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Abstract
Aims: Glioma is a highly invasive brain tumor, which makes prognosis challenging and 
renders patients resistant to various treatments. Induction of cell death is promis-
ing in cancer therapy. Ferroptosis, a recently discovered regulated cell death, can be 
induced for killing glioma cells. However, the prognostic prediction of ferroptosis-
related genes (FRGs) in glioma remains elusive.
Methods: The mRNA expression profiles and gene variation and corresponding clini-
cal data of glioma patients and NON-TUMOR control were downloaded from public 
databases. Risk score based on a FRGs signature was constructed in REMBRANDT 
cohort and validated in other datasets including CGGA-693, CGGA-325, and TCGA.
Results: Our results demonstrated that the majority of FRGs was differentially ex-
pressed among GBM, LGG, and NON-TUMOR groups (96.6%). Furthermore, the 
glioma patients with low-risk score exhibited a more satisfactory clinical outcome. 
The better prognosis was also validated in the glioma patients with low-risk score no 
matter to which grade they were affiliated. Functional analysis revealed that the high-
risk score group was positively correlated with the enrichment scores for immune 
checkpoint blockade-related positive signatures, indicating the critical role of glioma 
immunotherapy via risk score.
Conclusion: A novel FRGs-related risk score can predict prognosis and immunother-
apy in glioma patients.
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1  |  INTRODUC TION

Glioma remains the most prevalent primary malignant tumor in the 
central nervous system. According to the World Health Report, glioma 
can be classified into four grades, in which grade II and III are defined 
as diffuse lower-grade gliomas (LGG), whereas grade IV glioma is also 
termed as glioblastoma (GBM).1 In general, patients with a high grade 
glioma often exhibit more unsatisfactory prognosis, despite discovering 
some prognostic biomarkers such as lncRNA FOXD1-AS12 and hemo-
dynamic alteration.3 It has been demonstrated that glioblastoma pos-
sesses highly aggressive potential, with a median survival time of only 
16 months,4 while patients with LGG have the survival range from 1 to 
15 years. Despite progress in standard treatments including surgical re-
section, radio- and chemo-therapy, glioma patients are still resistant to 
current available therapeutic interventions owing to highly infiltrating 
property for malignancy. Tumor recurrence and malignant progression 
are always widespread during treatment failure. Previous investigations 
have depicted several molecular markers, such as mutations in isocitrate 
dehydrogenase (IDH) and co-deletion of the short arm of chromosome 
1 and the long arm of chromosome 19 (1p/19q) are applied in molecular 
pathological diagnosis, treatment option, and prognostic assessment.5,6 
However, many hitherto glioma therapies targeting these molecular 
markers have minimal responses in clinical practice. As such, it is of ur-
gent need to explore novel biomarkers to predict glioma prognosis.

Cell death is a critical event and participates in malignant trans-
formation and tumor metastasis.6,7 Ferroptosis is a novel form of 
regulated cell death (RCD), which was discovered by Stockwell et al8 
in 2012. This cell death mode is very distinct from others at morpho-
logical, biochemical, and genetic levels. Generally, ferroptotic cells ex-
hibit mitochondrial abnormality (small size and condensed membrane), 
iron-dependent lethal lipid peroxide accumulation and a cassette set 
of altered gene expressions such as GPX4,9 ASCL4,10 AIFM2,11 and so 
on. There are several identified ferroptosis-targeted reagents including 
ferroptosis inhibitors (eg., ferrostatin-1, liproxstatin-1) and ferroptosis-
inducing compounds (eg.,erastin, RSL3). Notably, it has shown that 
some cancer cells, which are resistant to compounds targeting tra-
ditional cell death processes, are efficiently killed by treatment with 
erastin and RSL3,12 suggesting ferroptosis induction as a promising 
therapeutic strategy in glioma therapy.

In addition to the typical features of ferroptosis, cells with fer-
roptotic stress are also accompanied by the release of proinflamma-
tory cytokines including IFN-γ.13 Actually, unlike apoptosis, it has 
also been demonstrated that ferroptosis seems more immunogenic 
due to release of damage-associated molecular patterns (DAMPs), 
which in turn exacerbates inflammatory reactions.14 In particular, 
the direct evidence supporting the relationship between ferropto-
sis and immunity arises from the investigation that promotion of T 
cell-mediated ferroptosis is able to exert potent anti-tumor effect.13 
It suggests that ferroptosis is involved in tumor immunotherapy. 
However, a comprehensive analysis of the relationship between fer-
roptosis and immune response in glioma is not well characterized.

Herein, our present work aimed to conduct a comprehensive evalua-
tion of role of ferroptosis-related genes (FRGs) signature in the prediction 
of prognosis and immunotherapy in glioma patients in the public databases 

like REMBRANDT, Chinese Glioma Genome Atlas (CGGA)-693, CGGA-
325, and The Cancer Genome Atlas (TCGA). We drew a conclusion that 
the development of risk score based on FRGs has a good predictive value 
for survival and immunotherapy in glioma patients.

2  |  METHODS

2.1  |  Data source and processing

All the datasets with detailed clinical annotations used in our pre-
sent study were obtained from Gene-Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov/geo), The Cancer Genome Atlas 
(TCGA, https://portal.gdc.cancer.gov/) and Chinese Glioma Genome 
Atlas (CGGA, http://www.cgga.org.cn/), which were further pro-
cessed via GEOquery,15 TCGAbiolinks,16 and manually, respec-
tively. After data filtration, five eligible datasets including GSE10​
8474-REMBRANDT,17 CGGA-693,18,19 CGGA-325,20,21 TCGA-LGG, 
and TCGA-GBM with 1813 glioma patients in total were selected for 
further analysis. Among these datasets, GSE10​8474-REMBRANDT 
was selected as the training set while CGGA-693, CGGA-325, TCGA-
LGG, and TCGA-GBM were chosen for validation. The detailed clin-
icopathological characteristics including different grades of glioma 
patients were summarized in Table  S1. The raw data from CGGA 
or TCGA were displayed in the form of fragments per kilobase of 
transcript per million fragments mapped (FPKM) and transformed to 
transcripts per kilobase million (TPM), while the raw CEL files in the 
REMBRANDT dataset were converted to expression matrix based 
on a GC-Robust Microarray Averaging algorithm (GCRMA) algorithm 
for background adjustment and quantile normalization. The number 
of patients with survival data and gene expression values in the five 
datasets were listed in Table S2.

2.2  |  Copy number variation (CNV) calculation

Copy number variation information from TCGA datasets were ob-
tained by TCGAbiolinks and mapped to GENCODE annotation 
(https://www.genco​degen​es.org/) version 22 by bedtools software 
on Windows Subsystem Linux 2 (WSL2). Genes with focal CNV val-
ues less than −0.3 were regarded as “loss” (−1), while the CNV values 
greater than 0.3 were deemed as “gain” (+1) and values between and 
including −0.3–0.3 were defined as “neutral (0)”.22

2.3  |  Unsupervised clustering of expression 
profile of 59 ferroptosis-associated genes (FRGs)

Since ferroptosis process is a consequence of interrupted dysfunction 
in oxidant metabolism, iron metabolism, lipid metabolism, energy me-
tabolism, and other unclassified factors,11,23–25 60 FRGs which we se-
lected belong to the five categories as previously described.26 However, 
there is a low expression level for NOX1 in all the samples from the 
REMBRANDT dataset. Thus, we chose 59 FRGs for subsequent 

https://www.ncbi.nlm.nih.gov/geo
https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108474
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108474
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108474
https://www.gencodegenes.org/
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analysis. The classification of these FRGs was summarized in Table S3. 
Expression set of FRGs from the REMBRANDT dataset was subject to 
unsupervised cluster analysis using the Consensu Cluster Plus R pack-
age via k-means clustering algorithm with Euclidean distance.27,28

2.4  |  Analysis of differentially expressed genes 
(DEGs) and functional annotation

An empirical Bayesian method was employed for DEGs analysis by 
using limma R package.29 An adjusted P value less than 0.05 and 
absolute log2 fold change (log2FC) greater than 2 were considered 
as DEGs and employed for further functional annotation on gene 
ontology (GO) by clusterProfiler R package.

2.5  |  Construction of immune checkpoint blockage 
signatures and other functional signatures

Gene sets which could predict the responses to immune check-
point blockade (ICB) therapy were obtained from the work by 
Mariathasan and his colleagues.30 Hallmark (h.all.v7.1.symbols), 
Kyoto Encyclopedia of Genes and Genomes (KEGG, c2.cp.kegg.
v7.1.symbols), and GO (c5.all.v7.1.symbols) gene sets were down-
loaded from Molecular Signatures Database (www.gsea-msigdb.org) 
and analyzed using GSVA R package.31

2.6  |  Depiction of tumor immune 
microenvironment (TIME) in glioma

The characteristics of TIME include infiltration of immune cells, activa-
tion of anti-cancer immunity cycle and expression of immune check-
points. In this study, we collected 667 immunomodulators including 
immune cells (Table S4) from the study of Charoentong research group32 
using ssGSEA algorithm. As previously described, there were seven 
steps involving in the activation of anti-cancer immunity cycle, which in-
cluded release of cancer cell antigens (Step 1), cancer antigen presenta-
tion (Step 2), priming and activation (Step 3), trafficking of immune cells 
to tumors (Step 4), infiltration of immune cells into tumors (Step 5), rec-
ognition of cancer cells by T cells (Step 6) and killing of cancer cells (Step 
7)33 and these steps could be scored by ssGSEA based on gene expres-
sion of each sample.34 The score of each step reflected the activation 
of anti-tumor immunity. We then collected four immune checkpoints 
including PD-L1, PD-1, CTLA-4, and IDO-1 from Xu research group35 
and they were regarded as key targets for glioma immunotherapy.

2.7  |  Construction of the risk score based on FRGs 
by random survival forest (RSF)

RSF model is an ensemble-tree method that adapts the random 
forests to right-censored data and survival analysis.36,37 The 

REMBRANDT dataset was selected as training cohort and other 
three datasets including CGGA-693, CGGA-325, and TCGA cohorts 
were used for validation. Prior to the establishment and validation of 
RSF model, the expression profile of 59 FRGs in each sample were 
standardized. The selected FRGs based risk score by RSF was gener-
ated by the rfsrc function implemented in the randomForestSRC R 
package (kogalur.github.io/randomForestSRC). Based on the median 
value of risk score, the glioma patients were divided into two groups: 
high risk and low risk. The patients’ survival analysis was conducted 
using Kaplan–Meier (KM) curves and log-rank tests were employed 
for analyzing statistical differences between high-risk score and low-
risk score groups. The accuracy of risk score was evaluated using the 
receiver operating characteristic (ROC) curves.

2.8  |  Statistical analysis and Visualization

The expression profile of 59 FRGs was analyzed via Principal Component 
Analysis (PCA) with FactoMine R package. Correlations between varia-
bles were assessed via Spearman coefficient. Kruskal–Wallis tests were 
applied for the comparison of gene expression in two or more than two 
groups. The landscape of CNV and gene location were visualized by 
RCircos R package.38 The overall survival (OS) of the glioma patients 
between different groups was analyzed using Kaplan-Meier curves with 
the log-rank test. Univariate and multivariate Cox regression model 
were employed for calculating hazard ratios (HRs) and the coefficients 
of those regression models were visualized by Nomogram model. All 
statistical data were analyzed using R software (version 3.6.3). A p value 
less than 0.05 was considered as the statistical significance.

3  |  RESULTS

Figure 1 summarized the flow chart of data analysis. In the training stage, 
405 glioma patients from the GSE10​8474-REMBRANDT dataset were 
enrolled while four other datasets including TCGA-GBM (151 patients), 
TCGA-LGG (450 patients), CGGA-693 (516 patients), and CGGA-325 
(291 patients) were employed for analysis in the validation stage. The 
detailed information of all these patients was listed in Table S1.

3.1  |  Landscape of FRGs in REMBRANDT and 
TCGA cohorts

The FRGs were conducted from two aspects including gene ex-
pression (in REMBRANDT cohort) and variation (in TCGA cohort). 
On the one hand, it was obvious that the majority of selected 
FRGs were differentially expressed among GBM, LGG, and 
NON-TUMOR groups, except ALOX12 and ALOX15 (Figure 2A). 
Similarly, PCA analysis also demonstrated that the patients could 
be completely distinguished from three groups on the basis of the 
expression of FRGs (Figure 2B). On the other hand, the variation 
of FRGs was also evaluated in TCGA cohorts. It was found that 

http://www.gsea-msigdb.org
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108474
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there was the percentage of approximately 45.14% (265/587) gli-
oma patients who displayed top 20 mutations of FRGs, with TP53 
having the highest mutation frequency (42%) and 19 other FRGs 
with the mutation frequency range from 0% to 2% (Figure  2C). 
In the meantime, CNV status analysis showed a frequent altera-
tion in 59 FRGs. It was noted that HSPB1 had the most significant 
copy number amplification while nine FRGs including AKR1C2, 
AKR1C1, AKR1C3, ZEB1, ALOX5, CISD1, NCOA4, AIFM2, and GOT1 
possessed the most widespread CNV deletion (Figure 2D). The lo-
cation and mutation frequency of CNV of 59 FRGs were indicated 
in Figure 2E. Collectively, these results suggest distinct expres-
sion and variation of FRGs occurred in different grades of glioma.

3.2  |  Development of the FRGs-related risk score 
in REMBRANDT cohort

Next, we explored whether the correlation of FRGs and prognosis 
in glioma patients. As shown in Figure 3A, FRGs are generally di-
vided into five categories including iron metabolism, lipid metabo-
lism, oxidant metabolism, energy metabolism, and others, among 
which these FRGs were interacted with each other (Figure 3A and 
Figure  S1A). Of note, most of genes associated with ferroptosis 
process in oxidant metabolism are risk factors for overall survival 
except GCLC. The detailed information showing hazard ratios of 
FRGs were summarized in Figure S1B. Furthermore, unsupervised 

F I G U R E  1  Workflow of data analysis in our present work. FRGs, ferroptosis-related genes; RSF, random survival forest; TIME, tumor 
immune microenvironment; TIP, tracking tumor immunophenotype; TMB, tumor mutational burden; UCA, unsupervised clustering analysis

F I G U R E  2  Landscape of ferroptosis-related genes (FRGs) in REMBRANDT and TCGA cohorts. A, The differential expression of FRGs 
in GBM, LGG, and NON-TUMOR tissue samples in REMBRANDT cohort. B, Indicates the principal component analysis results can be 
completely distinguished from GBM, LGG, and NON-TUMOR groups on the basis of the expression of FRGs in REMBRANDT cohort. C, The 
variation of FRGs in TCGA cohort. D, CNV status analysis in TCGA cohort. E, The location and mutation frequency of CNV of 59 FRGs in 
TCGA cohort
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cluster analysis was performed based on differential FRGs. We at-
tempted to conduct cluster analysis range from two to five and it 
was found that two sorts of ferroptosis clusters including ferrop-
tosis cluster 1 and ferroptosis cluster 2 were the most suitable to 
distinguish the glioma patients (Figure S2A–E). In the meantime, 
the patients in the ferroptosis cluster 1 exhibited better prognosis 
than those in ferroptosis cluster 2 group with the median survival 
time of 41.9  months and 15.2  months, respectively (Figure  3B). 
Besides, the poor prognosis in the patients who belong to the 
ferroptosis cluster 2 group displayed the majority of activated 50 
hallmark gene sets which represents well-known biological pro-
cesses (Figure 3C and Table S5), reflecting the value of this clus-
ter analysis in glioma outcome. In order to perform personalized 
assessment of the role of FRGs in glioma patients, RSF was con-
structed using the index risk score in our present work. As shown 
in Figure 3D, the patients in the ferroptosis cluster 1 had a lower 
risk score than those in ferroptosis cluster 2. The result of multi-
variate Cox regression analysis indicated that risk score was an 
independent predictive factor, which was similar to glioma grade 
(Figure  S3A). Accordingly, a more satisfactory clinical outcome 
was observed in the low-risk score group with the median survival 
time of 41.9 months (Figure 3E). Furthermore, in different grades 
of glioma patients, the high-risk score group had poorer OS with 
the medial survival time of 75.3, 15.3, and 12.5 months in grade II, 
III, and IV, respectively (Figure 3F). ROC curve showed that the de-
velopment of risk score in our present study exhibited a good pre-
dictive value in the aspect of 1 year AUC, 3 years AUC and 5 years 
AUC which were 0.74, 0.86, and 0.89, respectively (Figure 3G).

3.3  |  Validation of prognostic value of FRGs-
related risk score in CGGA-693, CGGA-325, and 
TCGA cohorts

We further validated the prognostic value in various datasets includ-
ing CGGA-693, CGGA-325, and TCGA via distinct risk score groups. 
Consistent with the results in the REMBRANDT dataset as shown 
above, the risk score was also validated to serve as an independ-
ent predictive factor by multivariate Cox regression analysis in the 
three cohorts (Figure  S3B–D). Besides, it was confirmed that the 
glioma patients in the high-risk score group of CGGA-693, CGGA-
325, and TCGA cohorts displayed poor prognosis with the median 
survival time of only 15.8 months, 12.9 months, and 19.3 months, 
respectively (Figure  4A, Figure  4G, and Figure  S4A). In different 
grades of glioma patients (including grade II, III, and IV), the high-
risk score group displayed shorter OS than that in the low-risk score 

group (Figure 4B, Figure 4H, and Figure S4B) although different risk 
scores in grade II or grade IV of CGGA325 dataset and grade IV in 
TCGA cohort had a minimal effect on patients’ survival. ROC curve 
also validated a good predictive value in the survival time of 1 year, 
3 years, or 5 years (Figure 4C, Figure 4I, and Figure S4C). In addition, 
we also analyzed the role of risk score in the aspect of pathological 
grade, IDH status, and 1p/19q co-deletion state in CGGA-693 and 
CGGA-325 cohorts, which indirectly reflect the outcome of glioma 
patients.39 It was interesting that glioma patients with grade IV, 
IDH wild type and no deletion of 1p/19q had the high-risk score 
(Figure  4D–F and Figure  4J–L). In these two datasets (CGGA-693 
and CGGA-325), Nomogram model was also established via integra-
tion of risk score, grade, IDH status, and 1p/19q co-deletion state 
to assess the survival prediction in glioma patients (Figure S5A). It 
was found that this model could well predict patients’ survival in 
the aspects of 1 year OS, 3 year OS, and 5 year OS in both CGGA-
693 and CGGA-325 cohorts (Figure S5B,C). Compared with analysis 
based on the WHO grade (AUC at 0.77, 0.78, and 0.78, respectively, 
in terms of 1 year OS, 3 year OS, and 5 year OS), our established 
Nomogram model which involved risk score had better predictive 
value with AUC at 0.81, 0.84, and 0.83, respectively, in CGGA-693 
dataset (Figure S6A–C). Consistent results were also obtained in 
CGGA-325 dataset although there was no significant difference be-
tween WHO grade and Nomogram groups in the aspect of 1 year 
OS (Figure S6D–F). Altogether, these data verify the important prog-
nostic value of distinct risk scores in glioma patients.

3.4  |  Evaluation of immunotherapy in glioma in 
REMBRANDT cohort with distinct risk scores

Since prior work has illustrated that ferroptosis process is involved 
in tumor immunotherapy [11], we would like to explore whether 
ferroptosis is correlated with glioma immunity via bioinformat-
ics. Analysis of immune cell infiltration demonstrated the abun-
dance of innate immune cell infiltration including natural killer cell, 
macrophage, mast cell, MDSC, plasmacytoid dendritic cell except 
eosinophil in the high-risk score group (Figure  5A). Accordingly, 
immune score defined by 23 categories of immune cells using the 
ssGSEA algorithm was also positively correlated with the high-risk 
score group via spearman correlation analysis (Figure  5B). The 
cancer immunity cycle is a critical index for evaluating the biologi-
cal functions of the chemokine system and other immunomodula-
tors.33,34 In the high-risk score group, activities of various steps in 
the cycle were observed to be upregulated including the release 
of cancer cell antigens (Step 1), cancer antigen presentation (Step 

F I G U R E  3  Development of the FRGs-related risk score in REMBRANDT cohort. A, Shows 59 FRGs are divided into five categories 
including iron metabolism, lipid metabolism, oxidant metabolism, energy metabolism, and others. B, The relationship between distinct 
ferroptosis clusters and glioma patients’ prognosis. C, Indicates ferroptosis cluster 2 is associated with 50 well-defined hallmark gene sets 
which are involved in all kinds of biological processes. D, The relationship between risk score and ferroptosis clusters. E, The relationship 
between risk score and clinical outcome of glioma patients. F, Effects of distinct risk score in different glioma grades according to WHO on 
the survival probability in glioma patients. G, Shows ROC curve analysis reflecting the predictive value of risk score in the glioma patients’ 
outcome in the aspect of 1 year AUC, 3 years AUC, and 5 years AUC
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2), immune cells recruiting (Step 4) (CD4 T cell recruiting, Th1 cell 
recruiting, Th22 cell recruiting, Macrophage recruiting, Monocyte 
recruiting, Neutrophil recruiting, NK cell recruiting, Basophil re-
cruiting, and B cell recruiting) and recognition of cancer cells by 
T cells (Step 6) (Figure 5C). The elevated activities of these steps 
predicted the potent immunological potential. To our surprise, 
our results showed that the killing of cancer cells (Step 7) was 
weaker in the high-risk score group than that in the low-risk score 
group. It may be due to the high expression of PD-L1, as shown 
in Figure  5D. Besides, we also made an analysis of the relation-
ship between distinct risk score and ICB-related pathways. It was 
found that the majority of the patients in the high-risk score group 
were positively correlated with the enrichment scores for ICB-
related positive signatures, except systemic lupus erythematosus 
(Figure 5E and Table S6). Collectively, these data suggest that the 
development of risk score associated with FRGs can well predict 
the glioma immunotherapy.

3.5  |  Validation of the immunotherapy in glioma 
in CGGA-693, CGGA-325, and TCGA cohorts with 
distinct risk scores

The validation of the immunotherapy in glioma was conducted via 
analysis of diverse cohorts including CGGA-693, CGGA-325, and 
TCGA. Immune score was confirmed to be positively correlated with 
risk score in these cohorts (Figure 6A, Figure 6D, and Figure 6G). 
With respect to the cancer immunity cycle, upregulations of the 
release of cancer cell antigens (Step 1) and immune cells recruiting 
(Step 4) (Th1 cell recruiting, Macrophage recruiting, Monocyte re-
cruiting, and NK cell recruiting) were ascertained to be found in the 
high-risk score group (Figure 6B, Figure 6E, and Figure 6H). Besides, 
the patients with high-risk score exhibited the high expression of 
PD-L1 in CGGA-693, CGGA-325, and TCGA cohorts, which was 
consistent with the results found in training dataset (REMBRANDT) 
(Figure  6C, Figure  6F, and Figure  6I). Intriguingly, other immuno-
logical indices including PD-1, CTLA4, and IDO-1, which are closely 
related to glioma progression,35 were also found to be abundantly 
expressed in the high-risk score group (Figure  6C, Figure  6F, and 
Figure 6I). Consistent with the results shown in REMBRANDT co-
hort, the patients in the high-risk score group in other datasets in-
cluding CGGA-693, CGGA-325, and TCGA cohorts were positively 
associated with the enrichment scores for ICB-related positive 
signatures, except RNA degradation (CGGA-693, CGGA-325, and 
TCGA cohorts) (Figure S7A–C, Table S7–S9). Additionally, in TCGA 
cohort, tumor mutational burden (TMB), immunogenic mutation, 
DNA methylation stemness indices (mDNAsi), and RNA methylation 

stemness indices (mRNAsi), which are proved to be associated with 
ICB therapy,40,41 were also analyzed in our present work. It was 
noted that elevations of TMB, immunogenic mutation and mDNAsi 
were observed in the high-risk score group while there was a reduc-
tion of mRNAsi in glioma patients with high-risk score (Figure S8A-
D). Taken together, these results again confirm the critical role of 
glioma immunotherapy via risk score.

4  |  DISCUSSION

Our present work systematically analyzed the landscape of 59 FRGs 
in glioma tissues and their associations with patients’ prognosis. 
More importantly, RSF model was constructed using risk score based 
on ferroptosis signature in glioma patients in REMBRANDT cohort 
and it was validated in other datasets including CGGA-693, CGGA-
325, and TCGA cohorts. The glioma patients with low-risk score ex-
hibited a more satisfactory clinical outcome than those patients with 
high-risk score. Additionally, immune signaling was also activated in 
the high-risk score group, which indicates that the glioma patients 
with high-risk score may have good response to immunotherapy.

Selective induction of cell death functions as a promising strat-
egy in anti-cancer research. In recent years, it is intriguing that in-
duction of ferroptosis, a recently discovered RCD by Stockwell 
research group, has been shown to block tumorigenesis and met-
astatic process.42,43 With respect to glioma research, the theme 
on the role of ferroptosis process in tumor progression particularly 
attracts considerable attention. Three classical ferroptosis-related 
categories including system Xc

− inhibition (xCT), GSH depletion, and 
GPX4 blockade have been reported to serve as contributing fac-
tors of gliomagenesis.44,45 Inhibition of xCT and depletion of GSH 
by pseudolaric acid B have been demonstrated to exert anti-cancer 
effect on glioma.44 In the meantime, decrease of GPX4 expression 
by the natural compound withaferin A was also previously found 
to trigger ferroptotic death in neuroblastoma cells.46 However, the 
comprehensive evaluation of the relationship between gene sig-
nature involving in ferroptosis process and glioma prognosis and 
therapeutic efficacy is still uncompleted. In our present work, we 
revealed that most of selected FRGs was differentially expressed 
in patients with different pathological grades and NON-TUMOR 
control group. It was surprising that ALOX12 and ALOX15, which are 
two members of lipoxygenase family, seemed to be unaltered due to 
very low expression in these groups. In consistent with our result, a 
previous study also illustrated unalterations of ALOX12 and ALOX15 
in different glioma grades.47 In contrast, it was intriguing that the 
differential expression of ALOX5 was observed among GBM, LGG, 
and NON-TUMOR tissues. And this gene had the most widespread 

F I G U R E  4  Validation of prognostic value of risk scores in CGGA-693 and CGGA-325 cohorts. A and G, The relationship between risk 
score and glioma patients’ prognosis in CGGA-693 and CGGA-325, respectively. B and H, Effects of distinct risk score in different glioma 
grades according to WHO on the patients’ survival. C and I, Validation of the predictive value of risk score in the aspect of 1 year AUC, 
3 years AUC and 5 years AUC via ROC curve analysis in CGGA-693 and CGGA-325 cohorts, respectively. D and J, Correlations between risk 
score and glioma grades in CGGA-693 and CGGA-325, respectively. E and K, Correlation between risk score and IDH mutation in CGGA-693 
and CGGA-325, respectively. F and L, Correlation between risk score and 1p/19q co-deletion in CGGA-693 and CGGA-325, respectively
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F I G U R E  5  Evaluation of immunotherapy in glioma with risk score in REMBRANDT cohort. A, The relationship between risk score and 
immune infiltration score. B, Shows the relationship of the risk score and the immune score. C, Correlation between the risk score and 
cancer immunity cycles. D, Correlation between the risk score and PD-L1 expression. E, Shows spearman correlation analysis reflecting the 
relationship of risk score and immune checkpoint blockade-related pathways
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F I G U R E  6  Validation of the immunotherapy in glioma with risk scores in CGGA-693 and CGGA-325 and TCGA cohorts. A,D and G, 
Validation of correlation between the risk score and the immune score. B,E and H Verification of correlation between the risk score and 
cancer immunity cycles. C,F and I Validation of correlations between the risk score and immune checkpoints
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CNV deletion. These data altogether imply that one of lipoxygenase 
family members ALOX5, which belongs to FRGs, is critical for glioma 
progression. Furthermore, a signature from 59 FRGs could well pre-
dict the prognosis of glioma patients. In detail, the patients in the 
ferroptosis cluster 1 group exhibited satisfactory prognosis with the 
median survival time of 41.9 months. It indicates a good predictive 
value for glioma patients via ferroptosis gene signature.

Risk score of FRGs signature via RSF was also developed in our 
present work for the implementation of personalized evaluation of 
glioma patients. It was demonstrated that the high-risk score group 
displayed poor prognosis in REMBRANDT cohort and this result 
was validated in three datasets including CGGA-693, CGGA-325, 
and TCGA. Further analysis illustrated that the patients with high-
risk score had worse pathological grades. In addition, other factors 
including IDH mutation status and 1p/19q co-deletion state, which 
are recognized to be critical for glioma progression,39,48 were also 
found to be associated with distinct levels of risk score. These re-
sults suggest that development of risk score is negatively correlated 
with patients’ prognosis.

Immunotherapy is widely applied in various cancers. Nowadays, 
there are diverse immunotherapeutic approaches available such as 
immune checkpoint inhibitors, peptide vaccines, dendritic cells vac-
cines, chimeric antigen receptor-T cells, and oncolytic viruses for 
treating glioma.49 Also, there are some genes including coatomer pro-
tein complex subunit beta 2,50 transmembrane protein 71,51 and reg-
ulators of G protein singling 1652 which serve as prognostic factors 
via targeting glioma immunity. These data altogether implicate that 
altered immunoreactive response can influence glioma progression. 
In our present work, functional annotation of FRGs-based risk score 
showed that immune signaling was highly associated with different 
levels of risk score in glioma. In detail, it was observed that abun-
dant expressions of immune cell infiltration and immune checkpoints 
notable PD-L1, PD-1, CTLA-4 and IDO-1, and TMB as well as immu-
nogenic mutation in the high-risk score group. It indicates the associ-
ation of ferroptosis signature and glioma immunity. In fact, there were 
several previous investigations supporting that intervention of ferro-
ptosis process had a significant effect on cancer immunotherapy.13,53 
Deficiency of the FRG (SLC7A11) in mice with melanoma was more 
susceptible to anti-PD-L1 therapy,54 which suggests again the role 
of ferroptosis in anti-tumor immunity. The evidence supporting the 
role of FRGs in tumor immunity also arises from the study that T cells 
lacking GPX4 failed to expand and they rapidly underwent ferroptotic 
cell death.55 GPX4-mediated maintenance of redox homeostasis was 
vital for stimulator-of-interferon genes (STING) activation,56 which 
plays a critical role in initiating innate immune responses against tu-
mors and microbial infection. In addition, the immune-related indices 
shown above are also well-recognized factors which involve tumor 
immunotherapy,35,40,57,58 which also suggests that construction of 
risk score based on FRGs could well predict glioma immunotherapy.

Undoubtedly, there are also other considerations to be clarified. 
Firstly, our current results are obtained merely in public databases 
and it is indispensible to validate our bioinformatics analysis in ex-
perimental research. The clinical value of risk score in the prediction 

of prognosis and immunotherapy in glioma should also be confirmed 
in the future. Additionally, the detailed mechanism of each of FRGs 
in glioma progress is also explored in the coming years. In any case, 
our current work provides the theoretical base for the prediction of 
FRGs signature in glioma prognosis and immunotherapy. From the 
translational aspect in clinical settings, the FRGs-based risk score 
which we established in the current work may have a predictive role 
in glioma immunotherapy.
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