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NEURAL REGENERATION RESEARCH 

Distinguishing normal brain aging from the 
development of Alzheimer’s disease: inflammation, 
insulin signaling and cognition

Introduction
Normal aging is associated with deterioration of cognitive 
function and accumulation of neuropathological lesions 
that can also occur in Alzheimer’s disease (AD). Distin-
guishing AD from normal aging, particularly in the earliest 
stages, allows for more thorough clinical characterization 
of abnormal cognitive decline and can also provide insights 
into AD pathophysiology that may ultimately support drug 
discovery, an element of the AD field that is currently lack-
ing. Since its inception, the amyloid cascade hypothesis has 
bolstered AD research and helped progress the field im-
mensely, however a fixation on this model may be hindering 
scientific advances and drug development. We will briefly 
describe some of the difficulties with defining abnormal 
cognitive deterioration, outline some issues associated with 
traditional AD neuropathology as correlates of cognitive 
dysfunction and discuss aspects of synapse loss, inflamma-
tion and insulin signaling in the brain as potentially distinct 
in AD versus normal aging. Consistent clinical trial failures 
for drugs aimed at treating AD based on the predictions of 
the amyloid cascade hypothesis have led several pharmaceu-
tical companies to abandon their support for trials aimed at 
developing AD therapeutics, leading to a significant dispar-
ity between AD drug development and disease prevalence, 
which is predicted to continue rising as global populations 

age. This mini-review aims to summarize recent clinical and 
pre-clinical findings related to inflammation, insulin signal-
ing and cognition in AD and aging. It is hoped that this will 
highlight gaps in knowledge and encourage progression of 
research aiming to distinguish the development of AD from 
normal aging. 

Differentiating Abnormal from Normal 
Cognitive Decline 
As the quality and availability of healthcare continues to 
improve around the world, average life expectancy is being 
extended (Timonin et al., 2016), such that prevalence of dis-
eases associated with aging is growing (Murray et al., 2013). 
AD is a progressive neurodegenerative disease, for which 
advancing age is a major risk factor (Querfurth and LaFerla, 
2010). It is the most common form of dementia (Barnes and 
Yaffe, 2011) and estimates suggest that as of 2015, there were 
47 million people worldwide living with AD, a number that 
is projected to rise to 131 million by 2050 (Rizzi et al., 2014; 
Baumgart et al., 2015). Several clinical and neuropatho-
logical features of dementia and AD may also be evident 
with the normal progression of aging, making distinction 
of abnormal development of dementia from normal brain 
aging challenging. In AD, there is a long prodromal peri-
od during which the disease progresses sub-clinically for 
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decades (Chertkow et al., 2013). When clinical symptoms 
eventually become apparent, pathology in the brain is well 
established and intervention is seldom effective and can only 
slow progression of the disease (Casey et al., 2010). The abil-
ity to identify AD as early as possible would provide patients 
and clinicians with opportunities to intervene prior to the 
establishment of irreversible neuropathology. The charac-
terization of mild cognitive impairment (MCI) as a clinical 
entity, distinct from AD, but also considered abnormal 
(Petersen et al., 1999; Grundman et al., 2004) allowed for 
the definition of a pattern of decline that was similar to, but 
divergent from normal aging. After 60 years of age, impair-
ments of some cognitive abilities such as processing speed, 
working memory and executive functions become apparent, 
while others, such as short-term memory, autobiographical 
knowledge and emotion processing remain relatively intact 
(Hedden and Gabrieli, 2004; Folstein and Folstein, 2010). 
Patients with MCI are said to have alterations in cognition 
with noticeable decline, while retaining functional indepen-
dence (Winblad et al., 2004). A diagnosis of dementia due 
to AD is made when a patient’s cognitive decline is so severe 
that it diminishes independent living (Swerdlow, 2011). 
Generally, healthy aging is associated with moderate decline 
in some cognitive abilities, whilst AD is characterized by 
severe deterioration of the same cognitive domains, with 
additional progressive decline of further cognitive functions, 
such that the patient’s personal, professional and social life is 
adversely affected to a severe degree (McKhann et al., 2011; 
Swerdlow, 2011). The concept of “subjective cognitive de-
cline” has been investigated in recent years as an even earlier 
indication of AD (Rabin et al., 2017) and evidence suggests 
that subjective cognitive decline may predict faster conver-
sion to MCI and AD (Fernandez-Blazquez et al., 2016).

Plaques and Tangles Are Poor Correlates of 
Cognitive Decline in AD 
Traditional neuropathological lesions in AD brain include 
senile plaques, consisting of aggregated amyloid-β (Aβ) 
and neurofibrillary tangles (NFT) of tau protein, which ac-
cumulate extracellularly and intraneuronally, respectively 
(De-Paula et al., 2012; Reitz and Mayeux, 2014). Enhanced 
neuroinflammation is also consistently observed in AD 
(McGeer and McGeer, 2013; Meraz-Rios et al., 2013) and 
evidence suggests that early hyperactivity of pro-inflam-
matory pathways in the brain precedes the development of 
plaques and tangles in AD (Tarkowski et al., 2003; Ferretti 
and Cuello, 2011; Wright et al., 2013). Muddying the wa-
ters, however, is the fact that aging itself is associated with 
similar aberrations in the brain, that may or may not lead 
to cognitive deterioration. Accumulating evidence suggests 
that Aβ plaques and neurofibrillary tau tangles are not un-
common in the brains of non-demented, cognitively healthy 
older people (Price and Morris, 1999; Savva et al., 2009; 
Malek-Ahmadi et al., 2016). Evidence has also shown that 
Aβ deposition correlates poorly with cognitive impairment 
in elderly cohorts (Terry et al., 1991; Aizenstein et al., 2008; 

Malek-Ahmadi et al., 2016), suggesting that Aβ per se does 
not directly influence cognitive function. Indeed, we recently 
found that although Aβ deposition was significant in brains 
of aged APP/PS1 mice, a model of AD, and virtually absent 
from age-matched controls, both groups of aged mice per-
formed equally poorly on several cognitive tasks (Denver et 
al., 2018). Although the amyloid cascade hypothesis remains 
the dominant paradigm that attempts to explain the patho-
genesis of AD (Hardy and Allsop, 1991; Hardy and Higgins, 
1992; Hardy and Selkoe, 2002), consistent anti-amyloid 
drug trial failures have bolstered criticism of the model that 
considers misprocessing of amyloid the central pathological 
event in AD (Drachman, 2014; Herrup, 2015). Musiek and 
Holtzman (2015) reviewed recent evidence for and against 
the amyloid cascade hypothesis and concluded that Aβ was 
critical, but not sufficient for the development of AD. They 
proposed an updated model that incorporates the idea that 
a balance is maintained throughout life between production 
and clearance of Aβ in the brain. Factors that increase AD 
risk occurring in midlife then contribute to disruption of 
this homeostatic balance, which leads to overproduction 
and reduced clearance of Aβ and subsequent pathologi-
cal cascades and clinical signs of the disease (Musiek and 
Holtzman, 2015). In any case, improvements in cognitive 
performance can occur independently of effects on Aβ (Ko-
tilinek et al., 2002; Hock et al., 2003; Chen et al., 2007) and 
reductions of Aβ pathology don’t always correlate with im-
proved cognition, nor does reducing amyloid burden always 
slow progression of neurodegeneration (Holmes et al., 2008; 
Kokjohn and Roher, 2009). It seems more and more likely 
that amyloid, particularly in the insoluble plaque form, is 
not the necessary and sufficient factor initially posited by 
Hardy and Allsop (1991), but rather a downstream event 
or byproduct of other known or unknown mechanisms in 
AD brain. Prefibrillar, soluble Aβ aggregates in the form 
of oligomers have recently been appreciated as specifically 
synaptotoxic and neurotoxic (Ferreira et al., 2015). In fact, 
it has been known for 20 years that the small, soluble aggre-
gations of Aβ, described at the time as Aβ-derived diffusible 
ligands (ADDLs), are neurotoxic independent of larger Aβ 
fibrils and plaques and may mediate the progressive cog-
nitive deterioration in AD (Lambert et al., 1998; Shi et al., 
2016). Aβ oligomers (AβOs) have been included in more 
recent revisions of the amyloid cascade hypothesis (Klein et 
al., 2001; Hardy and Selkoe, 2002), suggesting that soluble 
AβOs, rather than larger fibrils or plaques, elicit synaptic 
toxicity and memory dysfunction (Ferreira and Klein, 2011; 
Gulisano et al., 2018). NFT of hyperphosphorylated tau pro-
tein in AD brain have been considered a more reliable cor-
relate of cognitive decline in AD patients (Arriagada et al., 
1992; Nelson et al., 2012). Tau is a microtubule-associated 
protein that supports and stabilizes the neuronal cytoskele-
ton (Brandt and Lee, 1993; Panda et al., 1995; Johnson and 
Stoothoff, 2004). In AD, aberrant hyperphosphorylation of 
tau reduces its ability to bind and stabilize microtubules (Lu 
and Wood, 1993) and promotes self-aggregation into paired 
helical filaments and subsequently, NFT (Garcia de Ancos 
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et al., 1993; Johnson and Stoothoff, 2004). Hyperphosphor-
ylated tau is also directly neurotoxic (Fath et al., 2002; Chun 
and Johnson, 2007) and neuronal apoptosis induced by 
tau aggregates is thought to at least partially underlie some 
of the degeneration and cognitive decline associated with 
AD (Arriagada et al., 1992; Johnson and Stoothoff, 2004). 
However, since tangles of hyperphosphorylated tau have fre-
quently been observed in brains of non-demented individu-
als (Price et al., 1991; Price and Morris, 1999), it seems likely 
that while tau hyperphosphorylation may be involved with 
AD pathophysiology, tangle pathology may not be as reli-
ably correlated with cognitive decline as previously thought. 
Several studies have shown that pre-tangle oligomeric tau 
species are elevated in neurons from AD brain (Tiernan et 
al., 2018), an effect that correlates negatively with cognitive 
function (Vana et al., 2011), suggesting that tau oligomers 
are toxic in AD brain and their levels may correlate more 
robustly with cognitive decline.

Classical pathological lesions in AD brain, amyloid and 
tau deposits are used as measures of disease progression and 
also as an indicator of therapeutic efficacy. However, given 
the paucity of consistent correlations between these markers 
and cognitive decline, future studies may wish to consider 
alternative pathological measures, including oligomeric 
amyloid and tau. Additionally, in pre-clinical studies, inves-
tigators should consider the possibility that non-transgenic 
control animals may also develop similar age-dependent pa-
thologies in the brain. Future experimental designs should 
include additional groups of younger animals, such that 
age-dependent changes in cognitive function or brain pa-
thologies in control animals can be identified. 

Is Spatial Learning Particularly Susceptible to 
Alzheimer’s Pathology?
With advancing age, impairments of some cognitive abil-
ities become increasingly apparent, while others remain 
relatively intact in otherwise healthy individuals (Folstein 
and Folstein, 2010). Spatial learning impairments, using the 
Morris water maze, have been well-documented in the APP/
PS1 mouse model of AD, at 12 (Harrison et al., 2009; Xiao et 
al., 2016), 13–14 (Jia et al., 2013; Fol et al., 2016) and 22–24 
(Harrison et al., 2009; Xiao et al., 2016) months of age, while 
learning has been found to be unimpaired in APP/PS1 mice 
aged 7 months (O’Reilly and Lynch, 2012). Recently, we 
demonstrated impaired spatial learning in 15–18 month-
old APP/PS1 mice, compared to ‘healthy’, age-matched 
controls, while spatial memory retention and recognition 
memory were similarly impaired in both groups (Denver et 
al., 2018). This suggests that spatial learning is a cognitive 
process that is especially defective in AD. Reversal learning 
was notably impaired in APP/PS1 mice (Denver et al., 2018), 
similar to findings in younger APP/PS1 mice (O’Reilly and 
Lynch, 2012; Cheng et al., 2014), suggesting that cognitive 
flexibility is vulnerable to the effects of AD pathology. Giv-
en the memory impairments in aged wild-types, as well as 
transgenic mice, it seems reasonable to suggest that spatial 
and recognition memory are deleteriously affected with 

aging, while spatial learning is distinctly vulnerable to AD 
pathology (Denver et al., 2018). Interestingly, certain spatial 
cognitive domains are also known to be impaired in aged 
C57Bl/6 mice (Barreto et al., 2010; Shoji et al., 2016). 

Other amyloidogenic mouse models of AD show similar 
alterations in cognitive function. Age-dependent deficits 
of spatial learning have been detected in tg-ArcSwe mice, 
which express both Arctic and Swedish mutations of APP 
(Lord et al., 2009). Some (Wolf et al., 2016; Portbury et al., 
2017), but not all (Bizon et al., 2007) have observed learning 
and memory impairments in aged adult Tg2576 mice, while 
early cognitive deficits have been detected in the 3xTg AD 
model (Stover et al., 2015). Most AD mouse models develop 
spatial learning and memory impairments, however AD is a 
complicated basket of interconnected pathologies, making 
identification of the precise cause of AD-related cognitive 
dysfunction challenging. Recent appreciation for impaired 
spatial navigation as a cognitive domain that can distinguish 
incipient AD or MCI from aging in humans (Lithfous et al., 
2013; Coughlan et al., 2018) has spurred empirical investi-
gation, results of which suggest that this may indeed be the 
case (Allison et al., 2016). These findings may inform future 
clinical and pre-clinical AD research and may support clini-
cians in identifying early patterns of cognitive decline that 
are divergent from normal aging.

Synaptic Loss in AD and Aging  
Synapse loss consistently correlates with cognitive decline in 
AD (Terry et al., 1991; Shankar and Walsh, 2009; Robinson 
et al., 2014). Several studies have shown that synapse density 
is decreased in the brains of 5–8 month-old APP/PS1 mice 
(McClean et al., 2011; Zhang et al., 2014; Li et al., 2015; Liu 
et al., 2016), while others report reduced synapse density 
in brains of 18–24-month-old APP/PS1 mice, compared to 
age-matched wild-types (Ostapchenko et al., 2015; Zhang et 
al., 2016). However, one report showed that synaptophysin 
levels in the hippocampus of 7- and 17-month-old APP/PS1 
mice were similar to age-matched wild-types (Minkeviciene 
et al., 2008). Our results suggest that hippocampal and cor-
tical synapse density is comparable between 15–18 month-
old wild-types and APP/PS1 mice (Denver et al., 2018), 
possibly reflecting age-related synapse loss. A number of the 
aforementioned studies identified reduced synaptophysin 
levels using western blot assay of hippocampal and cortical 
homogenates (Li et al., 2015; Liu et al., 2016; Zhang et al., 
2016) or by quantitative analysis of synaptophysin immuno-
fluorescence throughout the whole hippocampus (Li et al., 
2015; Ostapchenko et al., 2015). Unlike methods utilized by 
Denver et al. (2018), neither of these methods considered 
the discrete cellular layers of the hippocampus and therefore 
may have overlooked subtle variation in synapse density 
between subregions in APP/PS1 and wild-type mice. It has 
been shown in Tg2576 mice that synaptophysin levels were 
no different from controls at 3, 9, 14 and 19 months of age 
(King and Arendash, 2002). Additionally, evidence suggests 
that synaptophysin levels are unaffected in the hippocampus 
of human patients with AD (Tannenberg et al., 2006; Counts 
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et al., 2012). In aged APP/PS1 mice, Malthankar-Phatak et 
al. (2012) failed to detect reduced synaptophysin staining in 
the hippocampal molecular layer or neocortical areas, even 
at 24–27 months of age, results that more closely align with 
our findings (Denver et al., 2018). We did, however, detect 
reduced synaptophysin staining in the polymorphic hilar 
layer of the dentate gyrus in aged APP/PS1 mice, compared 
to controls (Denver et al., 2018). Others have shown AD-re-
lated synapse loss in the inner (Scheff and Price, 1998) and 
outer (Scheff et al., 1996; Alonso-Nanclares et al., 2013) mo-
lecular layers of the dentate gyrus. Synapse loss in the outer 
molecular layer and layers II and III of the entorhinal cortex 
has also been demonstrated in Tg2576 mice by electron mi-
croscopy, while synaptophysin levels remained unchanged 
(Dong et al., 2007). There are several potential explanations 
for the variation in the findings from the aforementioned 
studies. First of all, markers typically utilized when measur-
ing synapse density in the brain represent functional pro-
teins in either the pre- or post-synaptic terminal. In AD and 
aging, reductions of synaptic marker levels may represent 
loss, dysfunction or mislocalisation of distinct synaptic pro-
teins, rather than a general loss of synapses. Furthermore, 
there are a huge number of synaptic proteins that comprise 
synapses, the majority of which can be used as biomarkers 
of synapse density. This means that depending on a single 
or even several markers to assess synapse density may be 
problematic if there are selective alterations of distinct pro-
teins, rather than simply synapse loss, as has been reported 
(Tannenberg et al., 2006). Secondly, AD and aging may be 
associated with a loss of pre- or post-synaptic terminals at 
different stages as the disease or age progresses. Counts et al. 
(2012) found that pre-synaptic synaptophysin and synapto-
tagmin were unaltered in the hippocampus of AD and MCI 
patients, whereas post-synaptic drebrin was reduced. Had 
the authors failed to include drebrin in their analysis, they 
may have erroneously concluded that MCI and early AD is 
not associated with synapse loss in the hippocampus (Counts 
et al., 2012). The third potential reason for the inconsistent 
findings is the regional heterogeneity of synapse loss in the 
brain with aging and in AD. There is a general consensus 
that synapse loss is primarily apparent in the hippocampus, 
as well as frontal and temporal cortices of AD patients (Clare 
et al., 2010), however these anatomical regions consist of a 
number of distinct subregions that are connected with other 
areas within complex neuronal circuits. Inconsistencies may 
arise in the literature simply as a result of investigators not 
looking in the correct place within the brain, or not looking 
closely enough. Where possible, studies that measure syn-
apse density using antibody-mediated immunostaining or 
biochemical assays may also wish to examine synapse ultra-
structure using electron microscopic techniques, with which 
functional synaptic contacts can be directly visualized (Dong 
et al., 2007; Neuman et al., 2015).

The polymorphic layer of the dentate gyrus contains sev-
eral different types of neuron, the most abundant of which 
is the mossy cell neuron (Amaral et al., 2007). Mossy cells in 
the hilus provide inhibitory and excitatory input to neurons 

in the adjacent granule cell layer (Buckmaster et al., 1996). 
They also form synaptic connections with another polymor-
phic layer cell, the GABAergic inhibitory interneuron, which 
in turn can inhibit granule cell neurons (Scharfman, 1995). 
This complex network of inhibitory and excitatory activity 
is thought to underlie certain forms of associative memory 
and pattern separation (Myers and Scharfman, 2011; Scharf-
man and Myers, 2012). The decrease in synaptophysin levels 
in the polymorphic layer of aged APP/PS1 mice (Denver et 
al., 2018) could indicate a reduction in mossy cell synaptic 
contact with inhibitory interneurons, which would result 
in disinhibition of granule cell neurons and disruption of 
the fine balance of inhibitory and excitatory neuronal activ-
ity required for effective cognitive functioning. It has been 
shown that enhancing GABAergic innervation in the den-
tate gyrus improves reversal learning in mice (Morellini et 
al., 2010). The consequences of synaptic dysfunction within 
this discrete subregion of the hippocampus remain to be ful-
ly determined. Based on our results, one may speculate that 
hilar synapse loss is responsible for the observed impairment 
in spatial learning, particularly reversal learning, since the 
neural network associated with the hilus of the dentate gy-
rus is involved with pattern separation and reversal learning 
(Scharfman and Myers, 2012). 

Aging in humans is also associated with reduced levels of 
synaptic proteins related to structural plasticity of axons and 
dendrites, while in human AD brain there is an additional 
reduction of postsynaptic drebrin (Hatanpaa et al., 1999). 
Age-related correlations between hippocampal synapse loss 
and cognitive decline are known to exist (Nicholson et al., 
2004; Nyffeler et al., 2007; Long et al., 2009), although some 
report a lack of such a relationship (Geinisman et al., 2004). 
Age-related deficits in hippocampal long-term potentiation 
(LTP) have also been identified (Deupree et al., 1993; Barnes 
et al., 1997; Bouet et al., 2011), suggesting that a decline in 
synaptic function with age, rather than synapse density as 
such, is more closely linked with cognitive decline. Support 
for this proposal has been presented in several reports that 
demonstrated a reduction, as a consequence of aging, of 
pre- and post-synaptic components required for efficient 
functioning of synapses in the hippocampus (Canas et al., 
2009; Long et al., 2009; VanGuilder et al., 2010). Conversely, 
increased expression of synaptic proteins is associated with 
superior learning in aged animals (Colombo and Gallagher, 
2002; Menard and Quirion, 2012). These studies demon-
strate the importance of intact, functional synapses, partic-
ularly in the hippocampus, in learning and memory. Dete-
rioration of synaptic integrity and synapse loss in AD brain 
and with aging may explain at least some of the cognitive 
deficits apparent in animal models and humans. Comparing 
synapse loss in AD brain with that associated with aging will 
require delineation of regional vulnerability of synapses to 
aging or AD pathology and correlations with specific cog-
nitive deficits. It should also be remembered that synaptic 
biomarkers represent functional proteins within the synapse 
and modulation of these proteins may reflect dysfunction of 
the protein itself, rather than loss of the entire synapse. Pre- 
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and post-synaptic terminals and the proteins of which they 
are comprised likely respond differently to AD and aging 
pathologies. Inclusion of at least one pre-synaptic and one 
post-synaptic marker would provide more reliable insights 
into synaptic dysfunction associated with AD and aging. 
Where possible examining synaptic ultrastructure with elec-
tron microscopy would also greatly enhance the reliability of 
future research.

The Complexity of Neuroinflammation in AD 
and Aging 
Microglia and astrocytes are able to initiate an inflamma-
tory response to injury in the central nervous system (CNS) 
(Kreutzberg, 1996; Schilling et al., 2003; Rezai-Zadeh et al., 
2009). Aβ rapidly activates microglia, such that their mor-
phological and phenotypic characteristics are altered to pro-
mote phagocytosis and induce a focal inflammatory response, 
leading to recruitment of other immune cells (Koenigsknecht 
and Landreth, 2004; Meraz-Rios et al., 2013). Activated mi-
croglia phagocytose Aβ and reduce amyloid burden (Bard et 
al., 2000; Lee and Landreth, 2010; El-Shimy et al., 2015; Fu 
et al., 2016). However, sustained microglial activation and 
unresolved inflammation in the brain is harmful to neurons 
and synapses and promotes a state of chronic dysregulation 
of glial cells and subsequent deterioration of brain structure 
and function (Frank-Cannon et al., 2009; Steardo et al., 2015; 
Leszek et al., 2016). Aβ42 can induce microglial phagocytosis 
of viable neurons (Neniskyte et al., 2011, 2016; Fricker et al., 
2012) and phagocytic microglia are thought to contribute 
to synapse loss early in AD (Hong et al., 2016). Microglia 
secrete an array of pro-inflammatory cytokines and chemok-
ines, such as interleukin (IL)-6, IL-1β, tumor necrosis factor 
α (TNF-α), macrophage inflammatory protein-1α (MIP-1α) 
and monocyte chemotactic protein 1 (MCP-1), when exposed 
to Aβ (Rogers and Lue, 2001; Patel et al., 2005; Tuppo and 
Arias, 2005). This leads to recruitment and activation of astro-
cytes and peripheral immune cells (Rezai-Zadeh et al., 2009). 
Astrocytes are also recruited to Aβ plaques (Wyss-Coray et 
al., 2003) and are also capable of degrading Aβ (Nagele et al., 
2003; Wyss-Coray et al., 2003; Koistinaho et al., 2004), albeit 
less efficiently than microglia (Mandrekar et al., 2009). Al-
though it has been posited that astrocyte migration is induced 
by Aβ-mediated injury to adjacent neurons, as opposed to Aβ 
per se (Galea et al., 2015). 

Inflammation in the brain increases with age (Lynch, 2010; 
Gabuzda and Yankner, 2013) and several studies report 
elevated levels of inflammatory cytokines in brains of aged 
rodents (Ye and Johnson, 1999; Maher et al., 2004; Godbout 
et al., 2005). Since aging is also associated with systemic 
augmentation of inflammation (Franceschi et al., 2007) it is 
thought that circulating inflammatory mediators prime mi-
croglia in the aging brain (Perry, 2004; Dilger and Johnson, 
2008; Norden and Godbout, 2013; Matt and Johnson, 2016). 
Primed microglia are more pro-inflammatory at baseline, 
are more sensitive to secondary immune challenges and 
generate an exaggerated inflammatory response (Lull and 
Block, 2010; Norden et al., 2015; Wendeln et al., 2018). In 

the context of AD, primed microglia respond more readily 
to Aβ, producing enhanced levels of cytokines and exerting 
direct toxic effects on neurons and at synapses (Hong et al., 
2016; Spangenberg et al., 2016). Therefore, dysregulation of 
the systemic and central immune system that accompanies 
aging can serve as a chronic priming stimulus for microglia 
(Godbout et al., 2005; Norden and Godbout, 2013; Wendeln 
et al., 2018); a mechanism that could mediate the increased 
risk of AD with age (Querfurth and LaFerla, 2010).

Polymorphisms in genes encoding several cytokines are 
strongly associated with increased risk of AD, including IL-
1β, IL-6, interferon γ (IFNγ), IL-4 and IL-10 (Licastro et 
al., 2007; Zhang et al., 2011; Hua et al., 2013; Zheng et al., 
2016; Dong et al., 2017), suggesting an association between 
cytokines and either protection against or propagation of 
AD pathogenesis. In our recent study we found comparable 
levels of inflammatory cytokines in the brain of aged wild-
type and APP/PS1 mice, with the exception of IFNγ and IL-
4, which were both elevated in APP/PS1 mice (Denver et al., 
2018). The similarities in inflammatory profile in the brain 
of aged mice may be related to the general enhancement of 
neuroinflammation evident with aging. Elevated IFNγ has 
been shown previously in the brain of younger APP/PS1 
mice, the cellular source of which was infiltrating Aβ-spe-
cific T cells (Browne et al., 2013). Interestingly, adoptive 
transfer of Th1-producing T cells to APP/PS1 mice resulted 
in microglial activation, increased Aβ deposition and cog-
nitive dysfunction (Browne et al., 2013). Given the negative 
correlation, demonstrated in our study, between brain IFNγ 
levels and recognition memory (Denver et al., 2018), it may 
be that enhanced brain levels of IFNγ has a direct negative 
impact on cognitive function in AD. In any case, it appears 
that IFNγ and IL-4 were specifically increased in the brains 
of APP/PS1 mice, presumably as an effect of AD pathology. 
Increased brain levels of IFNγ has also been shown in APPswe 
mice aged 3 and 19 months (Abbas et al., 2002), however 
brain IL-4 was down-regulated in this study, contrary to our 
findings. Th2 cytokine IL-4 plays a role in suppressing Th1 
immune responses (Luzina et al., 2012), as such, our find-
ings may represent protective upregulation of IL-4 in the 
brains of APP/PS1 mice as a response to elevated levels of 
IFNγ (Denver et al., 2018), while results of Abbas et al. (2002) 
might reflect a failure of this protective response in APPswe  
mice. Important sources of IFNγ and IL-4 include T lym-
phocytes (Castro et al., 2018). It is possible that circulating 
or infiltrating T cells or macrophages in the CNS are respon-
sible and may be involved in the pathophysiology of AD, a 
proposition that is increasingly under investigation (Browne 
et al., 2013). Microglia and astrocytes also produce IFNγ (Lau 
and Yu, 2001; Kawanokuchi et al., 2006; Wang and Suzuki, 
2007; Sa et al., 2015), while evidence suggests that although 
astrocytes may not produce IL-4, they do express the IL-4 
receptor, through which they respond to IL-4 by suppress-
ing inflammatory activation and augmenting growth factor 
production (Brodie et al., 1998; Liu et al., 2000). Sources of 
IL-4 in the brain include microglia and neurons (Zhao et 
al., 2015; Lee et al., 2016). Neuronal IL-4 has been shown to 
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induce a restorative M2-like phenotype in microglia (Fer-
nandes et al., 2014; Zhao et al., 2015), while Latta et al. (2015) 
also showed that IL-4 was involved in the induction of an 
M2a phenotype in microglial cells and in the brains of APP/
PS1 mice. Together this suggests that IL-4, possibly derived 
from microglia, neurons or infiltrating T cells, exerts neuro-
protective effects in models of brain injury, including AD. 
Intriguingly, IL-4 may also exert direct, beneficial effects on 
cognitive function (Gadani et al., 2012), suggesting that the 
clinical manifestation of AD or age-related cognitive decline 
may be associated with direct effects of cytokines, including 
IL-4 (McAfoose and Baune, 2009; Derecki et al., 2010). 

Pro-inflammatory IL-1β has been consistently associated 
with AD (Mrak and Griffin, 2001; Shaftel et al., 2008). Sev-
eral reports indicate that IL-1β is up-regulated in plasma 
from MCI and AD patients (De Luigi et al., 2002; Forlenza 
et al., 2009; Brosseron et al., 2014) and previous studies have 
detected increased levels of IL-1β in brains of APP/PS1 mice 
(Gallagher et al., 2013; Yan et al., 2013; Guo et al., 2015; 
Xuan et al., 2015). An inactive precursor of IL-1β (pro-IL-
1β) is present in glial cells in the brain (Shaftel et al., 2008) 
and activation of IL-1β is dependent on caspase-1 cleavage 
of pro-IL-1β (Halle et al., 2008). The inflammasome NLRP3 
detects danger signals through toll-like receptor 4 (TLR4) 
signaling in astrocytes and microglia (Alfonso-Loeches et al., 
2014, 2016). It has been demonstrated that Aβ stimulates IL-
1β production and secretion via NLRP3-dependent cleavage 
of pro-IL-1β by caspase-1 (Halle et al., 2008; Salminen et al., 
2008; Heneka et al., 2013; Parajuli et al., 2013), providing a 
reasonable mechanistic explanation for the elevated levels of 
IL-1β in AD brain. However, elevated levels of IL-1β have 
also been shown in brains of senescence-accelerated SAMP8 
mice (Tha et al., 2000) and in aged rat brain (Gee et al., 2006; 
Campuzano et al., 2009). We also detected elevated IL-1β in 
brains of both aged C57Bl/6 and APP/PS1 mice, compared 
to young wild-type mice (Denver et al., 2018). In addition, 
IL-1β has been shown to suppress hippocampal LTP (Vere-
ker et al., 2000; Griffin et al., 2006; Hoshino et al., 2017; Prie-
to et al., 2018), suggesting that IL-1β might partially mediate 
cognitive dysfunction in aging and AD. 

Perturbed Insulin Signaling in AD Brain 
A reciprocal relationship exists between AD risk and type 2 
diabetes mellitus (T2DM), another disease associated with 
aging (Janson et al., 2004; Mittal and Katare, 2016). One of 
several similarities with AD, inflammation is also an import-
ant feature of T2DM pathophysiology (Lontchi-Yimagou 
et al., 2013). Resistance of systemic tissues, such as adipose 
tissue and pancreas, to the hormone insulin is another sig-
nificant feature of T2DM (Taylor, 2012). Activation of the 
insulin receptor (IR) is followed by recruitment of insulin 
receptor substrate (IRS) proteins intracellularly, usually IRS-
1 or IRS-2 (White, 2003; Boura-Halfon and Zick, 2009). 
The insulin-mediated signaling cascade then continues via 
phosphatidylinositol 3-kinase (PI3K) and protein kinase B 
(Akt), among several others, eliciting downstream effects 
through phosphorylation and activation of other kinases 

and effector molecules (Siddle, 2011). Normal inhibition of 
IRS-1 is a means by which insulin signaling is regulated and 
is mediated by mitogen-activated protein kinases (MAPK), 
such as extracellular signal-regulated kinases (ERK), c-Jun 
N-terminal kinases (JNK) and inhibitor of κB kinase (IKK) 
(Gao et al., 2002, 2004; Boura-Halfon and Zick, 2009). This 
down-regulation of insulin signaling can occur through 
phosphorylation of serine residues on IRS-1, including 
those at positions 307 (Hirosumi et al., 2002), 312 (Gao et 
al., 2002) and 616 (Talbot et al., 2012). These intracellular 
kinases can be modulated by extracellular factors such as ox-
idative and nitrosative stress, inflammatory mediators and 
Aβ oligomers (Dineley et al., 2001; Andreozzi et al., 2007; 
Giordano et al., 2008; Bomfim et al., 2012), which, through 
activation of respective membrane-bound receptors, are 
able to influence inhibitory serine phosphorylation of IRS-1. 
Aging itself is associated with development of glucose intol-
erance and insulin resistance (Fink et al., 1983; Rowe et al., 
1983; Paolisso et al., 1999; Barbieri et al., 2001). Park et al. 
(2013) identified numerous insulin signaling genes that were 
down-regulated in aged rodents and other reports suggest 
that insulin insensitivity and glucose intolerance also exists 
in aged animals (Catalano et al., 2005; Yamamoto and Ot-
suki, 2006; Romanatto et al., 2014), including C57Bl/6 mice 
(Houtkooper et al., 2011; Lipina et al., 2016). Insulin resis-
tance has been demonstrated in postmortem brain tissue 
from AD and MCI patients, in the absence of diabetes and 
irrespective of apolipoprotein E (ApoE)-ε4 status (Talbot et 
al., 2012). Furthermore, IRS-1 pSer616 and IRS-1 pSer636/639 
were identified as putative biomarkers of brain insulin re-
sistance in AD and were found to correlate positively with 
Aβ oligomer levels and negatively with cognitive function 
(Talbot et al., 2012). Another study showed similar results in 
human AD brain tissue and also found that stimulation of 
primate hippocampus and hippocampal neuronal cultures 
with Aβ oligomers, increased levels of IRS-1 pSer636 and ac-
tivated JNK; a stress kinase that phosphorylates IRS-1 at ser-
ine residues (Bomfim et al., 2012). Other studies have also 
demonstrated impaired neuronal insulin signaling in AD 
brain and in response to Aβ oligomer challenge at the level 
of the IR and insulin-like growth factor-1 (IGF-1) receptor, 
IRS-1, IRS-2, PI3K and Akt (Zhao et al., 2008; Moloney et 
al., 2010; Liu et al., 2011). In the brain, insulin signaling en-
courages proliferation, differentiation, neurite growth and is 
anti-apoptotic and neuroprotective (Blazquez et al., 2014). 
Furthermore, insulin modulates the structure and function 
of synapses, neurons and neural circuits and has a well-es-
tablished role in enhancing learning and memory (Blazquez 
et al., 2014). This suggests that insulin resistance in the brain 
can exist as a distinct phenomenon, independent of periph-
eral insulin resistance and glucose intolerance (Bomfim et 
al., 2012; Talbot et al., 2012). This also implies that dimin-
ished responsiveness to insulin in the brain has different 
consequences than in peripheral tissues. Our data shows 
that peripheral insulin and glucose tolerance were compara-
ble between aged wild-type and APP/PS1 mice, while IRS-
1 pSer616 levels were increased in the brain of APP/PS1 mice 
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(Denver et al., 2018). This provides some support for the 
suggestion that insulin resistance in brain may indeed exist 
as a distinct phenomenon, separate from insulin signaling in 
the periphery and one that can distinguish AD from normal 
aging. 

Perspectives and Future Directions 
The differentiation of normal brain aging from development 
of AD is necessary to allow for the categorization of risk of 
progression from MCI to AD. This will identify potential 
treatment windows and inform decisions regarding lifestyle 
interventions aimed at reducing the risk of developing AD. 
The role of inflammation in AD is complex, with dichoto-
mous functions in the preservation or deterioration of brain 
structure and function. Clinical success for pharmacological 
interventions in AD that either boost or suppress inflam-
matory responses in the brain have been relatively sparse, 
ie. amyloid immunization and NSAID trials. Glial cells 
function as active immune cells and protect the CNS from 
pathogenic insults, including Aβ, however, persistent im-
munological activation of these cells drives the development 
of a neurotoxic pro-inflammatory environment and reduces 
their ability to function as homeostatic regulators in brain. 
In addition to the direct toxic effects elicited by pro-inflam-
matory glial cells, future research should also consider the 
potential gaps in potassium buffering, lactate shuttling, glu-
tamate recycling and synaptic stripping that may be evident 
within the inflammatory milieu of AD brain. Such studies 
would illuminate novel therapeutic potential aimed at main-
taining or restoring homeostatic functions of multifunction-
al glial cells, rather than broad inhibition or stimulation. In 
addition to CNS-resident glial cells, future studies should 
address the contribution of peripheral immune cells, such 
as lymphocytes and neutrophils, to the neuroinflammatory 
environment in AD brain. This systemic immune response 
may be beneficial or harmful to the integrity of the CNS in 
AD and greater understanding may help to identify novel 
therapeutic targets for a disease in which effective treatment 
is notoriously difficult. Dysregulated insulin signaling in AD 
brain has been recently appreciated and our work supports 
the proposition that brain insulin resistance distinguishes 
AD from healthy aging. Further work is needed to clarify 
the precise molecular and cellular players in this story. Fu-
ture investigations should determine changes in kinase and 
phosphatase activity that develop in AD brain, particularly 
those that interact with IRS-1. Moreover, what are the func-
tional consequences of downregulated insulin signaling in 
the brain? Likely effects include increased neuronal apop-
tosis, tau hyperphosphorylation and cognitive dysfunction, 
however, the complexity of AD makes it difficult to delineate 
direct cause and effect pathways. Insulin-sensitizing drugs 
may prove efficacious in treating AD and early clinical trial 
data suggest that incretin hormone derivatives do indeed 
have several positive effects in brain. Finally, we identified 
spatial learning as a particularly defective cognitive domain 
specifically in AD mice. Although it is well-known that spa-
tial learning and memory is impaired in AD, aged control 
mice performed equally poorly to AD mice on tasks that re-

quired memory recall, suggesting that while ‘normal’ aging 
is associated with decline of memory function, spatial learn-
ing is relatively retained compared to AD mice. This finding 
may inform future research aiming to develop diagnostic 
tools that will allow clinicians to more comprehensively and 
efficiently identify patterns of cognitive decline that precede 
dementia. 

A diagnosis of AD is usually made late in the progression 
of the disease. The extended prodromal stages of AD are 
generally considered sub-clinical or asymptomatic and any 
noticeable alterations in cognitive functions or neuropsy-
chiatric status are attributed to normal aging. Earlier identi-
fication of abnormal cognitive decline or biomarker irregu-
larities would allow for earlier diagnosis, informing lifestyle 
changes or novel treatment approaches aimed at reducing 
risk of progression to AD or delaying the age of clinical on-
set of this devastating disease.
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