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Abstract
Problem: Pregnant	women	are	at	increased	risk	of	HIV	acquisition,	but	the	biological	
mechanisms contributing to this observation are not well understood.
Method of Study: Here,	we	assessed	host	immune	and	microbiome	differences	in	the	
vaginal	mucosa	of	healthy	pregnant	and	non-pregnant	women	using	a	metaproteom-
ics	approach.	Cervicovaginal	lavage	(CVL)	samples	were	collected	from	23	pregnant	
and	25	non-pregnant	women.
Results: Mass	spectrometry	analysis	of	CVL	identified	550	human	proteins	and	376	
bacterial	proteins	from	11	genera.	Host	proteome	analysis	indicated	56	human	pro-
teins	(10%)	were	differentially	abundant	(P	<	.05)	between	pregnant	and	non-pregnant	
women,	including	proteins	involved	in	angiogenesis	(P	=	3.36E-3),	cell	movement	of	
phagocytes	(P	=	1.34E-6),	and	permeability	of	blood	vessels	(P	=	1.27E-4).	The	major	
bacterial genera identified were Lactobacillus,	Gardnerella,	Prevotella,	Megasphaera,	
and Atopobium. Pregnant women had higher levels of Lactobacillus	species	(P	=	.017)	
compared	 with	 non-pregnant	 women.	 Functional	 pathway	 analysis	 indicated	 that	
pregnancy associated with changes to bacterial metabolic pathway involved in en-
ergy	metabolism,	which	were	increased	in	pregnant	women	(P	=	.035).
Conclusion: Overall,	pregnant	women	showed	differences	in	the	cervicovaginal	pro-
teome	and	microbiome	that	may	be	important	for	HIV	infection	risk.

K E Y W O R D S

HIV,	microbiome,	pregnancy,	proteomics

www.wileyonlinelibrary.com/journal/aji
mailto:
https://orcid.org/0000-0002-2303-5738
mailto:adam.burgener@case.edu


2 of 10  |     ZUEND Et al.

1  | INTRODUC TION

Human	immunodeficiency	virus	(HIV)	is	the	leading	cause	of	death	
of	reproductive	age	women,	with	1.5	million	pregnancies	affected	in	
2013,	a	statistic	that	has	not	improved	since	2009.1 Pregnant women 
are	thought	to	be	particularly	susceptible	to	HIV	infection,	with	high	
HIV	incidence	during	pregnancy	reported	among	women	from	sev-
eral populations.2-5	However,	prospective	studies	exploring	HIV	ac-
quisition	risk	during	pregnancy	have	found	inconsistent	results,	with	
some	studies	showing	up	to	a	threefold	increased	risk	during	preg-
nancy6-8	and	others	finding	no	increased	risk,5-7,9-14 indicating some 
variability	in	HIV-risk	estimates.

Many	behavioral	factors	could	contribute	to	increased	HIV	sus-
ceptibility during pregnancy.6	While	pregnant	women	tend	to	report	
less	 risky	 sexual	 activity,	 including	 being	 less	 likely	 to	 have	multi-
ple	 partners	 or	 to	 use	 alcohol	 and/or	 drugs	 during	 sex,12,13 preg-
nant	women	are	more	 likely	to	report	some	unprotected	sex.7,12,13 
Furthermore,	overall	sexual	activity	of	pregnant	women	decreases	
during	 pregnancy	 and	 the	 post-partum	period,	which	may	 lead	 to	
riskier	behavior	among	male	partners.13,15 This suggests that preg-
nant	women	are	likely	being	exposed	to	HIV	in	a	way	that	is	increas-
ing	their	acquisition	risk	despite	decreased	sexual	activity,	perhaps	
by	 decreased	 condom	 usage,	 combined	 with	 increased	 biological	
susceptibility to infection.

Biological	 factors	 could	 also	 contribute	 to	 increased	 HIV	 sus-
ceptibility	 in	pregnant	women,	 including	immunological,	structural,	
and microbiome changes that have been reported. Endocrine and 
immunologic processes during gestation induce changes to the cel-
lular,	cytokine,	and	chemokine	environments	within	the	female	gen-
ital	 tract	 (FGT),	 including	 a	 shift	 to	 a	 Th2	 environment,	 increased	
regulatory T cells and production of suppressive factors to promote 
fetal tolerance.16-24 Pregnant women have been reported to have 
anti-inflammatory	 changes	 in	 systemic	 cytokine	 profiles25 which 
may not be mirrored in the cervicovaginal mucosa.26 The plasma 
proteome of pregnant women has previously been investigated and 
demonstrated enrichment in proteins involved in antimicrobial re-
sponses,	leukocyte	migration,	and	macrophage	differentiation,27 but 
the	effects	 in	the	mucosa	are	not	well	studied.	While	the	 immune	
system	 is	not	 suppressed	during	pregnancy,	differential	 responses	
to pathogens occur.16,28,29	Both	systemic	and	local	immune	system	
modulations	during	pregnancy	can	make	pregnant	women	particu-
larly susceptible to infections17,24,30,31	and	may	increase	HIV	acqui-
sition	risk.32,33

Structural	 changes	 in	 the	 female	 genital	 tract	 (FGT)	 may	 also	
be	important	for	HIV	susceptibility	during	pregnancy.	In	particular,	
cervical	ectopy,	which	occurs	when	the	columnar	epithelium	of	the	
endocervical	 canal	extends	outwards	 into	 the	stratified	 squamous	
epithelium	of	the	ectocervix,	may	increase	HIV	infection.34 Ectopy 
has been reported to be increased during pregnancy.34,35 Ectopy has 
been	associated	with	a	twofold	to	fivefold	increase	in	HIV	acquisi-
tion	among	non-pregnant	women	in	some	studies,	while	others	have	
found no association.34-36

The	vaginal	microbiome	 is	also	 important	for	HIV	risk,	particu-
larly the absence of Lactobacillus, which has been associated with an 
increased	 risk	of	acquiring	HIV.37-42 The loss of Lactobacillus leads 
to	 increased	vaginal	 pH,	more	HIV	 target	 cells,	 and	epithelial	 bar-
rier	 disruption,	 all	 of	 which	 may	 contribute	 to	 HIV	 infection.37-45 
Pregnant women have been reported to have increased levels of 
Lactobacillus	 species	and	decreased	microbial	diversity,	 suggesting	
that	the	vaginal	microbiome	may	in	fact	protect	from	HIV	infection	
during pregnancy.45-51

While	 previous	 studies	 have	 shed	 light	 on	 immunomodulatory	
and	microbiome	alterations	during	pregnancy,	 they	have	been	 lim-
ited	to	examining	targeted	factors	and	have	primarily	been	focused	
on	systemic	 rather	 than	mucosal	 changes.	A	better	understanding	
of mucosal differences at the systems level in the vaginal mucosa 
during	pregnancy	could	provide	 information	on	HIV	 infection	sus-
ceptibility as well as other adverse outcomes such as preterm birth. 
In	 this	 study,	we	used	a	metaproteomics	approach	 to	characterize	
mucosal	system	differences,	including	microbial	structure	and	func-
tion	 as	well	 as	 the	 host	 proteome,	 in	 pregnant	 and	 non-pregnant	
women.

2  | MATERIAL S AND METHODS

2.1 | Study population

Healthy	pregnant	(n	=	23)	and	non-pregnant	(n	=	25)	women	were	
recruited	from	an	Obstetrics	and	Gynecology	Clinic	in	Los	Angeles,	
California as described previously.26 The enrollment criteria included 
age	17-45	years,	no	use	of	hormonal	contraceptive	in	the	previous	
6	 months,	 no	 intrauterine	 device,	 not	 actively	 menstruating,	 and	
no	reported	sexual	intercourse	in	the	last	24	hours.	Cervicovaginal	
lavage	(CVL),	clinical	data	including	cervical	photograph,	and	demo-
graphic	 data	were	 collected.	All	women	provided	written	 consent	
and the study was approved by the institutional review board at the 
University	 of	 Southern	California,	 Los	Angeles,	 CA	 and	Children's	
Hospital	Los	Angeles	(CHLA)	(Los	Angeles,	CA)	and	the	research	eth-
ics	board	at	the	University	of	Manitoba.

2.2 | Data and sample collection

Methods	 for	 data	 and	 sample	 collection	 have	 previously	 been	 de-
scribed.26	 Briefly,	 demographic,	 obstetric,	 and	 gynecological	 data	
were	 collected	 by	 structured	 questionnaire.	 Cervical	 ectopy	 was	
measured	by	 taking	a	digital	picture	of	 the	cervix	with	an	 inserted	
endocervical	wick	(Tear-Flo™)	serving	as	a	length	standard.	A	woman	
was considered to have ectopy if there was any endocervical epithe-
lium	visible.	The	size	of	the	ectopic	area	was	determined	by	measur-
ing	the	total	size	of	the	ectopic	area	compared	with	the	total	size	of	
the	cervix.	CVL	samples	were	collected	by	bathing	the	cervical	os	in	
phosphate-buffered	saline	and	aspirating	fluid	from	the	vaginal	vault.
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2.3 | Sample preparation for mass spectrometry

Cervicovaginal lavage sample preparation was performed as pre-
viously described.52-54	 Briefly,	 50μg of protein from each sample 
was	denatured	 for	20	minutes	at	 room	temperature	with	urea	ex-
change	buffer	(8M	urea;	GE	HealthCare;	50	mmol/L	HEPES	pH	8.0;	
Sigma),	 reduced	 with	 25	 mmol/L	 dithiothreitol	 (Sigma),	 alkylated	
with	50	mmol/L	 iodoacetamide	 (Sigma),	 and	digested	with	 trypsin	
(Promega).	Peptides	were	eluted	and	dried	via	vacuum	centrifuga-
tion.	 Reversed-phase	 liquid	 chromatography	 (high	 pH	 RP,	 Agilent	
1200	series	microflow	pump;	Water	XBridge	column)	was	used	for	
desalting	and	detergent	 removal	of	peptides	using	a	step-function	
gradient as described previously.55	Peptides	were	quantified	using	
the	FluoroProfile®	quantification	kit	(Sigma)	following	the	Lava	Pep	
peptide	quantification	protocol.	Samples	were	randomized	and	ali-
quoted	with	a	final	peptide	concentration	of	0.5	μg/μL	in	LC	buffer	
(2%	acetonitrile,	0.1%	formic	acid)	to	a	volume	of	15	μL.

2.4 | Mass spectrometry analysis

Cervicovaginal	 lavage	 peptides	 samples	 were	 analyzed	 by	 label-
free tandem mass spectrometry as described previously.55	 Equal	
amounts	of	sample	peptides	were	injected	into	a	nanoflow	LC	sys-
tem	 (Easy	 nLC;	 Thermo	 Fisher)	 connected	 inline	 to	 a	 Q	 Exactive	
Quadrupole	mass	spectrometer	 (Thermo	Fisher)	and	analyzed	 in	a	
label-free	manner.	Raw	data	exported	from	the	mass	spectrometer	
was	run	through	Progenesis	QI	software	using	default	parameters.

2.5 | Human proteome data analysis

Mascot	(Matrix	Science,	v2.4)	was	used	to	search	peptide	sequences	
against	the	SwissProt	(2013)	human	database.	A	decoy	database	was	
included to determine the rate of false discovery. Protein identifi-
cations	were	confirmed	using	Scaffold	software	 (v4.4.1;	Proteome	
software)	 with	 confidence	 thresholds	 set	 at	 95%	 protein	 identifi-
cation	confidence,	requiring	at	least	two	unique	peptides	and	80%	
peptide	 identification	 confidence.	Normalized	 relative	 abundances	
of each protein within each sample were obtained from Progenesis 
QI	(v.21.38.1432;	Nonlinear	Dynamics).	Relative	protein	abundances	
were	calculated	by	dividing	by	median	intensity	across	all	samples,	
followed	by	a	log	transformation	(base	2).	Only	proteins	that	had	an	
average	covariance	of	<25%	(550	proteins),	as	determined	through	
measurements of a standard reference sample run at 10 sample in-
tervals	(total	six	times)	were	used	in	downstream	analysis	to	exclude	
proteins with higher technical measurement variability.

2.6 | Microbial proteome data analysis

Protein database searches were initially conducted against all bacte-
rial	proteins	 in	 the	TrEMBL	database	using	Mascot	 (v2.4.0;	Matrix	

Science).	 Identity	 searches	 for	 bacterial	 peptides	 were	 then	 per-
formed a second time using a manually curated database limited to 
the major genera identified in the initial search. Our curated data-
base	included	proteins	from	the	following	genera	(from	most	to	least	
abundant):	 Lactobacillus,	 Gardnerella,	 Acinetobacter,	 Pseudomonas,	
Paenibacillus,	 Chlamydia,	 Megasphaera,	 Delftia,	 Butyrivibrio,	
Bifidobacterium,	 Atopobium,	 Bradyrhizobium,	 Prevotella,	 Clostridium,	
and Roseburia.	The	curated	database	 included	sequence	data	 from	
Homo sapiens	 to	 rule	 out	 potential	 homologies.	 Search	 results	
were	then	imported	into	Scaffold	(v4.4.1)	to	validate	these	protein	
identifications,	using	the	following	criteria:	≤0.1%	FDR	for	peptide	
identification,	≤1%	FDR	for	protein	 identification,	and	at	 least	two	
unique	peptides	identified	per	protein.	Microbial	abundance	was	cal-
culated	by	taking	the	sum	of	normalized	total	spectral	counts	from	
Scaffold	for	all	proteins	associated	with	each	genus.	One	woman	was	
removed from the analysis because no bacterial proteins were de-
tected	by	MS.

2.7 | Functional microbiome analysis

Non-homologous	bacterial	proteins	identified	in	each	patient	were	
mapped	 against	 the	KEGG	ontology	 database	 using	GhostKOALA	
(v.2.0;	Kyoto	University	Bioinformatics	Center).	Wilcoxon	rank	sum	
and permutation were used to determine functional differences in 
the	microbiota	between	pregnant	and	non-pregnant	women.	A	total	
of	24	bacterial	functions	at	the	ko-level	could	be	assessed	with	80%	
power	(COV	=	1.45,	power	=	0.80,	FD	=	1.5,	20%	sample	coverage).

2.8 | Statistical and pathway analysis

All	statistical	analyses	were	performed	using	R	version	3.6.0	and	addi-
tional	packages	“ggplot2”	(v.3.2.1),	“dplyr”	(v0.8.3),	“digest”	(v0.6.20),	
“ggrepel”	 (v.0.8.1),	 “NMF”	 (v.0.21.0),	 “dendextend”	 (v.1.12.0),	
“RColorBrewer”	 (v.1.1-2),	 “ggfortify”	 (v.0.4.7),	 and	 “vegan”	 (v.2.5-5)	
or Prism. Differences in epidemiological characteristics between 
pregnant	 and	 non-pregnant	 women	 were	 assessed	 using	 Fisher's	
exact	test	and	Mann-Whitney	U	tests,	where	appropriate.	Unpaired	t 
tests	were	conducted	to	compare	the	host	protein	expression	levels	
between	pregnant	and	non-pregnant	women,	while	Mann-Whitney	
U tests were used to determine differences in microbial composition 
and functional pathways. Comparisons were considered statistically 
significant if they had a P	<	.05.	The	Benjamini-Hochberg	false	dis-
covery	rate	(FDR)	method	was	used	to	correct	for	multiple	hypoth-
eses.	The	Pearson's	 correlation	 (uncentered)	and	complete	 linkage	
was set as the distance metric. Enrichment of pregnancy and ectopy 
variables	within	dendrogram	clusters	were	assessed	using	two-tailed	
Fisher's	 exact	 tests.	Correlations	between	 the	host	proteome	and	
clinical	 data	 including	 length	of	 gestation	 and	 size	of	 ectopic	 area	
were	 assessed	using	Spearman's	 rank	 tests	 and	were	 adjusted	 for	
multiple hypothesis testing correction as above. Proteins significantly 
associated	with	pregnancy	(P	<	.05)	were	analyzed	using	QIAGEN’s	
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Ingenuity	Pathway	Analysis	 software	 (IPA,	Qiagen	Redwood	City),	
which	determined	 the	 top	enriched	biological	 functions,	with	 cor-
responding	 activation	 z-scores	 to	 infer	 activation/deactivation	 of	
biological	pathways	according	to	proteome	effects.	Significant	path-
ways associated with pregnancy passed a critical value of α < 0.05 
and activation z score> |2|.

3  | RESULTS

3.1 | Participant characteristics

Characteristics of this cohort have previously been reported.26 
Twenty-three	 pregnant	 (47.9%)	 and	 25	 non-pregnant	 (52.1%)	
women	(n	=	48)	were	enrolled.	Pregnant	women	were	significantly	
younger	than	non-pregnant	women	(mean	27.8	years	vs	33.3	years,	
P	=	.02),	and	the	majority	of	women	(93.8%)	identified	as	Hispanic.	
There was no significant difference in the presence of cervical ec-
topy	 (60.9%	vs	40%,	P	 =	 .54),	 gravida	 (P	 =	 .4),	 or	 parity	 (P	 =	 .44)	
between groups. The mean gestational age among pregnant women 
was	 25	 weeks	 (range	 14-37	 weeks).	 Non-pregnant	 women	 were	
not currently menstruating. The date of last menstrual period was 
not	recorded.	Upon	gynecological	examination,	vaginal	candidiasis	
was	suspected	 in	 two	pregnant	women.	While	bacterial	vaginosis	
was	suspected	 in	one	non-pregnant	woman	based	on	gynecologi-
cal	observations,	no	testing	for	bacterial	vaginosis	was	performed.	
(Table	1).

3.2 | Mucosal proteome in pregnant women reflects 
alterations to inflammatory pathways

Mass	 spectrometry	 analysis	 of	CVL	 samples	 collected	 from	 study	
participants	 identified	 550	 unique	 human	 proteins.	 Of	 these,	 56	
(10%)	were	 found	 to	be	differentially	abundant	 (P	<	 .05)	between	
pregnant	and	non-pregnant	women	(Figure	1A,	Table	S1),	although	
AMY1	 (involved	 in	 carbohydrate	metabolic	processes)	 and	 IGHA1	

(involved	in	humoral	immunity)	were	the	only	proteins	that	passed	
multiple	 comparison	 correction	 at	 FDR	 <	 0.05.	 Given	 that	 preg-
nant	women	were	significantly	younger,	we	performed	correlation	
analysis	 between	 age	 and	 differentially	 abundant	 proteins.	 Seven	
proteins involved in inflammatory processes significantly correlated 
with	age.	Three	of	these	proteins	(PAEP,	LCN2,	S100A7)	correlated	
with	age	in	pregnant	women	and	5	of	them	in	non-pregnant	women	
(RNASET2,	ACE,	PZP,	S100A7,	and	APOL1).	Four	of	these	proteins	
(APOL1,	ACE,	RNASET2,	and	PAEP)	remained	significantly	associ-
ated	with	pregnancy	 status	 after	 adjustment	 for	 age.	Hierarchical	
clustering of differentially abundant proteins clearly distinguished 
women	based	on	pregnancy	status	(P	<	.0001,	Fischer's	exact	test)	
(Figure	1B).	While	the	differentially	abundant	proteins	did	not	clus-
ter	based	on	presence	of	ectopy	(P	=	.245,	Fisher's	exact	test),	corni-
fied	envelope	proteins	were	negatively	correlated	with	the	size	of	
the	ectopic	area	 (TGM3:	r	=	−.4034,	P	=	 .0045;	DMKN:	r	=	−.373,	
P	=	.0090).

Two clusters of upregulated and downregulated proteins 
clearly	 discriminated	 pregnant	women	 from	 non-pregnant	women	
(Figure	 1B).	 Factors	 decreased	 in	 pregnant	women	were	 primarily	
associated	 with	 immunity,	 including	 neutrophils	 (ACE,	 RNASET2),	
immunoglobulins	 (IGJ,	 PIGR,	 IGHG2,	 IGHA2),	 and	 complement	
(CF1)	 (Figure	 1C).	 However,	 several	 innate	 immunity	 factors	were	
also	increased	in	pregnancy	including	neutrophil-associated	factors	
(S100A7,	LCN2,	CTSH,	ANXA2)	and	complement	(C1RL),	as	well	as	
adaptive	 immunity	 (UBE2V1,	 STX7)	 (Figure	 1C,D).	 Principal	 com-
ponent	 analysis	 of	 the	 27	 immune-related	 proteins	 that	were	 dif-
ferentially	 abundant	 between	 pregnant	 and	 non-pregnant	women	
provided	 clear	 separation	 based	 on	 pregnancy	 status	 (Figure	 1C).	
Proteins increased in pregnant women also included factors pre-
viously	 described	 to	 be	 associated	 with	 pregnancy	 (PZP,	 KRT19,	
RAP1A)	 (Figure	 1E)	 as	 well	 as	 with	 angiogenesis	 (S100A7,	 CTSH,	
ANXA2)	(Figure	1F).	Among	pregnant	women,	KRT19	was	positively	
correlated	with	gestational	age	(r	=	0.4755,	P	=	.0218),	although	this	
did not pass correction for multiple comparisons.

Upregulated	 biofunctions	 significantly	 associated	 (P	 <	 .05,	
Activation	 z	 score	 ≥	 2)	 with	 pregnancy	 included	 angiogenesis,	

Variable
Pregnant
(n = 23)

Non-pregnant
(n = 25) P valuea 

Socio-demographic

Mean	Age	±	SD	(range) 27.8	±	5.8
(17-38)

33.3	±	7.3
(19-44)

0.02

Hispanic	(n,	%) 21	(91.3%) 24	(96%) 0.60b 

Obstetric/Gynecological

Mean	gestational	age	±	SD	(range) 25	±	7	(14-37) — —

Cervical	ectopy	(n,	%) 14	(60.9%) 10	(40%) 0.54

Gravida	(Mean,	Range)c  3	(1-8) 2	(0-7) 0.40

Parity	(Mean,	Range)c  1	(0-5) 2	(0-5) 0.44

aMann-Whitney	U test unless otherwise indicated. 
bFisher's	exact	test	where	all	non-Hispanic	participants	are	grouped	as	“other”.	
cData	not	available	for	two	non-pregnant	participants.	

TA B L E  1   Participant characteristics
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vasculogenesis,	 permeability	 of	 blood	 vessel,	 cell	 movement	 of	
phagocytes	 and	 leukocytes,	 and	 activation	 of	 cells	 (Figure	 1B,	
Table	 S2).	 No	 biofunctions	were	 associated	with	 downregulated	
proteins in pregnant women. Gene ontology analysis associated 
differentially abundant proteins with immunoglobulin recep-
tor	 binding,	 complement	 activation,	 and	 leukocyte	 infiltration	
(Table	S3).

3.3 | Pregnant women have a microbiome 
dominated by Lactobacillus

We	detected	microbial	protein	expression	in	pregnant	and	non-preg-
nant	women	 using	mass	 spectrometry	 (MS),	which	was	 then	 used	
to	 infer	 taxa	 compositions	within	 the	metabolically	 active	 portion	
of	 the	 vaginal	microbiome	 (Figure	 2A).	MS	 detected	 376	 bacterial	

F I G U R E  1  Cervicovaginal	proteome	pathways	that	are	differentially	abundant	between	pregnant	and	non-pregnant	women.	A,	Volcano	
plot	of	all	proteins	identified	comparing	pregnant	and	non-pregnant	women	using	two-tailed	independent	t	tests.	B,	Hierarchical	clustering	
of	differentially	abundant	(P	<	.05)	proteins	between	pregnant	and	non-pregnant	women.	Proteins	that	are	overabundant	are	represented	
in the heat map in red and those that are underabundant are represented in blue. Pregnancy status and ectopy status are shown. Proteins 
involved	in	biofunctions	significantly	associated	with	pregnancy	(angiogenesis	including	vasculogenesis	and	blood	vessel	permeability;	
movement	of	leukocytes;	activation	of	cells;	and	immune	factors)	are	highlighted.	A	total	of	56	proteins	were	differentially	abundant	
between	pregnant	and	non-pregnant	women,	with	27	overabundant	in	pregnant	women	and	29	underabundant.	C,	Principal	component	
analysis	of	27	immune-related	factors	that	were	significantly	different	between	pregnant	and	non-pregnant	women.	Boxplots	depicting	
log2	normalized	protein	abundance	for	immune	(D),	angiogenesis	(E),	and	pregnancy	(F)	factors	that	were	differentially	abundant	(P	<	.05)	
between	pregnant	and	non-pregnant	women
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proteins from 11 genera. The top bacterial genera were Lactobacillus,	
Gardnerella,	 Prevotella,	Megasphaera,	 and	Atopobium. In agreement 
with	 previous	 studies,	 Lactobacillus species were significantly in-
creased	 in	 pregnant	 women	 compared	with	 non-pregnant	 women	
(P	=	.016)	(Figure	2B,C).	L iners was the predominant species detected 
and	was	significantly	increased	in	pregnant	women	(P	=	.0081),	com-
posing	33%	of	 their	microbiome	 compared	with	 21%	 in	 non-preg-
nant	women	 (Figure	 2B,C).	While	 Lactobacillus tended to increase 
with	gestational	 age,	 this	was	not	 statistically	 significant	 (r =	 .286,	
P	=	.186)	(Figure	2D).	There	was	no	difference	in	bacterial	diversity	
(Shannon's	H	P	=	.23)	between	pregnant	and	non-pregnant	women	
(Figure	 2E).	 Principal	 component	 analysis	 of	 all	 bacterial	 proteins	
detected indicated that there was no difference between pregnant 
and	non-pregnant	women,	suggesting	that	women	with	Lactobacillus 
dominant proteins are more similar to each other regardless of preg-
nancy	status	(Figure	2F).

3.4 | Pregnancy associates with increases in carbon 
fixation pathways in Lactobacillus species

Functional	shifts	in	the	microbiome	may	be	important	for	proper	mu-
cosal	system	functioning,	including	inflammation	status	and	barrier	

function,54	 but	 have	 never	 been	 explored	 in	 the	 context	 of	 preg-
nancy.	We	matched	61.5%	of	the	bacterial	proteins	to	KEGG	gene	
ontology	 with	 one	 or	 more	 functions.	 Overall,	 24	 bacterial	 func-
tions	were	identified	at	the	ko-level,	primarily	related	to	metabolism	
(Figure	3A).	Carbon	fixation	pathways	in	prokaryotes	(ko00720)	were	
significantly	increased	in	pregnant	women	(Log2	fold	change	=	1.5,	
P	=	.035)	(Figure	3B).	This	functional	shift	is	primarily	derived	from	
Lactobacillus	proteins	(54.7%),	although	proteins	from	Megasphaera 
(14%),	Gardnerella	(10.4%),	Atopobium	(9.1%),	Clostridium	(6.9%),	and	
Prevotella	 (5%)	 also	 contributed	 (Figure	 3C).	 Principal	 component	
analysis	of	ko-level	protein	groups	demonstrated	clustering	by	mi-
crobiome	status	 (Lactobacillus	dominant	 (LD)	where	>	50%	of	bac-
terial proteins are from Lactobacillus	vs	non-Lactobacillus dominant 
(nLD))	but	not	pregnancy	status	 (Figure	3D).	 In	support	of	 this,	18	
ko-level	 functions	 were	 significantly	 different	 (P	 <	 .05)	 based	 on	
Lactobacillus	 dominance.	 However,	 the	 carbon	 fixation	 pathway	
(ko00720)	was	not	(P	>	.999),	suggesting	that	this	bacterial	function	
is	uniquely	associated	with	pregnancy.	When	both	pregnancy	status	
and	microbiome	composition	were	taken	into	consideration,	women	
with	 LD	 microbiomes	 clustered	 together	 regardless	 of	 pregnancy	
status	 (Figure	 3E).	 L-lactate	 dehydrogenase,	 Glyceraldehyde-3-
phophospate	dehydrogenase	type	I,	pyruvate	kinase,	and	phospho-
glycerate	kinase	were	primarily	driving	 the	variance	within	 the	LD	

F I G U R E  2   The microbiome in pregnant women is dominated by Lactobacillus.	A,	Taxa	proportion	plots	of	each	individual	based	on	
pregnancy	status	detected	by	MS	Lactobacillus	is	displayed	to	the	species	level	for	the	two	most	abundant	species	detected,	L iners and L 
crispatus.	B,	Summary	of	distribution	of	bacterial	taxa	by	pregnancy	status.	The	average	percentages	for	the	top	three	bacterial	taxa	are	
shown.	C,	Normalized	protein	abundance	for	all	Lactobacillus	species	in	pregnant	and	non-pregnant	women.	P value was calculated using 
the	Mann-Whitney	U	test.	D,	Normalized	protein	abundance	for	all	Lactobacillus species in pregnant women compared with gestational 
age.	Spearman's	r	=	.2862,	P	=	.1855.	E,	Shannon's	Diversity	Index	by	pregnancy	status.	Wilcoxon	P	value	is	shown.	F,	Principal	component	
analysis	of	all	bacterial	proteins	detected	in	pregnant	and	non-pregnant	women
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group,	while	 transaldolase	was	responsible	 for	 the	variation	 in	 the	
nLD	group.

4  | DISCUSSION

This study is the first comprehensive proteomic investigation of mu-
cosal	 factors	 in	 healthy	pregnant	women	and	 several	 key	 findings	
were identified. The first was that pregnant women had increased 
proteomic signatures of blood vessel formation and immune cell 
recruitment.	 Secondly,	 there	 were	 key	 differences	 in	 the	 vaginal	
microbiome,	 including	 increased	 Lactobacillus levels and bacte-
rial	 pathways	 important	 for	 energy	 metabolism.	 Finally,	 pregnant	
women had high rates of cervical ectopy. This demonstrates that 

the	vaginal	mucosa	of	pregnant	women	differs	from	non-pregnant	
women	at	the	structural,	microbial,	and	immunological	levels.

Pregnant women have been reported to be at an increased 
risk	 for	 HIV	 acquisition,	 although	 the	 mechanism	 behind	 this	 is	
not well understood.2-5 Pregnant women were thought to have a 
suppressed	 immune	 system,	 although	more	 recent	 studies	 have	
suggested that the immune system of pregnant women is active 
but	 tightly	 regulated,	 leading	 to	differential	 responses	 to	patho-
gens.16,21-24,28,29 There may be local immune responses within the 
female reproductive tract that change over the course of preg-
nancy.16 Our data demonstrated changes to factors involved in 
innate	and	adaptive	immunity	among	pregnant	women.	A	previous	
study	has	 found	 a	 systemic	 increase	 in	 factors	 related	 to	 leuko-
cyte	migration	during	pregnancy,27 which agreed with our mucosal 

F I G U R E  3  Functional	microbiome	pathway	analysis.	A,	ko-level	bacterial	functions	in	pregnant	and	non-pregnant	women.	B,	Carbon	
fixation	pathways	in	prokaryotes	are	increased	in	pregnant	women.	C,	Bacterial	genera	that	contribute	proteins	to	carbon	fixation	pathways	
in	prokaryotes	in	pregnant	and	non-pregnant	women.	D,	Principal	component	analysis	of	ko-level	bacterial	functional	data	with	pregnancy	
status.	E,	Principal	component	analysis	of	ko-level	bacterial	function	data	with	both	pregnancy	and	microbiome	(LD	vs	nLD)	status.	Lines	
indicate bacterial proteins that are driving the variances
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findings	which	show	increased	proteins	associated	with	leukocyte	
motility. This may be an important component of blood vessel per-
meability	and	formation,	processes	of	which	are	important	for	the	
development and maintenance of pregnancy. These overlapping 
and sometimes conflicting immune changes during pregnancy in-
dicate	 a	 complex	balancing	 act	 to	protect	 from	pathogens	while	
maintaining	a	semi-allogenic	fetus.

In	 support	 of	 previous	 studies,	 the	 microbiome	 of	 pregnant	
women in this study was primarily dominated by Lactobacillus. 
There was also a trend toward decreased bacterial diversity in 
pregnant	 women	 compared	 with	 non-pregnant	 women.	 During	
pregnancy,	 it	 is	thought	that	the	vaginal	microbiome	shifts	to	one	
dominated by Lactobacillus	to	protect	against	 infections,	 including	
HIV.45-50 Lactobacilli	 produce	 several	 antimicrobial	 compounds,	
lower	the	environmental	pH	by	production	of	lactic	acid,	and	pro-
vide	 competitive	 exclusion	 for	 other	 bacterial	 species.43-45	 Low	
vaginal	pH	in	women	with	Lactobacillus	can	inactivate	cell-free	and	
cell-associated	HIV,38 and the absence of Lactobacillus is associated 
with	 an	 increased	 risk	 of	 acquiring	HIV.37-42	 Furthermore,	 bacte-
rial	 vaginosis	 during	 pregnancy,	 which	 occurs	 when	 Lactobacillus 
are	 replaced	 by	 anaerobic	 bacteria,	 increases	 the	 risk	 pregnancy	
complications,42 suggesting that increases in Lactobacillus are im-
portant	for	decreasing	adverse	pregnancy	outcomes.	Interestingly,	
L iners was the most commonly identified species of Lactobacillus 
in this study. Previous studies generally found pregnant women to 
be dominated by L crispatus,	but	many	also	identified	L iners within 
the microbiome.46-48,51,56	A	microbial	profile	dominated	by	L iners 
is	more	 likely	to	shift	to	dysbiosis57 and has been associated with 
elevated	levels	of	proinflammatory	mediators	including	IL-8	and	IP-
10.58	As	these	women	were	not	followed	longitudinally,	we	are	not	
able to determine if there were shifts in the microbiome or if there 
was any relationship between L iners dominance and adverse preg-
nancy outcomes.

While	it	has	previously	been	reported	that	pregnant	women	are	
more	likely	to	have	a	vaginal	microbiome	dominated	by	Lactobacillus,	
the	 functional	 microbiome	 differences	 have	 not	 been	 explored.	
Here,	 we	 determined	 that	 there	 were	 significant	 increases	 in	 en-
ergy metabolism in the microbiome of pregnant women compared 
with	 non-pregnant	women.	 This	 suggests	 that	 the	microbiome	 of	
pregnant women may be more metabolically active than that of 
non-pregnant	women.	Principal	component	analysis	of	ko-level	bac-
terial functions indicated that women clustered based on their mi-
crobiome	composition	regardless	of	pregnancy	status.	However,	as	
this	study	is	small,	larger	studies	would	be	needed	better	understand	
these functional microbiome differences and potential relevance to 
HIV	susceptibility.

The	 epithelial	 lining	 of	 the	 FGT	 provides	 a	 structural	 barrier	
against	pathogen	invasion	and	damage.	Changes	to	this	barrier,	such	
as	the	generation	of	breaches	from	pathogen-related	damage,	may	
facilitate	entry	for	HIV-1.	Proteins	associated	with	epithelial	barrier	
damage	are	also	modified	during	pregnancy.	Cervical	ectopy,	which	
was	 present	 in	 60.9%	 of	 the	 pregnant	 women,	 is	 one	 structural	
change	that	could	increase	HIV-1	susceptibility.34,35

Taken	together	this	data	suggests	that	 immune	system	com-
plexities	 and	 epithelial	 barrier	 dysfunction	 that	 occur	 during	
pregnancy	 may	 be	 contributing	 to	 increased	 HIV	 acquisition	
in	 pregnant	 women,	 while	 the	 microbiome	 may	 be	 protective.	
While	 the	hormonal	changes	that	occur	during	pregnancy	could	
be	 responsible	 for	 all	 of	 these	 observed	 changes,	 it	 is	 difficult	
to determine if there are additional interactions between the mi-
crobiome,	epithelial	barrier,	and	immune	system	that	could	drive	
these changes.

Our	study	has	various	limitations	including	the	small	study	size	
and	cross-sectional	study	design.	In	addition,	the	majority	of	the	par-
ticipants	identified	as	Hispanic,	which	could	impact	the	representa-
tiveness	 of	 this	 data.	 Furthermore,	menstrual	 cycle	 phase	 at	 time	
of	sample	collection	was	not	recorded	for	the	non-pregnant	women	
and,	 therefore,	 may	 represent	 a	 source	 of	 proteome	 variation	
within our control group that we could not account for in our study. 
However,	since	we	were	comparing	pregnant	women	to	non-preg-
nant	women,	we	believe	that	the	dramatic	increase	in	ovarian	hor-
mones	that	occurs	during	pregnancy	(eg,	progesterone	is	10x	higher	
during	pregnancy	than	the	luteal	phase	of	the	menstrual	cycle)	will	
have a greater influence on the proteome differences observed here 
than the cyclical shifts observed over the course of the menstrual 
cycle.59 Our data do provide several indications of pathways that 
could	 contribute	 to	HIV	 susceptibility	during	pregnancy;	 however,	
HIV	 acquisition	was	 not	measured.	 Larger,	 longitudinal	 studies	 of	
pregnant	women	would	be	 required	 to	better	evaluate	HIV	acqui-
sition	and	its’	relationship	to	the	risk	factors	measured	in	our	study	
including	cervical	ectopy,	microbiome,	and	immune	cell	recruitment	
signatures.

Overall,	 this	 study	 demonstrates	 that	 the	 vaginal	 mucosa	 of	
pregnant	 women	 differs	 from	 non-pregnant	 women	 at	 the	 struc-
tural,	 microbial,	 and	 immunological	 levels.	 These	 findings	 suggest	
that immunological and structural changes that occur during preg-
nancy	may	 increase	 the	 risk	 for	HIV	acquisition	and	suggests	 that	
condom use should continue during pregnancy to provide protection 
from	HIV.
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