this case, the split protocol results in a much higher
unweighted standard deviation (26%), mostly caused by a
single outlier. Although the split protocol performs apparently
worse than the unified protocol, the latter exhibits extremely
poor and variable dimensionless free energy differences: 231.73
± 20.56 compared to −85.51 ± 2.30 for the former. Since the
dimensionless free energies correspond to the negative
logarithm of the average relative weight of all walkers sampled
from a particular simulation, the unified protocol has a
negligible total weight compared to the split protocol due to its
strikingly high dimensionless free energy. Therefore, even
though the dihedral profiles yielded by the unified protocol
appear consistent, the sampling is nevertheless remarkably
poor. This can be explained by an energetically favorable

Figure 7. Two thiophene derivative rotamers bound to PTP1B (a,b), unphysical interactions between the amino group and a solvent water
molecule commonly observed during the unified protocol (c) (circled in red), and the relative populations of both states using SMC and AFE

calculations (d). The heights of the bars represent the mean values weighted by the estimated partition function ratio Z
Z

(1)
(0)

̂, and the error bars

represent one weighted standard deviation based on six independent runs (shown as individual data points), as described in Section 4.2.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01198
J. Chem. Theory Comput. 2022, 18, 3894−3910

3903

https://pubs.acs.org/doi/10.1021/acs.jctc.1c01198?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01198?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01198?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01198?fig=fig7&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c01198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


overlap between one of the ligand nitrogen atoms and a water
hydrogen atom, coupled with an interaction between the
aniline hydrogen and the water oxygen (Figure 7c). These
unphysical interactions are not forbidden and quite favorable
since introducing a soft-core potential to both sterics and
electrostatics removes all potential energy singularities at the
atom centers. Although these interactions vanish at λ = 1, they
persist for most of the λ schedule, meaning that in this case, the
split protocol is much more preferable. This conclusion is also
supported by the average simulation times: 42 ± 2 ns for the
split protocol and 55 ± 1 ns for the unified protocol, indicating
that these unphysical states hinder the short-timescale
dynamics as well.
5.6. Transforming Growth Factor β. The final test case

combines a torsional rotation of a flexible ligand bound to
TGF-β and a nearby Ser82 side chain rotation. In this case, we
have used the initial protein coordinates of TGF-β bound to a
ligand containing a related symmetric 4-aminophenyl sub-
stituent (PDB ID: 4X2G81) combined with the initial binding
mode of the 3-aminophenyl-substituted ligand of interest
(PDB ID: 4X2J81) so that the potential bias toward a particular
conformer in the initial PDB file has been minimized. It is
known from the PDB file that there are two approximately
equally populated alternative conformations of the ligand
(Figure 8a,b) and the nearby Ser82 residue (Figure 9a,b). As
with the previous examples, this system was handled by

decoupling the 3-aminophenyl ligand group concurrently with
the Ser82 hydroxymethyl group.
Similarly to PTP1B, the unified protocol has sampling

difficulties related to favorable unphysical interactions between
an alchemically modified amine group and a water molecule
(Figure 8c), resulting in large discrepancies between the
dimensionless free energies: −225.51 ± 6.25 for the split
protocol, compared to 200.65 ± 49.12 for the unified protocol,
showing once again that this type of interaction results in
populations with a negligible total weight compared to those
obtained from the split protocol. Another point of similarity to
the previous test case is the higher average simulation time that
is needed by the unified protocol: 90 ± 3 versus 60 ± 6 ns for
the split protocol.
In both cases, however, there is a marked increase in the

relative weight variance compared to the previous test cases,
indicating poor convergence. This is also confirmed by the
ligand dihedral profiles (Figure 8d), which show significant
quantitative and qualitative differences between the results of
both protocols. This observation is reflected by the low
efficiency of the 160 ns H-REMD runs, with an average of only
7 ± 4 round trips per repeat. Despite the low number of round
trips and the slow convergence, the data from the H-REMD
simulations starting from both ligand rotamers suggest that the
first conformer (Figure 8a) is likely more stable than the other,
implying that the unified protocol is surprisingly qualitatively
consistent with H-REMD. The two SMC protocols and H-

Figure 8. Two TGF-β ligand rotamers (a,b), unphysical interactions between the amino group and a solvent water molecule commonly observed
during the unified protocol (c, circled in red), and relative populations of both states using the split and unified protocols and H-REMD starting

from either of the states (d). The heights of the bars represent the mean values weighted by the estimated partition function ratio Z
Z

(1)
(0)

̂, and the

error bars represent one weighted standard deviation based on six independent runs (shown as individual data points), as described in Section 4.2.
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REMD do not agree on the Ser82 populations, however
(Figure 9d), meaning that in both cases, there is evidence for
insufficient sampling.
Clustering analysis of the ligand common core at λ = 1 using

agglomerative clustering (as described in Section 4) reveals the
presence of two distinct, albeit apparently similar, clusters,
which correspond to a concerted translational and rotational
motion of the ligand common core (Figure 10a,b). It can be
seen that the first cluster is overrepresented in the unified
protocol structures, as well as the H-REMD simulations
starting from the dominant state (Figure 10c). However, the
second cluster is the one resulting in the highest total relative
weights for both the split and unified SMC runs. Since both
clusters are more equally sampled during the comparatively
longer H-REMD simulations, this behavior indicates an
insufficient level of decorrelation of the SMC results from
the initial structure, resulting in significant biasing of the
observed ligand dihedral populations. Moreover, these ligand
transitions present an orthogonal rare event that is not
adequately sampled even at longer timescales and thus results
in increased population variance for both SMC and H-REMD.

6. DISCUSSION

The above results show that SMC is extremely efficient at
exploring ligand conformers in solution, even for alchemical
changes that would be considered difficult to perform in

practice. This is not surprising since this is the ideal setting for
the method: the ligand degrees of freedom are the only ones
that require extensive sampling, while the environment does
not need much long-timescale sampling to respond to the
ligand motions. Therefore, SMC can be a valuable tool in
exploring the degrees of freedom of solvated small molecules
and is likely one of the most robust ways to achieve this.
The T4-lysozyme test cases show that a closed binding

pocket exhibiting little flexibility also constitutes a favorable
application of the method. We have shown that SMC is
unaffected by high kinetic barriers and relatively unbiased
toward the initial ligand structure, while providing efficient
protocols that require no system-specific parameters. These
results appear to hold even when exploring coupled motions
between a side chain and a ligand.
Similar observations have been made for PTP1B, where the

ligand is strongly bound to the protein and the rotatable group
of interest faces the solvent. In this case, the efficiency of SMC
is similar to that observed in the solvated ligand systems.
However, the resulting unweighted population variances from
all protein test cases are much higher compared to those from
the first two test cases, and this trend carries to the
dimensionless free energies. This is expected since protein−
ligand systems present a much more challenging sampling
problem compared to solvated ligand systems.
TGF-β presents a more challenging system, where rare

motions of the unmodified part of the ligand contribute to a

Figure 9. Three TGF-β Ser82 rotamers (a−c) and relative populations of all states using the split and unified protocols and H-REMD starting from

either of the states (d). The heights of the bars represent the mean values weighted by the estimated partition function ratio Z
Z

(1)
(0)

̂, and the error bars
represent one weighted standard deviation based on six independent runs (shown as individual data points), as described in Section 4.2.
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much higher observed dihedral population variance than in the
previous test systems. This behavior is observed for both SMC
and H-REMD, meaning that exploring long-timescale motions
for this system is crucial and the short-timescale SMC runs are
not sufficient in this case. It is therefore important to be able to
identify such potentially problematic systems a priori, and this
should be addressed in future work.
The above test cases also show the advantages and

disadvantages of the split and unified force field scaling
protocols. It has been demonstrated that the unified protocol
can result in an unpredictable performance and can suffer from
unphysical interactions between atoms with opposite charges,
resulting in them collapsing on top of one another. This means
that while the unified protocol can in many cases be more
efficient than the split protocol, it is also less robust. The split
protocol, on the other hand, has been shown to be extremely
consistent both in terms of sampling time and free energy
estimation but often results in a larger unweighted variance of
the sampled populations. It is not yet clear how the above
protocols will perform in a system that exhibits a drastic shift in
rotamer populations when the electrostatic interactions are
switched on, but the above results strongly suggest that the
split protocol is by far the safer and more conservative choice
for most systems.

All of the above results paint a clear picture of the current
advantages and limitations of SMC. SMC excels in cases where
one is interested in few degrees of freedom and where the
populations of interest remain relatively unchanged over long
timescales. In such systems, one can expect high performance
with minimal user input, meaning that very different systems
can be run with the same hyperparameters without external
intervention. Another advantage of SMC is the lack of a need
for supplying an initial conformation of the degree of freedom
of interest, thereby providing an unbiased estimate of the
population over this degree of freedom. In contrast, while H-
REMD results in populations with apparently lower variance
than SMC, it also exhibits a long-timescale bias toward the
initial conformation. Taking this bias into account then results
in a similar performance to that of SMC. Moreover, the

collective estimated SMC simulation weights Z
Z

(1)
(0)

̂
provide a

straightforward way to measure sampling quality, while
investigating bias is not as obvious, meaning that SMC is
more useful for performing exploratory simulations. On the
other hand, AFE calculations result in significantly lower
variance than both SMC and H-REMD, but their main
disadvantage is that a separate simulation is required for each
cluster of interest. These need to be known in advance, and
this knowledge is not always available in practice.

Figure 10. Two TGF-β ligand clusters (a,b, common core circled in red) and their relative populations using the split and unified protocols and H-
REMD starting from either of the states (c). The heights of the bars represent the mean values weighted by the estimated partition function ratio
Z
Z

(1)
(0)

̂, and the error bars represent one weighted standard deviation based on six independent runs (shown as individual data points), as described in
Section 4.2.
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SMC is therefore a valuable qualitative exploratory tool,
which can quickly provide initial structures that are unbiased
over a particular degree of freedom, as well as generate an
efficient λ schedule for another more computationally
expensive method, such as AFE calculations or H-REMD
simulations. The latter methods, on the other hand, can sample
over arbitrarily long timescales, thereby being systematically
improvable while simultaneously reducing their bias toward the
initial protein crystal structure over time. This decorrelation is
crucial in, for example, binding free energy calculations, where
the initial protein crystal structure can significantly impact the
calculated free energies.82 Therefore, one can use the strengths
of both SMC and long-timescale methods to minimize the
dependence of the sampled conformations on the choice of
initial protein and ligand coordinates.
Owing to the shortness of its simulations, SMC is so far

impractical for sampling long-timescale motions and can suffer
from initial structure templating, as well as kinetic trapping,
which occurs during the alchemical steps. The latter is a
significant challenge not only for SMC but also for H-REMD,
and it can be triggered by orthogonal rare events, such as slow
motions of the unmodified part of the ligand, which makes this
behavior difficult to predict. These problems will therefore
require key modifications to the SMC method and will be the
subject of future work.

7. CONCLUSIONS
We have presented an alchemical version of SMC, a directed
irreversible method that can be used for sampling rare events
using adaptive importance resampling. Alchemical SMC
combines adaptive SMC methods with the knowledge from
the AFE literature and is thus ideally suited for protein−ligand
and related systems, systems where the requirement for
system-specific method parameters would be highly undesir-
able.
The performance of alchemical SMC was demonstrated in a

variety of test cases where regular MD is unable to provide
adequate sampling, and we have also measured the relative
efficiencies of a split perturbation protocol and a unified
scheme, where steric and electrostatic interactions are coupled
separately and concurrently, respectively. Our results show that
SMC performs best when the results are largely independent of
long-timescale motions and other important orthogonal kinetic
barriers. In these cases, SMC provides efficient sampling and is
unaffected by the exact nature and size of the system. The most
consistent and robust results are also observed when the split
protocol is used, and we recommend it over the unified
protocol for the general case.
We have shown that alchemical SMC is good at generating

unbiased conformations over a selection of degrees of freedom.
Moreover, it provides a good metric for convergence, the

estimated collective weight Z
Z

(1)
(0)

̂
, which can be used to assess

the sampling quality over different simulation repeats. In this
setting, methods such as H-REMD are less useful due to their
long-timescale bias, which is often difficult to detect. Similarly,
AFE calculations require prior knowledge for the conformers
of interest, and their cost scales rapidly with the number of
possible states for each degree of freedom. This makes
alchemical SMC a good method for performing exploratory
simulations with minimal input.
In one of the test cases, SMC exhibits large variance and

poor convergence, and this suboptimal performance can be

attributed to high dependence on the initial coordinates,
meaning that the method needs to be extended to long-
timescale sampling. This will be the subject of future research.
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Thoma, M.; Newville, M.; Kümmerer, M.; Bolingbroke, M.; Tartre,
M.; Pak, M.; Smith, N. J.; Nowaczyk, N.; Shebanov, N.; Pavlyk, O.;
Brodtkorb, P. A.; Lee, P.; McGibbon, R. T.; Feldbauer, R.; Lewis, S.;
Tygier, S.; Sievert, S.; Vigna, S.; Peterson, S.; More, S.; Pudlik, T.;
Oshima, T.; Pingel, T. J.; Robitaille, T. P.; Spura, T.; Jones, T. R.;
Cera, T.; Leslie, T.; Zito, T.; Krauss, T.; Upadhyay, U.; Halchenko, Y.
O.; Vázquez-Baeza, Y.; SciPy 1.0 Contributors. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nat.
Methods 2020, 17, 261−272.
(76) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.;
Perrot, M.; Duchesnay, E. Scikit-Learn: Machine Learning in Python.
J. Mach. Learn. Res. 2011, 12, 2825−2830.
(77) Morton, A.; Matthews, B. W. Specificity of Ligand Binding in a
Buried Nonpolar Cavity of T4 Lysozyme: Linkage of Dynamics and
Structural Plasticity. Biochemistry 1995, 34, 8576−8588.
(78) Burley, K. H.; Gill, S. C.; Lim, N. M.; Mobley, D. L. Enhancing
Side Chain Rotamer Sampling Using Nonequilibrium Candidate
Monte Carlo. J. Chem. Theory Comput. 2019, 15, 1848−1862.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01198
J. Chem. Theory Comput. 2022, 18, 3894−3910

3909

https://doi.org/10.1063/1.3607597
https://doi.org/10.1063/1.3607597
https://doi.org/10.1063/1.3607597
https://doi.org/10.1016/j.sigpro.2016.08.025
https://doi.org/10.1016/j.sigpro.2016.08.025
https://doi.org/10.1561/2200000074
https://doi.org/10.1561/2200000074
https://doi.org/10.1371/journal.pcbi.1005659
https://doi.org/10.1371/journal.pcbi.1005659
https://github.com/choderalab/openmmtools
https://doi.org/10.1093/nar/gkm276
https://doi.org/10.1093/nar/gkm276
https://doi.org/10.1093/nar/gkm276
https://doi.org/10.1021/acs.jctc.5b00255?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00255?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1002/(sici)1096-987x(20000130)21:2<132::aid-jcc5>3.0.co;2-p
https://doi.org/10.1002/(sici)1096-987x(20000130)21:2<132::aid-jcc5>3.0.co;2-p
https://doi.org/10.1002/(sici)1096-987x(20000130)21:2<132::aid-jcc5>3.0.co;2-p
https://doi.org/10.1002/jcc.10128
https://doi.org/10.1002/jcc.10128
https://doi.org/10.1002/jcc.10128
https://doi.org/10.1063/1.445869
https://doi.org/10.1063/1.445869
https://doi.org/10.1063/1.464397
https://doi.org/10.1063/1.464397
https://doi.org/10.3390/e20050318
https://doi.org/10.3390/e20050318
https://doi.org/10.1002/jcc.540130805
https://doi.org/10.1002/jcc.540130805
https://doi.org/10.1016/0021-9991(77)90098-5
https://doi.org/10.1016/0021-9991(77)90098-5
https://doi.org/10.1016/0021-9991(77)90098-5
https://doi.org/10.1021/ct900463w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct900463w?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.cpc.2013.09.018
https://doi.org/10.1021/acs.jcim.9b01158?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.9b01158?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0021-9991(76)90078-4
https://doi.org/10.1016/0021-9991(76)90078-4
https://doi.org/10.1063/1.448118
https://doi.org/10.1063/1.448118
https://doi.org/10.1063/1.328693
https://doi.org/10.1063/1.328693
https://doi.org/10.1002/(sici)1096-987x(199709)18:12<1463::aid-jcc4>3.0.co;2-h
https://doi.org/10.1016/j.bpj.2015.08.015
https://doi.org/10.1016/j.bpj.2015.08.015
https://doi.org/10.1002/jcc.21787
https://doi.org/10.1002/jcc.21787
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1021/bi00027a007?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/bi00027a007?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/bi00027a007?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01018?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01018?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01018?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c01198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(79) Wei, B. Q.; Baase, W. A.; Weaver, L. H.; Matthews, B. W.;
Shoichet, B. K. A Model Binding Site for Testing Scoring Functions in
Molecular Docking. J. Mol. Biol. 2002, 322, 339−355.
(80) Wilson, D. P.; Wan, Z.-K.; Xu, W.-X.; Kirincich, S. J.; Follows,
B. C.; Joseph-McCarthy, D.; Foreman, K.; Moretto, A.; Wu, J.; Zhu,
M.; Binnun, E.; Zhang, Y.-L.; Tam, M.; Erbe, D. V.; Tobin, J.; Xu, X.;
Leung, L.; Shilling, A.; Tam, S. Y.; Mansour, T. S.; Lee, J. Structure-
Based Optimization of Protein Tyrosine Phosphatase 1B Inhibitors:
From the Active Site to the Second Phosphotyrosine Binding Site. J.
Med. Chem. 2007, 50, 4681−4698.
(81) Czodrowski, P.; Hölzemann, G.; Barnickel, G.; Greiner, H.;
Musil, D. Selection of Fragments for Kinase Inhibitor Design:
Decoration Is Key. J. Med. Chem. 2015, 58, 457−465.
(82) Suruzhon, M.; Bodnarchuk, M. S.; Ciancetta, A.; Viner, R.;
Wall, I. D.; Essex, J. W. Sensitivity of Binding Free Energy
Calculations to Initial Protein Crystal Structure. J. Chem. Theory
Comput. 2021, 17, 1806−1821.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01198
J. Chem. Theory Comput. 2022, 18, 3894−3910

3910

https://doi.org/10.1016/s0022-2836(02)00777-5
https://doi.org/10.1016/s0022-2836(02)00777-5
https://doi.org/10.1021/jm0702478?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm0702478?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm0702478?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm501597j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm501597j?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00972?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00972?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c01198?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

