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IntermIttent fastIng boosts neurogenIn-3 
(ngn3) expressIon and beta Cell neogenesIs
Several recent studies have found that 
repeated episodes of fasting (or of a low-carb/
low-protein diet mimicking the metabolic 
impact of fasting), of 1–4 days of duration, 
interspersed with ad libitum food consump-
tion, can induce neogenesis of pancreatic 
beta cells in several mouse models of diabetes 
(db/db, high-fat feeding and streptozotocin 
induced).1–3 This phenomenon is associated 
with increased expression of Ngn3 in islet 
cells. Ngn3 is a transcription factor expressed 
transiently in developing pancreatic islets in 
utero that is required for the further devel-
opment of both alpha and beta cells.4 5 The 
increase in islet beta cells induced by inter-
mittent fasting is accompanied by a corre-
sponding increase in islet insulin content and 
a marked improvement in glycaemic control. 
This benefit of intermittent fasting is abro-
gated if autophagy is concurrently suppressed, 
suggesting that fasting-induced autophagy 
is a key mediator of the subsequent beta 
cell neogenesis.2 It has also been noted that 
fasting-induced reductions in mTORC1 and 
protein kinase A (PKA) activity in islet cells 
are mediators of this phenomenon.1 With 
respect to autophagy, it is notable that inter-
mittent feeding of a leucine deprived, which 
would be expected to induce autophagy by 
episodic inhibition of mTORC1 activity, has 
likewise been shown to increase Ngn3 expres-
sion and beta cell mass in db/db mice.6

These observations are of the greatest 
interest, inasmuch as type 1 diabetes reflects 
near-complete inflammatory destruction of 
islet beta cells, and the later stages of severe 
type 2 diabetes are characterised by a marked 
decrease in islet beta cells, reflecting their 

accelerated loss by apoptosis. If it proves 
feasible to replicate these observations in 
human diabetics, this strategy might arguably 
lend itself the cure of diabetes. In regard to 
type 2 diabetes, this disorder can sometimes 
be fully reversed in its early stages if the factors 
that impelled its onset are corrected, that is, 
if a diet and exercise regimen that supports 
insulin sensitivity is implemented and appro-
priate weight loss is achieved. Such a reso-
lution is less common, however, in cases of 
long-standing diabetes, likely owing in large 
part to a marked decline in beta cell mass.7 8 
Therefore, feasible measures that stimulate 
islet beta cell neogenesis might make it more 
feasible to reverse severe longstanding type 
2 diabetes. With respect to type 1 diabetes, 
production of new beta cells might enable 
its resolution if the autoimmune attacks that 
destroyed the original complement of beta 
cells can somehow be quelled.

notCh1 sIgnallIng opposes ngn3 
expressIon In Islet Cells
How does intermittent fasting induce beta cell 
neogenesis associated with Ngn3 expression? 
There is reason to suspect that autophagy-me-
diated suppression of Notch1 signalling plays 
an important role in this regard. Ligand-stim-
ulated cleavage of the transmembrane 
Notch1 protein by gamma-secretase gener-
ates an intracellular protein, Notch intracel-
lular domain (NCID), which translocates to 
the nucleus to bind the CBF1, Suppressor 
of Hairless, Lag-1 (CSL) transcription factor 
and its coactivator Mastermind; this complex 
can then promote the transcription of a 
range of Notch target genes, notably those of 
the Hes family.9 One of these genes codes for 
Hes1, a basic helix–loop–helix transcription 
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factor that functions to repress transcription of the gene 
coding for the Ngn3 protein.10–12 Notch1 signalling is 
constitutively active in islet cells; Dll4 on neighbouring 
cells serves as the activating ligand.13 14 This signalling 
increases in mice that are obese, or in response to gluco-
toxicity.15 In non-obese diabetic (NOD) mice, a model 
for inflammation-induced diabetes, treatment with an 
antibody to Dll4 that blocks Notch1 signalling was found 
to increase islet mRNA expression of Ngn3 by 600-fold, 
while enhancing the production and proliferation of 
beta cells and increasing insulin production.13 Moreover, 
culturing rat pancreatic acinar cells with an external 
domain of the Notch1 protein that inhibits Notch1 acti-
vation, triggers a burst of Ngn3 expression and induces 
their differentiation into immature islet cells, about 30% 
of which are insulin-producing beta cells.16 Hence, it 
appears the episodic suppression of islet Notch1 signal-
ling could be expected to boost Ngn3 expression and 
beta cell neogenesis.

maCroautophagy markedly boosts notCh1 
degradatIon
A peculiarity of the Notch1 protein is that macroauto-
phagy markedly decreases its expression by enhancing its 
lysosomal degradation—an effect that has been demon-
strated in a number of cell types.17–21 This effect is accom-
panied by a corresponding decrease in cellular NCID 
levels and in expression of Notch1 targets such as Hes1. 
This effect does not reflect non-specific incorporation of 
Notch1 into endosomes that subsequently fuse with auto-
phagosomes; rather, for some reason, Notch1 is incorpo-
rated into autophagosome precursor vesicles, positive for 
ATG16L1, that subsequently participate in autophago-
some formation.17

Autophagic downregulation of Notch1 activity in 
uncommitted islet beta cells could therefore be expected 
to disinhibit transcription of the Ngn3 gene. The fact that 
increased protein expression of Ngn3 subsequently arises 
presumably reflects the fact that transcription factors 
capable of promoting transcription of this gene are active 
in these cells, at least temporarily; whether autophagy 
might play any role in stimulating their activity currently 
remains unclear. In any case, suppression of Notch1 
activity seems likely to contribute importantly to renewed 
expression of Ngn3 in islet cells following intermittent 
fasting. Potentially, the refeeding periods following 
episodic fasts might support Ngn3’s ability to reconsti-
tute functional beta cells by enabling proliferation and 
suppressing apoptosis in these cells. It is important to 
note that Ngn3 is expressed only transiently—for several 
days—during islet development; it nonetheless has a 
long-lasting impact by triggering sustained production 
of other transcription factors that induce the character-
istic behaviour of beta cells.5 Presumably, these factors 
then provide feedback inhibition of Ngn3 expression. 
These considerations explain why a transitory downreg-
ulation of Notch1 signalling and upregulation of Ngn3 

expression induced by intermittent fasting could be 
expected to have a sustained impact on islet function.

With respect to the roles of decreased mTORC1 and 
PKA activities in promoting Ngn3 induction, it is well 
known that mTORC1 suppresses macroautophagy; it 
does so by conferring a phosphorylation on ULK1 that 
prevents its activation.22 23 Moreover, in at least some 
types of cells, mTORC1 increases Notch1 synthesis at the 
transcriptional level by upregulating STAT3 activity.24 
PKA likewise suppresses autophagy in yeast, although it 
impacts on autophagy in mammalians cells is less clear.25 
However, a recent report indicates that cAMP/exchange 
protein directly activated by cAMP (EPAC) signalling 
inhibits autophagy in beta cells.26 Also, PKA can upregu-
late Notch1 signalling by enhancing the activity of gamma 
secretase, the protease that is required for generation of 
NCID. It does so, at least in part, by increasing the expres-
sion of an essential component of the gamma secretase 
complex, PEN-2.27 PKA boosts transcription of the gene 
coding for PEN-3 via activating phosphorylation of cyclic 
AMP-response element-binding protein (CREB), which 
binds to the PEN-2 promoter.27 28 Arguably, this might 
represent an effect independent of autophagy whereby 
fasting decreases Notch1 activity.

Fasting and dietary strategies mimicking the metabolic 
impact of fasting are not the only ways to boost autophagy. 
AMP(adenosine 5′ monophosphate)-activated kinase 
(AMPK) promotes autophagy by inhibiting mTORC1 
via phosphorylations of TSC2 and Raptor and also by 
phosphorylating Ulk.22 29 In this regard, the AMPK-acti-
vating drug metformin has been shown to oppose Notch1 
signalling in various contexts.24 30 31 Moreover, adminis-
tration of metformin to pregnant mice has been shown 
to amplify the prenatal increase of Ngn3 in the pancre-
atic islets of the fetuses and to boost the beta cell fraction 
of the newborn pups.32 Metformin, and possibly also the 
phytochemical AMPK activator berberine, might thus 
have potential as adjuvants to intermittent fasting for 
promoting beta cell neogenesis.

shIeldIng beta Cells from gluColIpotoxICIty
If it proves clinically feasible to boost islet beta cell mass 
in individuals with type 2 diabetes with intermittent 
fasting strategies, the clinical utility of this approach 
would evidently be blunted if ongoing glucolipotox-
icity rapidly renders these new cells dysfunctional and 
promotes their apoptosis. Hence, dietary, drug or nutra-
ceutical strategies that alleviate the adverse impact of 
elevated glucose/ free fatty acid (FFAs) on beta cell func-
tion and that moderate episodic rises in glucose and FFAs 
by improving the insulin sensitivity of adipocytes, hepato-
cytes and skeletal muscle could importantly complement 
measures promoting beta cell neogenesis.

As the insulin resistance associated with metabolic 
syndrome and visceral obesity worsens, beta cells initially 
compensate by multiplying and by secreting increased 
amounts of insulin, maintaining glycaemia at reasonably 
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normal levels. However, this adaptation often ultimately 
fails, as episodic exposure to elevated levels of glucose 
and of free fatty acids (especially saturated fatty acids) 
drives a dysdifferentiation of beta cells—a phenomenon 
known as glucolipotoxicity.33 34 Owing in large part to 
decreased expression and nuclear localisation of the 
PDX-1 transcription factor, as well as decreased expres-
sion of the MafA transcription factor, synthesis of both 
GLUT2 and glucokinase declines, leading to a disruption 
of glucose-stimulated insulin secretion (GSIS).35 36 In 
healthy beta cells, the increase in glycaemia following a 
meal evokes a corresponding increase in beta cell uptake 
and oxidation of glucose, associated with an increase in 
beta cell ATP levels that depolarises the cell by inhibiting 
ATP-sensitive potassium channels; this depolarisation in 
turn triggers calcium influx via voltage-sensitive chan-
nels, leading to exocytosis of insulin-loaded granules.37 As 
contrasted to hexokinase, glucokinase has a lower affinity 
for glucose (Km=10 mM) and is not feedback inhibited by 
its product glucose-6-phosphate, so glucose oxidation and 
ATP production in beta cells rise as plasma glucose rises 
throughout the physiological range; hence, glucokinase 
functions as the beta cell ‘glucosensor’.38 In beta cells 
subjected to glucotoxicity, reduced expression of both 
GLUT2 and glucokinase blunts the increase in glucose 
oxidation following a meal, such that postprandial insulin 
secretion fails to rise appropriately. This phenomenon is 
further exacerbated by a reduction in beta cell insulin 
synthesis, reflecting key roles for nuclear PDX-1 and 
MafA in promoting transcription of the insulin gene.36 
The resultant failure of beta cells to secrete adequate 
amounts of insulin in response to postprandial elevations 
of glucose in turn leads to more sustained elevations of 
plasma glucose and FFAs that further exacerbate gluco-
lipotoxicity and beta cell dysdifferentiation in a vicious 
cycle. Moreover, over the course of time, this situation 
worsens as glucolipotoxicity drives an apoptotic loss of 
beta cell mass.34

oxIdant produCtIon drIves gluColIpotoxICIty; Camp 
and Cgmp CounteraCt It
Fortunately, however, we have gained considerable insight 
into how glucolipotoxicity causes beta cell dysfunction. 
In particular, increased oxidant production by NOX2-de-
pendent NADPH oxidase complexes has been shown 
to be a key mediator in this regard.39–45 Glucose expo-
sure stimulates the activity of this complex by promoting 
activation of Rac1, likely via upstream activation of Vav2 
and the tyrosine kinase Yes.46 47 While Rac1 activity is 
required for the cytoskeletal remodelling that enables 
second-phase release of insulin secretory granules, it also 
promotes assembly of active NADPH oxidase complexes. 
Additionally, FFA interaction with the GPR40 activates 
phospholipase C and protein kinase C; while this boosts 
GSIS, it also promotes assembly of NADPH oxidase 
in a manner complementary to Rac1.48 49 While transi-
tory moderate activation of beta cell NADPH oxidase 

postprandially appears to aid GSIS, the sustained high 
activation of this complex associated with glucolipotox-
icity adversely affects beta cell differentiation and func-
tion.50 The hydrogen peroxide stemming from increased 
NADPH oxidase activity boosts activation of stress-acti-
vated MAP kinases, notably JNK, by reversibly inhibiting 
MAP kinase phosphatase activities.40 51 JNK, primarily by 
conferring serine phosphorylations on insulin receptor 
substrate-2, impairs autocrine insulin signalling as well as 
insulin-like growth factor-1 (IGF-I) signalling.52 This in 
turn blunts Akt activation, leading to increased nuclear 
localisation of the FOXO1 transcription factor, which 
suppresses transcription of the PDX-1 gene.53–55 More-
over, activated JNK promotes export of PDX-1 from the 
nucleus, further amplifying the loss of PDX-1 activity.56–58 
Glucotoxicity-triggered excessive oxidant production in 
beta cells also reduces transcription of the gene coding 
for MafA by boosting expression of c-Jun.59 60 Hence, the 
oxidant stress triggered by glucolipotoxicity suppresses 
the function of both PDX-1 and MafA, crucial for effec-
tive beta cell function, and sustained activation of JNK 
also drives the increased beta cell apoptosis that leads to 
loss of beta cell mass in progressing diabetes.51

Whereas sustained oxidative stress can disrupt beta cell 
differentiation, measures that boost beta cell production 
of cAMP and of cGMP can aid proper beta cell differ-
entiation and function. The trophic effects of GLP-1 
and of glucose-dependent insulinotropic peptide (GIP) 
on beta cell function are mediated primarily by stim-
ulation of cAMP synthesis.61 Acting via both PKA and 
the EPAC guanine nucleoside exchange factor, cAMP 
acutely amplifies GSIS.62–67 Moreover, by conferring an 
activating phosphorylation on the CREB transcription 
factor, cAMP increases the expression of IRS-2, thereby 
aiding insulin-mediated and IGF-I-mediated activation 
of Akt, which is of key importance to PDX-1 expression; 
CREB also promotes expression of various antiapoptotic 
proteins.68–70 Drugs that either boost GLP-1 production 
(acarbose), sustain its activity by inhibiting its proteolytic 
degradation by DPP4 (sitagliptin) or that directly mimic 
its activity (exenatide) are known to aid glycaemic control 
in type 2 diabetes by boosting cAMP production in beta 
cells.71–73 Another of the consequence of beta cell gluco-
lipotoxicity is downregulated expression of the receptors 
for both GLP-1 and GIP.74

In regard to cGMP, the elevations of intracellular free 
calcium triggered by glucose uptake promote its produc-
tion in beta cells via activation of nitric oxide synthase. 
Like cAMP, cGMP acts acutely to potentiate GSIS75, and for 
reasons that remain rather obscure, cGMP, acting specif-
ically via PKG-Iα, stimulates PI3K in beta cells, thereby 
boosting Akt activity and complementing the impact of 
insulin/IGF-I in this regard.61 cGMP also potentiates the 
efficacy of agents that elevate cAMP; the chief phospho-
diesterase in beta cells targeting cAMP, PDE3B, is inhibit-
able by cGMP.75 It seems likely that the oxidative stress 
associated with glucolipotoxicity could impede cGMP 
production in beta cells by inducing uncoupling of nitric 
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oxide synthase, such as effect would also be expected to 
increase beta cell oxidant load.

nutraCeutICals and drugs have potentIal for 
opposIng gluColIpotoxICIty
Measures that can downregulate activation of NAPDH 
oxidase in beta cells have evident potential for stem-
ming glucolipotoxicity. In this regard, the unconjugated 
bilirubin generated intracellularly by heme oxygenase 
activity has been shown to inhibit Nox2-dependent 
NADPH oxidase activity. (Heme oxygenase cleaves 
heme to produce biliverdin, which is rapidly reduced 
to bilirubin by biliverdin reductase.) In epidemiological 
studies, increased plasma levels of bilirubin are associ-
ated with decreased risk for type 2 diabetes.76–78 Since 
bilirubin is too insoluble for oral administration, Ikeda 
and colleagues79 administered biliverdin orally to db/db 
mice, and demonstrated that this aided preservation of 
beta-cell function and PDX-1 expression, while quelling 
oxidant stress. While the current high cost of biliverdin 
renders use of this agent as a nutraceutical unfeasible, 
cyanobacteria such as spirulina make substantial amounts 
of the biliverdin metabolite phycocyanobilin (PhyCB), 
which they employ as a collector of light energy. Fortui-
tously, PhyCB, like biliverdin, is a substrate for biliverdin 
reductase and shares the ability of biliverdin/bilirubin 
to inhibit NADPH oxidase complexes.80 81 Further-
more, whether administered in free or protein-bound 
form, orally administered PhyCB has marked antiox-
idant activity, likely explaining many of the health-pro-
tective effects of oral spirulina in rodent and clinical 
studies.80 82–84 Hence, it has been proposed that oral 
administration of spirulina or of PhyCB-enriched spir-
ulina extracts may have potential for protecting beta cells 
from glucolipotoxicity.85 PhyCB may also have potential 
for preventing diabetic complications, independent of 
its influence on glucose control; in this regard, increased 
plasma bilirubin predicts lower risk for complications in 
diabetics.86 87

Beta cell expression of enzymes and peptides that 
clear hydrogen peroxide or that reverse oxidant-medi-
ated modifications of cysteine residues can be amplified 
with phase 2-inducing nutraceuticals, such as lipoic acid 
or ferulic acid.88 Indeed, studies in rodents and in cell 
cultures have found that these agents can favourably 
influence the function of beta cells exposed to high-glu-
cose or pro-oxidant toxins.89–92

One of the key effects of phase 2 inducers is to upreg-
ulate the enzyme rate limiting for glutathione synthesis, 
γ-glutamyl cysteine ligase.93 94 In addition to acting as a 
prominent intracellular scavenging antioxidant, gluta-
thione functions to promote catabolism of hydrogen 
peroxide and to reverse its oxidising effects on proteins, 
thereby opposing many proinflammatory effects of 
oxidative stress.95–97 Since cysteine availability is also rate 
limiting for glutathione production, supplementation 
with NAC is a clinically effective strategy for boosting 

tissue glutathione levels, particularly in the elderly in 
whom glutathione levels tend to be depressed.98–100 
Hence, it is not surprising that feeding NAC helps to 
prevent or slow the deterioration of glucose tolerance 
and loss of effective beta cell function in Zucker diabetic 
fatty rats and db/db mice.101 102 However, part of this 
benefit might be mediated by increased islet produc-
tion of hydrogen sulfide (H2S), for which cysteine is also 
the key precursor.103 H2S, although it can downregulate 
GSIS in healthy islets, exerts an antiglucotoxic effect on 
beta cells, apparently by suppressing the expression or 
interfering with the function of thioredoxin-interacting 
protein (Txnip); the latter is known to play a key medi-
ating role in glucotoxicity.104–108

Txnip expression is elevated in diabetic beta cells and 
promotes glucolipotoxicity by opposing the antioxi-
dant effects of thioredoxin.107 This elevated expression 
reflects, at least in part, activation of the transcription 
factor carbohydrate response element-binding protein 
(ChREBP) by increased beta cell glucose metabolism; 
ChREBP binds to the promoter of the Txnip gene and 
boosts its transcription.109 However, the transcriptional 
activity of ChREBP can be opposed by AMPK), the 
key target of the antidiabetic agents metformin and 
berberine.110 111 Hence, in addition to quelling excessive 
hepatic glucose output, metformin and berberine can aid 
diabetic control by opposing beta cell Txnip activity and 
hence countering glucotoxicity.112 113

As noted above, acarbose, DPP4 inhibitors and GLP-1 
receptor agonists, which function to increase GLP-1 
signalling in beta cells, can be employed to boost beta 
cell cAMP levels. Exenatide therapy, as opposed to insulin 
therapy, has a more favourable impact on beta cell func-
tion over 3 years of follow-up.114 115 Recent evidence 
indicates that oral arginine can potentiate meal-evoked 
GLP-1 secretion in mice and humans; whether citrul-
line shares this property remains to be determined.114 116 
Slowly digested (lente) carbohydrate and certain probi-
otics may also promote increased GLP-1 secretion.71

With respect to cGMP, supraphysiological concen-
trations of the B vitamin biotin (roughly two orders of 
magnitude above the physiological range) are capable of 
directly activating soluble guanylate cyclase.117 118 Since 
biotin’s maximal impact in this regard is moderate (2–3 
fold increase over basal activity, whereas nitric oxide can 
increase its activity dose dependently up a to hundred 
fold), high-dose biotin tends to be well tolerated; indeed, 
intakes of 100 mg daily or more are feasible in children 
with biotin-responsive genetic disorders. Systemic acti-
vation of guanylate cyclase with high-dose oral biotin 
has been demonstrated in spontaneously hypertensive 
rats without evident toxicity.119 These considerations 
likely explain why high-dose biotin has shown trophic 
effects on beta cells in vitro and in rodents.120–125 More-
over, it has been reported to aid glycaemic control both 
in animal models of diabetes and in diabetic patients, 
although favourable impacts on hepatocyte function also 
contribute in this regard.126–128
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The oxidative stress associated with glucolipotoxicity 
in beta cells might be expected to uncouple nitric oxide 
synthase, impairing endogenous production of nitric 
oxide (NO)/cGMP and increasing oxidant load. None-
theless, it appears that this possibility has received little 
research attention. However, uncoupling of nitric oxide 
synthase has been demonstrated in the islets of healthy 
ageing rats; one would expect this phenomenon to be 
accentuated in individuals with diabetes.129 Supple-
mentation with arginine or citrulline can counteract 
the NO synthase uncoupling induced by asymmetric 
dimethylarginine (ADMA); in young rats that are the 
offspring of diabetic mothers, arginine supplementation 
boosts subnormal NO production in their islets as well 
as Akt phosphorylation and PDX-1 expression.130 131 In 
prospective epidemiology, increases in plasma arginine 
or in arginine/ADMA ratio predict lower risk for type 2 
diabetes.132 Like PhyCB, supplemental citrulline, which 
raises plasma and tissue levels of arginine more effectively 
than arginine supplementation does, may have poten-
tial for prevention of diabetic complications.86 Whether 
high-dose folate might reverse NO synthase uncoupling 
induced by peroxynitrite in beta cells has not yet been 
studied.133 134

Supplemental zinc modestly improves glycaemic 
control in type 2 diabetes, as confirmed by meta-anal-
ysis of placebo-controlled studies; average reduction of 
HbA1c was 0.54%.135 136 Although zinc has the potential 
to upregulate insulin signalling via inhibition of protein 
tyrosine phosphatase-1B, recent research in fat-fed insu-
lin-resistant mice suggests that a potentiation of beta cell 
GSIS is primarily responsible for the favourable impact 
of zinc on diabetic glycaemic control.137 Notably, this 
effect is also seen in healthy chow-fed mice, so it does 
not appear to reflect opposition to glucolipotoxicity. A 
possible explanation for zinc’s upregulatory impact on 
GSIS is at hand. Insulin granules contain also ATP and 
zinc, which are released into the extracellular space when 
insulin is secreted. ATP, via stimulation of P2X recep-
tors—most notably P2X(3) in human islets—induces an 
influx of cations that depolarises the beta cell membrane, 
thereby inducing further influx of calcium via volt-
age-sensitive channels.138 Although zinc does not directly 
activate P2X receptors, it potentiates their response to 
ATP.139 140 Hence, when beta cells are relatively high in 
zinc, this positive feedback mechanism amplifying GSIS 
should be more meaningful. While there is no reason at 
present to suspect that zinc counteracts the adverse effect 
of hyperglycaemia on beta cell differentiation, zinc might 
be indirectly beneficial in this regard by modestly aiding 
glycaemic control.

plant-based dIets for dIabetes preventIon and 
therapy
As noted, glucolipotoxicity can also be minimised 
by measures that improve tissue insulin sensitivity, 
decrease hepatic glucose output and lessen postprandial 

elevations of glucose and FFAs. Standard therapies such 
as metformin and pioglitazone evidently have utility in 
this regard.

The muscle and hepatic insulin resistance associated 
with increased visceral adiposity results, at least large 
part, from exposure of muscle fibres and hepatocytes to 
FFAs in excess of metabolic need. Saturated fatty acids, 
in particular, are prone to give rise to proinflammatory 
mediators such as diacylglycerol and ceramide and can 
also trigger inflammatory signalling by interacting with 
fetuin A to stimulate Toll-like receptor 4. This signalling 
compromises insulin responsiveness by conferring inhib-
itory phosphorylations on IRS-1 and other mediators of 
the insulin signal.

This excessive FFA exposure stems largely from 
improper function of hypertrophied, insulin-resistance 
adipocytes. Properly functioning adipocytes are crucially 
important to metabolic health. After a fat-rich meal, they 
efficiently store chylomicron triglycerides; then, during 
fasting metabolism, when glucose and insulin levels are 
relatively low, they release FFA in response to metabolic 
need. That is how adipocytes function in women with 
gynoid obesity who maintain good insulin sensitivity. 
However, the hypertrophied insulin-resistant adipocytes 
associated with metabolic syndrome, while they cleave 
chylomicron triglycerides effectively following a fatty 
meal, fail to store the derived FFAs efficiently, resulting 
in excessive flux of FFAs into liver and muscle when 
glucose and insulin levels are high and FFA oxidative is 
suppressed. Conversely, when the body’s tissues need FFA 
as metabolic fuel, these dysfunctional adipocytes fail to 
adequately upregulate FFA release in response to elevated 
catecholamines and low insulin, which is why they remain 
hypertrophied.

These considerations help to explain the utility of a 
plant-based diet, low in saturated fat, for preventing or 
reversing tissue insulin resistance. Plant-based diets are 
usually characterised by a low ratio of saturated to unsat-
urated fat, and if they exclude the few types of oil high 
in saturates (eg, palm oil and coconut oil), postprandial 
overexposure of tissues to saturated fatty acids will be 
minimised. Moreover, the fraction of saturated fatty acids 
in stored in adipocytes will be relatively low, so that tissue 
exposure to saturated FFAs throughout the day will be 
moderated.

Indeed, clinical studies show that a low-fat plant-based 
diet, in ad libitum amounts, favourably influences insulin 
sensitivity and, in obese subjects, improves beta cell func-
tion; in the long term, such a diet also tends to promote 
appropriate weight loss.141–143 Such a diet appears to be 
superior to conventional diabetes diets with respect to 
glycaemic control, weight loss and modulation of cardio-
vascular risk factors.144–146 Choosing foods relatively low 
in glycaemic index (owing to structural intactness and/
or high content of amylose, soluble fibre or resistant 
starch) has been shown to amplify the weight loss—and, 
consequently, the improvement in glycaemic control—
achieved with such diets.147 An epidemiological study in 
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Loma Linda found that long-term vegans were at substan-
tially lower risk for diabetes than omnivores, independent 
of their body mass index (BMI).148 Whereas vegans were 
about only 40% as likely to become diabetic as omnivores 
after adjustment for BMI, this may represent overadjust-
ment, as vegans tend to have lower BMIs owing to their 
diets; when BMI was not corrected for, risk for diabetes 
found to be 25% that of omnivores.148

Plant-based diets also tend to be relatively low certain 
essential amino acids, and this triggers hepatic signalling 
that promotes leanness, insulin sensitivity and proper beta 
cell function.149 A moderate degree of essential amino 
acid restriction, by activating the GCN2 kinase, promotes 
increased hepatic production of fibroblast growth factor 
21 (FGF21), which in turn stimulates increased produc-
tion of adiponectin by adipocytes.149 150 The latter acts 
on both skeletal muscle and the liver to promote insulin 
sensitivity and FFA oxidation and also opposes hepatic 
steatosis.151–155 Moreover, FGF21 acts directly on beta 
cells to boost Akt activity and improves GSIS in diabetic 
mice.156 157 In conjunction the low saturated/unsaturated 
ratio of dietary fat, these phenomena likely explain the 
markedly favourable impact of plant-based diets on risk 
for diabetes and diabetes control, and FGF21 may be a 
mediator of the characteristic relative leanness of vegans; 
FGF21 acts to counterweight gain in rodent models of 
obesity.158

As is well known, aerobic exercise training can aid 
weight control and can promote insulin sensitivity in 
the muscle groups that are exercised. A single exercise 
session, via AMPK activation, enhances insulin sensitivity 
of the exercised muscles for up to 48 hours; exercise 
training induces a more durable improvement in this 
regard that may reflect, in part, increased mitochondrial 
biogenesis.159–161

nutraCeutICal support of InsulIn sensItIvIty
Certain nutraceuticals also have potential for improving 
tissue insulin sensitivity in the context of metabolic 
syndrome. Glycine can act on adipocytes to improve 
their insulin sensitivity and boost their production of 
adiponectin.162 163 There is reason to suspect that the bili-
rubin-mimetic PhyCB may exert comparable effects by 
downregulating activation of NADPH oxidase in hyper-
trophied adipocytes.164 The muscle insulin resistance 
evoked by fatty diets in rodents has recently been reported 
to be mediated by NOX2-dependent NADPH oxidase 
activity, so PhyCB might also act directly on muscle fibres 
to promote insulin sensitivity.165 In the elderly, in whom 
tissue levels of carnitine tend to be diminished, supple-
mental carnitine may boost mitochondrial biogenesis in 
muscle fibres, aiding their capacity to oxidise FFAs and 
thereby ward off insulin resistance166, and berberine, via 
activation of AMPK, can be expected to mimic metform-
in’s ability to quell excessive hepatic glucose output and 
protect beta cells from glucolipotoxicity.

Arguably, the goal in diabetes reversal therapy should 
be to transition individuals with diabetes to a state in 
which glycaemic control can be normalised without 
concurrent drug therapy, entailing compliance with a 
diabetes-preventive diet and exercise programme, and 
possibly employment of certain nutraceuticals that aid 
prevention/control of diabetes and reduce risk for other 
important pathologies.

breakIng the vICIous CyCle of gluColIpotoxICIty wIth 
prolonged fastIng
Whereas intermittent fasting protocols may prove useful 
for boosting beta cell mass in individuals with diabetes, 
a prolonged fast, by restoring normoglycaemia for the 
duration of the fast, can be expected to improve beta 
cell function by alleviation of glucolipotoxicity.167 Thus, 
when protein-sparing fasts or very-low-calorie diets have 
been employed to achieve weight loss in individuals with 
diabetes, the resulting improvement in beta cell function 
has been found to be more substantial than that attrib-
utable to achieved weight loss alone.168–174 If patients 
are then transitioned to a diabetes-preventive diet, while 
receiving nutraceuticals and drugs that shield beta cells 
from glucotoxicity, it might be feasible to conserve the 
improvements in beta cell function observed during the 
fast, effectively reversing diabetes. This strategy would be 
less likely to succeed in patients with long-term diabetes 
whose beta cell mass is substantially diminished. In such 
patients, previous use of intermittent fasting protocols to 
boost beta cell mass—presuming that this strategy proves 
workable in humans—might greatly improve chances for 
successful reversal of diabetes.

towards a praCtICal strategy for reversIng type 2 
dIabetes
In light of the recent revelation that intermittent fasting 
can induce beta cell neogenesis in rodents, it seems likely 
that repeated bouts of induced autophagy, by episodically 
suppressing Notch1 signalling and thereby promoting 
temporary expression of Ngn3, can drive the generation 
of new beta cells in the pancreas. Presumably that this 
finding can be replicated clinically, the way may then be 
open to reversing type 2 diabetes in patients who have 
enough discipline and commitment to adopt a lifestyle 
that would have prevented diabetes in the first place.

As a first step, patients should adopt and practise a 
diabetes-preventive lifestyle, preferably, a plant-based diet 
avoiding oils rich in saturated fats, consisting primarily 
of whole foods, complemented with a regular exer-
cise programme that is practical for the patient on a 
continuing basis. This should achieve some initial weight 
loss, while improving insulin sensitivity, and diminishing 
the fraction of saturated fats in the body’s fat stores. In 
some patients whose diabetes is of recent origin, this in 
itself may prove sufficient for diabetes reversal over the 
course of time.
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Editorial

In those who fail to respond optimally to lifestyle 
modification alone, an intermittent fasting (or fasting 
mimetic) protocol can be implemented to boost islet beta 
cell mass. When the transition back to a health-protec-
tive diet is made, nutraceutical and drug measures can 
be implemented that shield the nascent and pre-existing 
beta cells from the impact of glucolipotoxicity, so that 
they retain good functional capacity. These measures 
should be designed to inhibit islet oxidative stress (spir-
ulina or PhyCB-enriched spirulina extracts, a phase 2 
inducer such as lipoic or ferulic acid, NAC, metformin 
or berberine) and support production of both cAMP and 
cGMP in beta cells (sitagliptin, high-dose biotin and citrul-
line). Zinc supplementation might also be employed, as 
this potentiates GSIS.

If these measures fail to achieve diabetes reversal, 
a modified fast of several weeks’ duration could be 
implemented—while continuing the beta cell-shielding 
measures—to expose beta cells to a prolonged period 
of normoglycaemia, during which they should achieve a 
more normal functional capacity, with restored expres-
sion of GLUT2, glucokinase and insulin. If this improve-
ment is sufficient, it may then be possible to achieve 
normal glycaemic control after transition back to a diabe-
tes-preventive diet and lifestyle.

The ultimate goal should be to achieve normal control 
of glycaemia without drugs, maintained by compliance 
with a diabetes-preventive diet and lifestyle, and the use of 
nutraceutical that help to stave off return of diabetes and 
provide protection from other important pathologies.
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