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Abstract: The analysis of sentence lengths in the inaugural speeches of US presidents and the annual
speeches of UK party leaders is carried out. Transcripts of the speeches are used, rather than the oral
production. It is discovered that the average sentence length in these speeches decreases linearly with
time, with the slope of 0.13 ± 0.03 words/year. It is shown that among the analyzed distributions
(log-normal, folded and half normal, Weibull, generalized Pareto, Rayleigh) the Weibull is the best
distribution for describing sentence length. These two results can be considered a consequence of the
principle of least effort. The connection of this principle with the well-known principles of maximum
and minimum entropy production is discussed.

Keywords: quantitative linguistics; sentence lengths; principle of least effort; Weibull distribution;
minimum entropy production principle

1. Introduction

The study of natural languages is extremely important not only for the human and
social sciences, but also for the sciences that study the development patterns of complex
systems (synergetics, cybernetics, etc.). An important section of language science is quanti-
tative linguistics, which uses mathematical methods to establish language laws (note that
the objectives and methods of quantitative linguistics go beyond the mere study of linguis-
tic laws, see, e.g., [1,2]). At present, several similar laws are considered, and among them,
the most famous are Zipf’s law, Herdan’s law, Brevity law, and Menzerath–Altmann’s
law [3–7]. Such laws, found mostly by statistical methods, indicate existing regularities
between various elements of language (phonemes, words, etc.).

The most important element of language is the sentence—the object of this study.
According to the Cambridge dictionary, a sentence is a group of words, usually containing
a verb, that expresses a thought in the form of a statement, question, instruction, or
exclamation. Sentences have semantic completeness; they express a particular thought
of a person and serve to communicate it with other people. Based on the above sentence
qualities, the study of these structural units is essential for cognitive science, which is of
great interest. A metaphor from atomic physics would be very appropriate to illustrate
this, especially for representatives of the natural sciences. Many properties of an atom are
estimated by radiation (spontaneous and stimulated) that an atom emits and/or absorbs.
A person (human brain) also “emits” and perceives elementary flows of thought in the
form of sentences and the characteristics of this “human radiation” can reveal a lot about
both the person and their environment.

An important quantitative characteristic of a sentence is its length, which can be
measured in various ways (the number of letters, words, etc.). The study of sentence
lengths does not require special linguistic training and can be easily processed by computer.
As a result, this value has been studied for a long time and is used to determine the
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authorship of a work, the genre of the text, the cognitive development of the author or
reader (listener), the level of language proficiency, etc. [8–14]. Two regularities are noticed
regarding sentence length.

The first regularity is a decrease in the average sentence length over time. The de-
crease may vary depending on the genre and language of the text [15–18]. In particular,
according to analysis of English texts [15]: “fiction sentences are approximately (on aver-
age) 6.5 words shorter now than they were in the beginning of the nineteenth century”.
The second regularity is the asymmetry of sentence length distribution in the text (their
distribution functions are not normal). Various laws are proposed to describe sentence
length distribution; log-normal is the most often, but it is also suggested to use others,
in particular, gamma and hyperpascal distributions [4,6,19–24]. These regularities are
associated with various factors; in particular, attempts are made to connect the log-normal
distribution law with some stochastic multiplicative processes of sentence formation and
the central limit theorem in logarithmic space [22]. There is no single general explanation
of the noted regularities to date.

At the same time, the so-called principle of least effort [25] has existed for a long time
in cognitive linguistics. According to this principle, language changes because speakers
simplify their speech in various ways. This principle was suggested by G. Zipf. In 1949
he wrote: “a person, in solving his immediate problems, will view these against the
background of his future problems, as estimated by himself. Moreover, he will strive to
solve his problems in such a way as to minimize the total work that he must expend in
solving both his immediate problems and his probable future problems. That in turn means
that the person will strive to minimize the probable average rate of his work-expenditure
(over time). And in so doing he will be minimizing his effort. Least effort, therefore, is
a variant of least work.” [25]. Note that G. Zipf is not the first to consider this kind of
principle. In discussing the close connection between thinking and language, it is necessary
to mention E. Mach and his principle of the economy of thought (1864): “when the human
mind, with its limited powers, attempts to mirror in itself the rich life of the world, of
which it itself is only a small part, and which it can never hope to exhaust, it has every
reason for proceeding economically” [26].

Starting with G. Zipf, the discussed principle of least effort is used to explain the differ-
ent frequencies of words of various lengths, the origins of scaling in human language, etc.
(see, e.g., [27,28]). However, even at the sentence level, this principle from a single position
allows us to explain the two above-mentioned regularities. In fact, languages have evolved
so that language users can communicate using sentences that are relatively easy to produce
and comprehend. It is worth quoting a fragment from Ref. [29] “Various models of human
sentence production and comprehension predict that long dependencies are difficult or
inefficient to process; minimizing dependency length thus enables effective communica-
tion without incurring processing difficulty”. Thus, with a long-term observation of the
language, sentence length will decrease. Let us consider the application of this principle for
a significantly smaller timescale—creation time of the text by the author. The author strives
to express each of his thoughts in the most economical, shortest way. As a result, the author
consciously and unconsciously tends to use sentences of the minimum length (L), among
the variety of those that are similar in content {L1, L2, . . . , Ln}, i.e., L = min{L1, L2, . . . , Ln}.
It is well known from mathematical statistics [30,31] that the distribution of the minima
of a random variable corresponds to the Weibull distribution (strictly, if L = min{L1, L2,
. . . , Ln}, n→∞ and, L1, L2, . . . , Ln being identically distributed random variables equal to
zero or larger, L will obey the Weibull distribution function [30,31]). Thus, the principle of
least effort unambiguously indicates that sentence lengths, with a sufficiently large sample,
should be described by the Weibull distribution, and not by any other distributions. It is
interesting to note that the Weibull distribution is a two-parameter asymmetric distribution
that generalizes the well-known one-parameter Rayleigh distribution and can be reduced
to a gamma distribution by changing the variable.
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The purpose of this work is to check the applicability of the Weibull distribution to the
distribution of sentence lengths and to discover the law of the sentences length decrease over
time. The results can provide additional justification for the applicability of the principle of
least effort to elementary units of human speech that carry a particular thought.

2. Data for Analysis

The object of this research was to study the public speeches of politicians. Previously,
this has beencarried out several times (see, e.g., [32–34]). However, the objectives of those
studies were different from the objective of this work (readability and sentiment analysis,
letter frequency distribution, etc.). Political speeches are a convenient object of research,
since this is a form of oral speech that is well-documented for sufficiently long times.
Political speeches are positioned between spoken and written ways of expressing thoughts.
Unlike spoken speech, the speech under consideration is more meaningful, prepared ahead
of time, and less spontaneous, from the speaker’s point of view. At the same time, in
comparison with written speech, political speeches are more focused on the listener, and,
therefore, have a greater emotional component and the tendency to be easily understood.
As a result, political speeches are extremely valuable research material. Such speeches are
usually focused on some “average” citizen—the voter—therefore, the processing of such
data reflects the temporal changes in the majority of native speakers.

We analyzed text transcripts of the 59 inaugural speeches of US presidents from 1789
to 2021 and 224 texts of speeches of UK Party leaders from 1895 to 2018 (available in [35]
and [36], respectively). The studied speeches of US presidents are uniformly distributed
every four years. The time distribution of speeches of UK Party leaders was not so uniform
(due to copyright, the appearance of a new large party in parliament in 1977, etc.), but
much more extensive. Note that no UK speeches were processed for 1898, 1914–1917,
1931, 1938–1940, 1944, 1952–1954, or1959. The list of analyzed speeches is presented
in Appendixes.

Sentence length was calculated from period to period, the unit of measurement was
the words between spaces (prior to analysis, we replace all question marks, exclamation
marks, and ellipses with a period, and also remove all dots used when writing decimal
numbers). Note that the selected unit of measure for sentence length is not exclusive.
Words were selected as a unit of measure for sentence length primarily because of the
simplicity and the great prevalence of this approach. It is necessary to note that according
to [37], sentence length is robust with respect to the selection of the unit of measurement.
Thus, the choice of the word (and, e.g., not letters) will not lead to a change in the results
of further analysis. The calculation was carried out automatically using a developed and
tested computer program (see, example in Figure 1).
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Despite the fact that the studied speeches belonged to a long period of time, the total
number of words in the speeches did not change reliably (Figure 2). The average length of
speech in words was 2331 ± 355 for the US and 5434 ± 774 for the UK.
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Figure 2. Number of words in the text N versus time t. Red circles indicate data for USA, and black triangles indicate data
for UK.

Statistical analysis was performed using the well-known and widespread professional
commercial product Statistica 12.0 (TIBCO Software). The data (year of the speech and
values corresponding to the processed sentence lengths of speeches) are in open access [38].

3. Change in Sentence Length over Time

The parameters characterizing sentence length were calculated. They are listed below.

1. The average sentence length. To calculate this parameter, the total number of words in
a speech was divided by the number of sentences. The change in this parameter over
time is shown in Figure 3. The figure demonstrates that the average sentence length
decreases linearly, with the slopes for USA and UK practically coinciding, and are
equal to 0.13 ± 0.03 and 0.14 ± 0.01, respectively. On average, over 100 years, from
1900 to 2000, the average sentence length for both sets decreases from 30 to 16 words
in a sentence, that is, the length is reduced by almost twice.
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2. The median is known to be a stable characteristic of the distribution, it is almost
unaffected by outliers. According to Figure 4, the median sentence length distribution
decreases linearly in both sets with time. The slopes of the lines for USA and UK are
0.11 ± 0.02 and 0.11 ± 0.01, respectively. It can be seen that the lines are very close
and practically coincide with ones for average sentence lengths.
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The final results of this section are summarized in Table 1.

Table 1. Time behavior of the average sentence length.

Parameters Characterizing Sentence Length Linear Fitting, Confidence Level, Coefficient of Determination
USA UK

Average 286 − (0.13 ± 0.03)t, 95%, 0.67 299 – (0.14 ± 0.01)t, 95%, 0.64
Median 232 – (0.11 ± 0.02)t, 95%, 0.64 240 – (0.11 ± 0.01)t, 95%, 0.57

Maximum value 1317 – (0.6 ± 0.3)t, 95%, 0.19 1197 – (0.6 ± 0.1)t, 95%, 0.29

4. Analysis of the Sentence Length Distribution Law

To analyze the sentence length distribution law, a number of speeches of the US
presidents were excluded from the initial data. First, small speech texts, containing less
than 40 sentences were excluded (these are speech texts of 1789, 1793, 1797, 1813, 1829,
1833, 1849, 1865, 1869, 1905, and 1945). Second, since it is the texts of public oral speeches
that are analyzed, the texts of 1953, 1961, 1973, and 1981 were excluded because these
speeches were not spoken, but were only written. Third, speech texts of 1801, 1805, 1837,
1877, 1881, 1893, 1941, 1965, and 1969 were not processed, since these speech texts have a
multimodal distribution (the reasons for this and the analysis of these distributions could
be the subject of a separate work). Thus, the analysis of the distribution law was carried
out at 31 inaugural speeches of US presidents. All 224 speeches of the UK party leaders
were analyzed. However, 31 texts were excluded due to the low significance level (<0.05) of
the results obtained in relation to all tested distribution laws. Single outliers were excluded
from the datasets before data analysis.

Six distributions with no more than two parameters, such as log-normal, Weibull,
folded normal, half normal (normal), generalized Pareto, Rayleigh were analyzed in order
to find the best theoretical distribution that describes the studied empirical distributions.
The ranking of these distributions by the quality of data description was carried out ac-
cording to the Kolmogorov–Smirnov criterion: the larger the p-level value, the better this
distribution describes the empirical data and, accordingly, the higher its place in compari-
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son with others. Tables 2 and 3 show the number of times one of the six listed sentence
length distributions was among the top three (see Appendix A for more information).

Table 2. Ranking of distributions according to the Kolmogorov–Smirnov criterion. US speeches.

Weibull Log-Normal Rayleigh Folded Normal Normal General Pareto

Place
1 14 13 3 1 0 0
2 14 5 6 4 1 0
3 3 1 9 8 8 1

∑ 31 19 18 13 9 1

Table 3. Ranking of distributions according to the Kolmogorov–Smirnov criterion. UK speeches.

Weibull Log-Normal Rayleigh Folded Normal Normal General Pareto

Place
1 144 62 4 2 1 1
2 47 43 27 23 8 0
3 2 20 14 16 19 0

∑ 193 125 45 41 28 1

Table 2 shows that, in 14 inaugural speeches of the US presidents, the Weibull distri-
bution took first place in terms of significance, in another 14 it took second place, and in 3,
it took third place. Thus, the Weibull distribution is the only distribution that adequately
describes all speeches and takes the top three places. The average distribution significance
level, where Weibull was in the first place, is 0.73, and for the second and third places, it is
0.5 and 0.3, respectively (see Appendix A). The log-normal distribution, ranked in the top
three for 19 speeches, describes the data somewhat worse than Weibull one. The average
significance levels for the log-normal distribution are 0.67 for the first place (13 speeches),
0.37 for the second place (5 speeches) and 0.08 for the third place (1 speech). Similar results
can be seen for UK speeches (see Table 3 and Appendix A).

Thus, according to the performed statistical analysis, the Weibull distribution is the
most preferable for describing the studied speeches. The Weibull distribution (cumulative
distribution function) has the form 1 − exp(− (x/λ)k), where λ and k are the scale and
shape parameters respectively. Examples of the experimental data description using the
Weibull distribution are presented in Figure 6. Note that the one-parameter Rayleigh
distribution, ranked third in the description quality according to the analysis results, is a
special case of the Weibull distribution, where the shape parameter is equal to two (see
Tables 2 and 3).
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256 points. The dashed line is the Weibull distribution, for which р-level is 0.42, λ = 23.8 and k = 1.7.

The behavior of the parameters of the Weibull distribution over time is shown in
Figures 7 and 8 (see Appendix B for numerical details). It follows from the Figure 7 that the
scale parameter reliably decreases over time. Since this parameter is known to be directly
proportional to the mean, median, and mode of the Weibull distribution, this once again
confirms the above statement about the decrease in the average (and the most probable)
sentence length. The shape parameter for US speeches does not reliably change over time
and is equal to 1.9 ± 0.1. At the same time, the shape parameter for UK speeches is slightly
increasing, changing from 1.5 to 1.8 over the past 100 years. This is the only difference
found when comparing sentence lengths for US and UK speeches. Since the change over
time is not large (the slope of the line is 0.002 ± 0.001), for reliability, an analysis of this
result using additional data is required. Table 4 summarizes the results on the behavior of
the parameters of the Weibull distribution over time.
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Table 4. Parameters of the Weibull distribution for USA and UK speeches.

Parameters of the Weibull Distribution
Linear Fitting, Confidence Level, Coefficient of Determination

USA UK

Scale (λ) 209.8 − (0.09 ± 0.03)t, 95%, 0.63 321.5 − (0.15 ± 0.02)t, 95%, 0.64
Shape (k) 1.9 ± 0.1, 95% −2.9 + (0.002 ± 0.001)t, 95%, 0.19

Thus, the time behavior of the parameters of the Weibull distribution allows us to
conclude that, over the past two hundred years, sentence length distribution has become
less fuzzy, the width of the peak decreases, and its abscissa is slightly shifted to the left. This
is demonstrated in Figure 9. As a result, over time, speeches become composed of similar
in length and shorter sentences, the difference in length decreases. In terms of sentence
lengths, the text becomes more ordered. This can be seen in Figure 10, where information
entropy (Shannon entropy) is presented as a function of time. The calculation of this
value was based on sentence length distribution histograms containing the probabilities of
detecting sentence length in a speech at a certain length interval.
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Figure 10. Information entropy S versus the time t. Red circles indicate data for USA, and black
triangles indicate data for UK. The linear regression equation for USA is 7.7–0.003t (the slope of the
line is 0.003 ± 0.001) and for UK is 8.2–0.003t (the slope of the line is 0.003 ± 0.001).

5. Conclusions

Based on the calculation of sentence lengths in the text transcripts of the inaugural
speeches of the US presidents for 228 years and the annual speeches of the UK party leaders
for 123 years, two main results were obtained:

1. The average sentence length for both US and UK speeches decreases linearly with
time with the slope of 0.13 ± 0.03 words/year and, on average, from 1900 to 2000, sentence
length decreased with time from 30 to 16 words.

2. Sentence length distribution for both US and UK speeches is better described by the
Weibull distribution (in particular, in comparison with the log-normal). The scale parameter
of this distribution reliably decreases over time from 35 to 15. The shape parameter for US
speeches does not change over time and is equal to 1.9 ± 0.1, and the shape parameter for
UКspeeches slightly changes over time from 1.5 to 1.8.

These two results are in agreement with the principle of least effort: the speaker,
attempting to minimize both their efforts and the listeners’ effort, tends to choose the short-
est possible sentence length from a potential set of sentences of approximately the same
content. As a result, on the one hand, sentence length distribution begins to correspond to
the distribution of minimum values—the Weibull distribution, and on the other hand, at
time intervals significantly longer than the speech preparation time, the average sentence
length decreases. The detected change over time in the scale parameter of the Weibull
distribution and in information entropy indicates that sentence length in public speeches is
gradually becoming less diverse; it is being unified and standardized.

Here we highlight the following idea. When establishing the distribution type for
empirical data, most important are not statistical tests, but rather the theoretical justification.
If we accept the principle of least effort, then the Weibull distribution clearly follows from
it. If one assumes that the principle of least effort is not suitable here, then obviously,
they must propose some other theoretical justification—their principle—and theoretically
derive, for example, gamma or lognormal distributions from it. Currently, we do not see
such attempts. The G. Zipf’s principle, in our opinion, is very profound and productive,
and many interesting consequences can be obtained from it. It has great potential, which
has not yet been fully embraced by modern linguists. Our work and a number of works
(see, e.g., [27,28,39–43]) show how useful it can be.
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An interesting continuation of this work can be the verification of the obtained results
using breath groups [6]. Detecting correlations and differences in such a collaborative
analysis of breath groups (largely related to human physiology) and sentence lengths
(largely related to cognitive processes) is a very interesting task. One of the problems in this
direction will be a significantly smaller statistical database for breath groups in comparison
with an almost limitless database for sentence lengths. Another interesting development
of this work, in the scope of currently well-established directions connected to language
complex networks (see, e.g., [39–43]), could be an analysis of the data obtained, here, from
the position of the principle of compression, which appeared as a development of the ideas
of G. Zipf [43]. It seems to us that the results of this work, combined with the principle
of compression and with the use of Kolmogorov complexity ideas (existing inalgorithmic
information theory) could be very promising. Found patterns for English also require
validation for other languages, including artificial, as well as using other methods and
linguistic units (letters, initial characters, words, etc.). In this regard, works [44–46] may
be useful.

In conclusion, we return to the metaphor from physics given in the introduction. The
analysis of the atom emission spectra and the Planck formula for wavelength distribution
revolutionized the understanding of atomic properties, leading to the formulation of the
laws of the quantum world—quantum mechanics. The distribution law of the lengths of
utterances (sentences) “emitted” by the brain, corresponding to the Weibull distribution, is
also able to stimulate the development of brain sciences. One of the possible directions related
to brain biophysics may be the study of the energetic basis of the origin and development of
thought and language. There are a number of works in this direction, in particular [4,6,47–53].
Considering thought as a complex non-equilibrium process, it can be concluded that its
development matches the well-known principle of maximum entropy production. According
to this principle, causes (stimuli) generate such responses that maximize the thermodynamic
entropy production [47,54,55]. One of these responses in the course of the evolution of
human thinking was the origin of the language. This revolutionary bifurcation process led
to an abrupt increase in energy consumption and, as a result, an increase in the entropy
production in a nonequilibrium system, i.e., in neural networks of humans who have become
users of language. Naturally, a spontaneously emerged structure (network) could not be
optimal at inception: only a certain basic structure (framework) of language was formed,
which had some imperfections. Subsequently, being already at the high level of energy
consumption and entropy production achieved after bifurcation, the nonequilibrium system
began to evolve for a rather long time, trying to minimize energy consumption [54,55]. This
minimization will no longer return the system to its previous, pre-bifurcation values of entropy
production; however, due to the optimization of the neural network processes responsible
for language, a small decrease is possible. According to nonequilibrium thermodynamics,
this optimization process is already progressing in accordance with the Prigogine minimum
production principle [47,54,55]. Its linguistic analogue can be considered the principle of
least effort (least effort assumes less energy spent on communication, and, consequently, less
energy dissipation). The information on the “simplification” of language—a decrease in its
entropy, discovered in this work, can be considered a confirmation that language is currently
going through a second (minimizing) stage of development.
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Appendix A

Ranking the suitability of theoretical distribution laws for the observed empirical
sentence length distributions based on the Kolmogorov–Smirnov criterion. After the name
of the distribution, its p-level is given:

DATA FOR USA
Year I Place, p-Value II Place, p-Value III Place, P-Value

1817 Weibull, 0.80 Log Normal, 0.52 Rayleigh, 0.33
1821 Log Normal, 0.51 Weibull, 0.41 Rayleigh, 0.20
1825 Log Normal, 0.97 Weibull, 0.79 Folded Normal, 0.56
1841 Log Normal, 0.98 Weibull, 0.38 Rayleigh, 0.10
1845 Log Normal, 0.72 Weibull, 0.30 Rayleigh, 0.02
1857 Folded Normal, 0.97 Weibull, 0.96 Normal, 0.90
1861 Weibull, 0.91 Log Normal, 0.45 Normal, 0.16
1873 Rayleigh, 0.86 Weibull, 0.85 Folded Normal, 0.62
1885 Weibull, 0.80 Folded Normal, 0.66 Normal, 0.59
1889 Rayleigh, 0.54 Weibull, 0.54 Folded Normal, 0.24
1897 Weibull, 0.57 Log Normal, 0.52 Rayleigh, 0.49
1909 Weibull, 0.97 Rayleigh, 0.72 Folded Normal, 0.68
1913 Log Normal, 0.54 Weibull, 0.18 Half Normal, 0.12
1917 Log Normal, 0.85 Weibull, 0.30 Half Normal, 0.12
1921 Weibull, 0.43 Log Normal, 0.18 Rayleigh, 0.06
1925 Rayleigh, 0.25 Weibull, 0.20 Log Normal, 0.08
1929 Weibull, 0.26 Rayleigh, 0.13 Folded Normal, 0.03
1941 Log Normal, 0.75 Weibull, 0.73 Folded Normal, 0.17
1949 Log Normal, 0.54 Weibull, 0.54 Folded Normal, 0.19
1957 Log Normal, 0.56 Rayleigh, 0.26 Weibull, 0.24
1977 Weibull, 0.90 Rayleigh, 0.75 Normal, 0.65
1985 Log Normal, 0.40 Weibull, 0.22 Rayleigh, 0.09
1989 Log Normal, 0.72 Rayleigh, 0.5 Weibull, 0.49
1993 Weibull, 0.89 Folded Normal, 0.59 Rayleigh, 0.54
1997 Log Normal, 0.41 Rayleigh, 0.20 Weibull, 0.18
2001 Weibull, 0.45 Log Normal, 0.19 Folded Normal, 0.18
2005 Weibull, 0.92 Folded Normal, 0.56 Normal, 0.53
2009 Weibull, 0.97 Half Normal, 0.23 General Pareto, 0.16
2013 Log Normal, 0.75 Weibull, 0.63 Rayleigh, 0.60
2017 Weibull, 0.71 Folded Normal, 0.51 Normal, 0.33
2021 Weibull, 0.67 Log Normal, 0.31 Folded Normal, 0.01

DATA FOR UK
Year, Party I Place, p-Value II Place, p-Value III Place, p-Value

1895 Liberal Log Normal, 0.37 Weibull, 0.37 Folded Normal, 0.01
1896 Liberal Log Normal, 0.46 Weibull, 0.28 Normal, 0.00
1897 Liberal Log Normal, 0.06 Weibull, 0.01 Half Normal, 0.00

1897 Conservative Weibull, 0.47 Log Normal, 0.22 Half Normal, 0.02
1899 Liberal Weibull, 0.29 Log Normal, 0.15 Normal, 0.00

1900 Conservative Weibull, 0.87 Folded Normal, 0.64 Log Normal, 0.57
1901 Liberal Weibull, 0.31 Log Normal, 0.07 Half Normal, 0.05

1902 Conservative Folded Normal, 0.46 Half Normal, 0.46 Weibull, 0.30
1903 Conservative Weibull, 0.84 Half Normal, 0.39 Log Normal, 0.26

1903 Liberal Weibull, 0.51 Folded Normal, 0.08 Normal, 0.06
1904 Conservative Weibull, 0.64 Folded Normal, 0.42 General Pareto, 0.18

1905 Liberal Weibull, 0.18 Log Normal, 0.14 Half Normal, 0.01
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Year, Party I Place, p-Value II Place, p-Value III Place, p-Value

1906 Conservative Half Normal, 0.37 Weibull, 0.36 General Pareto, 0.23
1907 Conservative General Pareto, 0.25 Weibull, 0.16 Log Normal, 0.13

1907 Liberal Weibull, 0.53 Half Normal, 0.13 Normal, 0.09
1908 Liberal Weibull, 0.59 Folded Normal, 0.13 Half Normal, 0.13

1908 Conservative Weibull, 0.66 Log Normal, 0.45 Half Normal, 0.27
1909 Liberal Weibull, 0.69 Folded Normal, 0.3 Log Normal, 0.05

1909 Conservative Weibull, 0.34 Log Normal, 0.34 Half Normal, 0.16
1910 Liberal Weibull, 0.38 Folded Normal, 0.27 Half Normal, 0.26

1910 Conservative Weibull, 0.92 Half Normal, 0.24 Folded Normal, 0.24
1911 Conservative Weibull, 0.72 Log Normal, 0.13 Folded Normal, 0.07

1912 Liberal Weibull, 0.55 Log Normal, 0.3 Folded Normal, 0.21
1912 Conservative Weibull, 0.17 Log Normal, 0.14 Half Normal, 0.03
1913 Conservative Log Normal, 0.11 Weibull, 0.07 Half Normal, 0.02

1913 Liberal Weibull, 0.91 Log Normal, 0.28 Folded Normal, 0.26
1918 Liberal Weibull, 0.82 Rayleigh, 0.17 Log Normal, 0.07
1919 Liberal Weibull, 0.98 Half Normal, 0.12 Log Normal, 0.09
1920 Liberal Weibull, 0.66 Folded Normal, 0.65 Half Normal, 0.62

1920 Conservative Weibull, 0.02 Log Normal, 0.02 Folded Normal, 0.01
1921 Liberal Weibull, 0.67 Log Normal, 0.63 Half Normal, 0.23

1921 Conservative Log Normal, 0.58 Weibull, 0.09 Half Normal, 0.07
1922 Liberal Weibull, 0.90 Half Normal, 0.73 General Pareto, 0.51

1922 Conservative Weibull, 0.52 Log Normal, 0.48 Folded Normal, 0.10
1923 Liberal Weibull, 0.85 General Pareto, 0.25 Normal, 0.15
1924 Liberal Log Normal, 0.85 Weibull, 0.50 Folded Normal, 0.26
1924 Labour Weibull, 0.77 Half Normal, 0.24 Folded Normal, 0.24

1924 Conservative Weibull, 0.75 Log Normal, 0.39 Folded Normal, 0.11
1925 Liberal Log Normal, 0.83 Weibull, 0.60 Rayleigh, 0.33

1925 Conservative Weibull, 0.47 Log Normal, 0.02 Normal, 0.02
1926 Conservative Weibull, 0.21 Log Normal, 0.09 Rayleigh, 0.01

1927 Liberal Log Normal, 0.67 Weibull, 0.21 Folded Normal, 0.01
1927 Conservative Log Normal, 0.47 Weibull, 0.19 Folded Normal, 0.01

1928 Liberal Log Normal, 0.35 Weibull, 0.04 Half Normal, 0.00
1928 Conservative Log Normal, 0.45 Weibull, 0.01 Folded Normal, 0.00

1929 Liberal Log Normal, 0.37 Weibull, 0.19 Folded Normal, 0.03
1929 Conservative Log Normal, 0.67 Weibull, 0.61 Folded Normal, 0.05

1930 Liberal Weibull, 0.16 Log Normal, 0.00 Normal, 0.00
1932 Conservative Weibull, 0.78 Log Normal, 0.23 Normal, 0.10

1932 Liberal Log Normal, 0.52 Weibull, 0.45 Folded Normal, 0.03
1933 Conservative Log Normal, 0.70 Weibull, 0.57 Folded Normal, 0.08
1934 Conservative Weibull, 0.75 Folded Normal, 0.72 Normal, 0.67
1935 Conservative Weibull, 0.61 Folded Normal, 0.53 Rayleigh, 0.32

1936 Liberal Log Normal, 0.89 Weibull, 0.19 Folded Normal, 0.03
1937 Liberal Weibull, 0.74 Folded Normal, 0.46 Log Normal, 0.41
1941 Liberal Weibull, 0.68 Log Normal, 0.54 Rayleigh, 0.43
1942 Liberal Weibull, 0.67 Rayleigh, 0.38 Log Normal, 0.31
1943 Liberal Log Normal, 0.74 Weibull, 0.51 Normal, 0.07
1945 Liberal Weibull, 0.62 Rayleigh, 0.23 Normal, 0.11
1946 Labour Log Normal, 0.29 Weibull, 0.08 Normal, 0.00
1947 Labour Log Normal, 0.76 Weibull, 0.21 Normal, 0.01
1948 Labour Log Normal, 0.85 Weibull, 0.51 Normal, 0.04
1949 Labour Weibull, 0.47 Log Normal, 0.38 Folded Normal, 0.08
1950 Labour Log Normal, 0.55 Weibull, 0.39 Normal, 0.11
1951 Labour Log Normal, 0.85 Weibull, 0.19 Rayleigh, 0.02

1955 Conservative Weibull, 0.32 Log Normal, 0.29 Rayleigh, 0.03
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Year, Party I Place, p-Value II Place, p-Value III Place, p-Value

1956 Conservative Weibull, 0.11 Log Normal, 0.07 Folded Normal, 0.01
1957 Conservative Log Normal, 0.38 Weibull, 0.05 Folded Normal, 0.00
1958 Conservative Log Normal, 0.15 Weibull, 0.13 Rayleigh, 0.09
1960 Conservative Weibull, 0.53 Rayleigh, 0.35 Folded Normal, 0.03
1961 Conservative Weibull, 0.68 Rayleigh, 0.1 Log Normal, 0.04
1962 Conservative Weibull, 0.49 Rayleigh, 0.17 Log Normal, 0.17

1963 Liberal Log Normal, 0.58 Weibull, 0.09 Rayleigh, 0.01
1963 Conservative Log Normal, 0.52 Rayleigh, 0.43 Weibull, 0.32

1964 Labour Weibull, 0.75 Folded Normal, 0.18 Log Normal, 0.08
1965 Labour Log Normal, 0.1 Weibull, 0.09 General Pareto, 0.02

1965 Conservative Log Normal, 0.49 Weibull, 0.25 Normal, 0.00
1966 Labour Weibull, 0.46 Folded Normal, 0.06 Log Normal, 0.02

1966 Conservative Weibull, 0.32 Log Normal, 0.19 Folded Normal, 0.02
1967 Labour Weibull, 0.66 Folded Normal, 0.04 Log Normal, 0.01

1967 Conservative Log Normal, 0.36 Weibull, 0.13 Half Normal, 0.00
1968 Labour Weibull, 0.73 Folded Normal, 0.07 Log Normal, 0.01

1968 Conservative Log Normal, 0.22 Weibull, 0.16 Rayleigh, 0.00
1969 Labour Weibull, 0.55 Folded Normal, 0.03 Normal, 0.00

1969 Conservative Weibull, 0.18 Log Normal, 0.05 Half Normal, 0.00
1970 Labour Weibull, 0.28 Log Normal, 0.03 Folded Normal, 0.01

1970 Conservative Log Normal, 0.41 Weibull, 0.35 Rayleigh, 0.16
1971 Conservative Log Normal, 0.21 Weibull, 0.15 Rayleigh, 0.1

1971 Labour Weibull, 0.43 Folded Normal, 0.05 Normal, 0.01
1972 Conservative Log Normal, 0.37 Weibull, 0.21 Folded Normal, 0.07

1972 Labour Weibull, 0.66 Log Normal, 0.06 Normal, 0.00
1973 Conservative Log Normal, 0.17 Weibull, 0.01 Folded Normal, 0.00

1973 Labour Weibull, 0.57 Folded Normal, 0.1 Normal, 0.04
1974 Labour Weibull, 0.81 Log Normal, 0.02 Normal, 0.01

1975 Conservative Log Normal, 0.53 Weibull, 0.28 Rayleigh, 0.06
1975 Labour Weibull, 0.41 Folded Normal, 0.04 Log Normal, 0.02

1976 Conservative Weibull, 0.23 Log Normal, 0.07 Normal, 0.00
1976 Labour Weibull, 0.24 Log Normal, 0.05 Normal, 0.00

1977 Conservative Weibull, 0.48 Normal, 0.03 Rayleigh, 0.03
1997 Labour Weibull, 0.54 Log Normal, 0.03 Folded Normal, 0.01

1977 Liberal a Weibull, 0.66 Log Normal, 0.10 Rayleigh, 0.02
1977l Liberal b Log Normal, 0.67 Weibull, 0.3 Folded Normal, 0.01

1978 Conservative Weibull, 0.26 Log Normal, 0.04 Folded Normal, 0.01
1978 Labour Weibull, 0.19 Log Normal, 0.01 Normal, 0.00
1978 Liberal Weibull, 0.28 Log Normal, 0.12 Folded Normal, 0.05

1979 Conservative Log Normal, 0.30 Weibull, 0.12 Folded Normal, 0.00
1979 Labour Weibull, 0.17 Log Normal, 0.02 Folded Normal, 0.00
1989 Liberal Weibull, 0.58 Rayleigh, 0.03 Normal, 0.02

1980 Conservative Weibull, 0.45 Rayleigh, 0.37 Log Normal, 0.17
1980 Labour Log Normal, 0.14 Weibull, 0.02 Folded Normal, 0.00
1980 Liberal Weibull, 0.63 Log Normal, 0.11 Rayleigh, 0.02

1981 Conservative Weibull, 0.69 Rayleigh, 0.08 Log Normal, 0.08
1981 Labour Log Normal, 0.51 Weibull, 0.20 Half Normal, 0.00
1981 Liberal Weibull, 0.31 Log Normal, 0.19 Folded Normal, 0.02

1982 SDP-Liberal
Alliance b

Weibull, 0.69 Folded Normal, 0.34 Rayleigh, 0.34

1982 Conservative Weibull, 0.18 Rayleigh, 0.05 Log Normal, 0.05
1982 Labour Weibull, 0.96 Rayleigh, 0.26 Normal, 0.15
1982 Liberal Weibull, 0.24 Log Normal, 0.05 Rayleigh, 0.01

1983 Conservative Weibull, 0.17 Log Normal, 0.13 Rayleigh, 0.06
1983 Labour Weibull, 0.57 Folded Normal, 0.1 Rayleigh, 0.08
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Year, Party I Place, p-Value II Place, p-Value III Place, p-Value

1983 Liberal Weibull, 0.51 Rayleigh, 0.41 Folded Normal, 0.05
1984 Conservative Weibull, 0.81 Folded Normal, 0.21 Normal, 0.02

1984 Labour Weibull, 0.60 Normal, 0.05 Folded Normal, 0.04
1984 Liberal Weibull, 0.07 Rayleigh, 0.02 Log Normal, 0.00

1985 Conservative Weibull, 0.23 Log Normal, 0.10 Rayleigh, 0.05
1985 Labour Log Normal, 0.42 Weibull, 0.29 Half Normal, 0.08
1985 Liberal Weibull, 0.63 Log Normal, 0.08 Rayleigh, 0.05

1986 Conservative Weibull, 0.35 Log Normal, 0.09 Folded Normal, 0.07
1986 Labour Weibull, 0.64 Log Normal, 0.04 Normal, 0.01
1986 Liberal Weibull, 0.28 Log Normal, 0.01 Folded Normal, 0.01

1987 Conservative Weibull, 0.51 Rayleigh, 0.09 Log Normal, 0.02
1987 Labour Weibull, 0.21 Log Normal, 0.06 Folded Normal, 0.01

1987 SDP-Liberal
Alliance a

Weibull, 0.61 Log Normal, 0.25 Folded Normal, 0.15

1987 SDP-Liberal
Alliance b

Log Normal, 0.37 Weibull, 0.16 Rayleigh, 0.03

1988 Conservative Weibull, 0.47 Rayleigh, 0.09 Folded Normal, 0.03
1988 Labour Log Normal, 0.22 Weibull, 0.03 Half Normal, 0.00
1988 Liberal Log Normal, 0.9 Weibull, 0.42 Rayleigh, 0.07

1989 Conservative Weibull, 0.12 Rayleigh, 0.05 Log Normal, 0.01
1989 Labour Log Normal, 0.09 Weibull, 0.06 Half Normal, 0.00

1990 Conservative Weibull, 0.16 Log Normal, 0.02 Folded Normal, 0.00
1990 Labour Log Normal, 0.24 Weibull, 0.02 Half Normal, 0.00

1991 Conservative Weibull, 0.11 Log Normal, 0.01 Rayleigh, 0.00
1991 Labour Weibull, 0.11 Log Normal, 0.04 Normal, 0.00

1992 Conservative Weibull, 0.26 Folded Normal, 0.00 Log Normal, 0.00
1992 Labour Weibull, 0.42 Log Normal, 0.05 Rayleigh, 0.00
1992 Liberal
Democrat l

Weibull, 0.39 Log Normal, 0.18 Normal, 0.00

1993 Conservative Weibull, 0.23 Log Normal, 0.02 Folded Normal, 0.00
1993 Labour Weibull, 0.51 Rayleigh, 0.22 Normal, 0.09
1993 Liberal

Democrat
Folded Normal, 0.51 Weibull, 0.43 Normal, 0.10

1994 Conservative Weibull, 0.11 Log Normal, 0.05 Normal, 0.00
1994 Labour Weibull, 0.36 Log Normal, 0.01 Normal, 0.00
1994 Liberal

Democrat
Weibull, 0.88 Folded Normal, 0.17 Rayleigh, 0.14

1995 Conservative Weibull, 0.17 Rayleigh, 0.01 Log Normal, 0.00
1995 Labour Log Normal, 0.25 Weibull, 0.12 Half Normal, 0.00

1996 Conservative Log Normal, 0.14 Weibull, 0.03 Folded Normal, 0.00
1996 Labour Log Normal, 0.26 Weibull, 0.03 Folded Normal, 0.00
1996 Liberal

Democrat
Weibull, 0.44 Log Normal, 0.003 Normal, 0.00

1997 Conservative Weibull, 0.44 Folded Normal, 0.33 Log Normal, 0.31
1997 Labour Log Normal, 0.12 Weibull, 0.001 Half Normal, 0.00

1998 Conservative Weibull, 0.07 Log Normal, 0.05 Folded Normal, 0.00
1998 Labour Log Normal, 0.19 Weibull, 0.13 Folded Normal, 0.00
1988 Liberal

Democrat
Weibull, 0.09 Log Normal, 0.001 Folded Normal, 0.00

1999 Conservative Log Normal, 0.07 Weibull, 0.04 Folded Normal, 0.00
1999 Labour Log Normal, 0.01 Half Normal, 0.00 Weibull, 0.00
1999 Liberal
Democrat a

Weibull, 0.74 Folded Normal, 0.28 Log Normal, 0.15

1999 Liberal
Democrat b

Log Normal, 0.04 Weibull, 0.00 Rayleigh, 0.00

2000 Conservative Weibull, 0.01 Log Normal, 0.01 Normal, 0.00
2000 Labour Log Normal, 0.02 Weibull, 0.00 Folded Normal, 0.00



Entropy 2021, 23, 1023 17 of 23

Year, Party I Place, p-Value II Place, p-Value III Place, p-Value

2000 L Log Normal, 0.01 Weibull, 0.00 Half Normal, 0.00
2001 Conservative Log Normal, 0.17 Weibull, 0.1 Folded Normal, 0.02

2001 Labour Log Normal, 0.52 Weibull, 0.00 Half Normal, 0.00
2001 Liberal

Democrat
Weibull, 0.13 Log Normal, 0.06 Half Normal, 0.00

2002 Conservative Weibull, 0.28 Rayleigh, 0.27 Log Normal, 0.14
2002 Labour Log Normal, 0.10 Weibull, 0.00 Folded Normal, 0.00
2002 Liberal

Democrat
Weibull, 0.21 Rayleigh, 0.05 Folded Normal, 0.03

2003 Conservative Weibull, 0.16 Rayleigh, 0.11 Folded Normal, 0.01
2003 Labour Log Normal, 0.20 Weibull, 0.02 Half Normal, 0.00
2003 Liberal

Democrat
Weibull, 0.05 Rayleigh, 0.03 Folded Normal, 0.00

2004 Conservative Weibull, 0.08 Rayleigh, 0.07 Folded Normal, 0.00
2004 Labour Weibull, 0.24 Log Normal, 0.18 Half Normal, 0.01
2004 Liberal
Democrat l

Weibull, 0.19 Folded Normal, 0.01 Log Normal, 0.00

2005 Conservative Weibull, 0.64 Rayleigh, 0.30 Log Normal, 0.14
2005 Labour Weibull, 0.07 Log Normal, 0.05 Folded Normal, 0.00
2005 Liberal

Democrat
Rayleigh, 0.20 Weibull, 0.19 Log Normal, 0.11

2006 Conservative a Weibull, 0.15 Log Normal, 0.05 Folded Normal, 0.00
2006 Conservative b Weibull, 0.01 Log Normal, 0.00 Rayleigh, 0.00

2006 Labour Log Normal, 0.12 Weibull, 0.03 Folded Normal, 0.00
2006 Liberal

Democrat
Log Normal, 0.24 Weibull, 0.03 Rayleigh, 0.01

2007 Conservative Weibull, 0.10 Log Normal, 0.09 Folded Normal, 0.00
2007 Labour Weibull, 0.16 Rayleigh, 0.02 Log Normal, 0.02
2007 Liberal

Democrat
Rayleigh, 0.19 Weibull, 0.11 Log Normal, 0.05

2008 Conservative Weibull, 0.17 Log Normal, 0.03 Normal, 0.00
2008 Labour Weibull, 0.19 Log Normal, 0.06 Rayleigh, 0.01
2008 Liberal
Democrat l

Weibull, 0.49 Rayleigh, 0.07 Normal, 0.01

2009 Conservative Weibull, 0.06 Log Normal, 0.01 Rayleigh, 0.00
2009 Labour Rayleigh, 0.68 Weibull, 0.53 Folded Normal, 0.1
2009 Liberal

Democrat
Weibull, 0.17 Rayleigh, 0.05 Folded Normal, 0.01

2010 Conservative Weibull, 0.23 Log Normal, 0.00 Folded Normal, 0.00
2010 Labour Weibull, 0.45 Folded Normal, 0.04 Rayleigh, 0.02
2010 Liberal
Democrat l

Log Normal, 0.16 Weibull, 0.03 Rayleigh, 0.01

2011 Conservative Weibull, 0.30 Rayleigh, 0.0003 Log Normal, 0.00
2011 Labour Log Normal, 0.02 Weibull, 0.01 Normal, 0.00
2011 Liberal

Democrat
Weibull, 0.25 Folded Normal, 0.00 Log Normal, 0.00

2012 Conservative Weibull, 0.16 Folded Normal, 0.02 Half Normal, 0.01
2012 Labour Weibull, 0.01 Log Normal, 0.01 Folded Normal, 0.00
2012 Liberal

Democrat
Weibull, 0.49 Log Normal, 0.13 Rayleigh, 0.03

2013 Conservative Weibull, 0.19 Log Normal, 0.03 Folded Normal, 0.00
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Year, Party I Place, p-Value II Place, p-Value III Place, p-Value

2013 Labour Log Normal, 0.11 Weibull, 0.02 Normal, 0.00
2013 Liberal

Democrat
Weibull, 0.64 Rayleigh, 0.11 Normal, 0.03

2014 Conservative Weibull, 0.13 Log Normal, 0 Folded Normal, 0.00
2014 Labour Weibull, 0.17 Folded Normal, 0.01 Rayleigh, 0.00
2014 Liberal

Democrat
Weibull, 0.32 Folded Normal, 0.13 Normal, 0.03

2015 Conservative Weibull, 0.2 Folded Normal, 0.001 Log Normal, 0.00
2015 Labour Weibull, 0.18 Log Normal, 0.01 Rayleigh, 0.00
2015 Liberal

Democrat
Weibull, 0.42 Folded Normal, 0.07 Rayleigh, 0.03

2016 Conservative Log Normal, 0.23 Weibull, 0.01 Normal, 0.00
2016 Labour Weibull, 0.37 Rayleigh, 0.31 Log Normal, 0.12
2016 Liberal

Democrat
Log Normal, 0.14 Weibull, 0.07 Normal, 0.00

2017 Conservative Log Normal, 0.05 Weibull, 0.02 Normal, 0.00
2017 Labour Weibull, 0.16 Log Normal, 0.1 Folded Normal, 0.01
2017 Liberal

Democrat
Weibull, 0.31 Rayleigh, 0.11 Folded Normal, 0.04

2018 Conservative Log Normal, 0.12 Rayleigh, 0.01 Weibull, 0.003
2018 Labour Rayleigh, 0.18 Weibull, 0.16 Log Normal, 0.09
2018 Liberal

Democrat
Weibull, 0.41 Rayleigh, 0.1 Log Normal, 0.09

Appendix B

The shape and scale parameters for the Weibull distributions used for the description
of the empirical sentence length distributions

DATA FOR USA
Year p-Value λ, Scale k, Shape

1817 0.80 28.4 1.8
1821 0.41 37.9 1.9
1825 0.79 36.9 1.9
1841 0.38 43.9 1.9
1845 0.30 35.4 1.8
1857 0.96 35.8 2.3
1861 0.91 29.3 1.7
1873 0.85 31.3 2.0
1885 0.80 43.0 2.2
1889 0.54 31.6 2.0
1897 0.57 34.4 2.0
1909 0.97 38.3 1.9
1913 0.18 25.0 1.4
1917 0.30 25.3 1.5
1921 0.43 25.3 1.7
1925 0.20 23.0 2.0
1929 0.26 22.2 1.9
1941 0.73 21.7 1.6
1949 0.54 22.0 2.4
1957 0.24 20.1 2.0
1977 0.90 22.6 2.3
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Year, Party I Place, p-Value II Place, p-Value III Place, p-Value

1985 0.22 22.1 1.9
1989 0.49 18.5 2.0
1993 0.89 18.5 2.3
1997 0.18 20.7 2.0
2001 0.45 18.0 2.5
2005 0.92 23.7 2.3
2009 0.97 23.3 1.5
2013 0.63 27.8 2.3
2017 0.71 16.7 1.7
2021 0.67 17.2 1.6

DATA FOR UK
Year, Party p-Value λ, Scale k, Shape

1895 Liberal 0.37 33.7 1.6
1896 Liberal 0.28 28.3 1.6

1897 Conservative 0.47 32.6 1.5
1899 Liberal 0.29 32.9 1.6

1900 Conservative 0.87 38.2 1.7
1901 Liberal 0.31 25.3 1.4

1902 Conservative 0.30 35.0 1.3
1903 Conservative 0.84 36.4 1.3

1903 Liberal 0.51 29.5 1.5
1904 Conservative 0.64 40.2 1.5

1905 Liberal 0.18 29.3 1.5
1906 Conservative 0.36 36.2 1.4
1907 Conservative 0.16 34.6 1.2

1907 Liberal 0.53 35.9 1.5
1908 Liberal 0.59 32.5 1.4

1908 Conservative 0.66 38.0 1.3
1909 Liberal 0.69 38.7 1.6

1909 Conservative 0.34 32.4 1.4
1910 Liberal 0.38 31.5 1.4

1910 Conservative 0.92 31.1 1.4
1911 Conservative 0.72 26.9 1.5

1912 Liberal 0.55 36.0 1.4
1912 Conservative 0.17 25.4 1.4
1913 Conservative 0.07 27.0 1.4

1913 Liberal 0.91 38.7 1.5
1918 Liberal 0.82 33.6 1.8
1919 Liberal 0.98 33.2 1.5
1920 Liberal 0.66 30.0 1.4
1921 Liberal 0.67 27.1 1.4

1921 Conservative 0.09 24.2 1.3
1922 Liberal 0.90 28.4 1.4

1922 Conservative 0.52 28.3 1.5
1923 Liberal 0.85 33.4 1.6
1924 Liberal 0.50 32.4 1.9
1924 Labour 0.77 28.4 1.4

1924 Conservative 0.75 33.8 1.6
1925 Liberal 0.60 30.4 1.9

1925 Conservative 0.47 32.0 1.6
1926 Conservative 0.21 33.7 1.7
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Year, Party I Place, p-Value II Place, p-Value III Place, p-Value

1927 Liberal 0.21 23.3 1.6
1927 Conservative 0.19 25.9 1.6

1929 Liberal 0.19 20.3 1.7
1929 Conservative 0.61 26.9 1.5

1930 Liberal 0.16 22.0 1.7
1932 Conservative 0.78 25.2 1.8

1932 Liberal 0.45 29.7 1.6
1933 Conservative 0.57 30.3 1.7
1934 Conservative 0.75 30.1 1.8
1935 Conservative 0.61 34.2 1.8

1936 Liberal 0.19 35.2 1.4
1937 Liberal 0.74 38.6 2.4
1941 Liberal 0.68 30.8 1.8
1942 Liberal 0.67 27.0 1.8
1943 Liberal 0.51 36.0 1.7
1945 Liberal 0.62 27.1 1.7
1946 Labour 0.08 21.3 1.7
1947 Labour 0.21 19.6 1.6
1948 Labour 0.51 24.4 1.7
1949 Labour 0.47 23.5 1.8
1950 Labour 0.39 23.0 1.8
1951 Labour 0.19 21.3 1.8

1955 Conservative 0.32 23.7 1.7
1956 Conservative 0.11 19.7 1.8
1958 Conservative 0.13 21.7 1.9
1960 Conservative 0.53 20.1 2
1961 Conservative 0.68 21.1 1.8
1962 Conservative 0.49 23.1 1.9

1963 Liberal 0.09 22.6 1.8
1963 Conservative 0.32 27.5 2.0

1964 Labour 0.75 34.6 1.7
1965 Labour 0.09 29.6 1.3

1965 Conservative 0.25 19.9 1.6
1966 Labour 0.46 30.9 1.6

1966 Conservative 0.32 25.8 1.6
1967 Labour 0.66 27.0 1.5

1967 Conservative 0.13 24.0 1.5
1968 Labour 0.73 22.4 1.6

1968 Conservative 0.16 20.3 1.7
1969 Labour 0.55 17.8 1.7

1969 Conservative 0.18 21.3 1.5
1970 Labour 0.28 25.0 1.5

1970 Conservative 0.35 25.6 1.9
1971 Conservative 0.15 24.1 2.0

1971 Labour 0.43 26.1 1.6
1972 Conservative 0.21 24.1 1.9

1972 Labour 0.66 24.3 1.6
1973 Labour 0.57 25.3 1.6
1974 Labour 0.81 29.1 1.7

1975 Conservative 0.28 24.6 1.8
1975 Labour 0.41 26.2 1.5

1976 Conservative 0.23 16.6 1.6
1976 Labour 0.24 22.8 1.7

1977 Conservative 0.48 19.5 1.7
1997 Labour 0.54 24.4 1.6

1977 Liberal a 0.66 26.3 1.7
1977l Liberal b 0.3 26.1 1.7
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Year, Party I Place, p-Value II Place, p-Value III Place, p-Value

1978 Conservative 0.26 18.4 1.7
1978 Labour 0.19 21.8 1.6
1978 Liberal 0.28 22.4 1.8

1979 Conservative 0.12 17.6 1.7
1979 Labour 0.17 27.1 1.5
1989 Liberal 0.58 21.2 1.8

1980 Conservative 0.45 20.2 2.0
1980 Liberal 0.63 23.8 1.7

1981 Conservative 0.69 21.6 1.8
1981 Labour 0.2 26.7 1.7
1981 Liberal 0.31 23.5 1.8

1982 SDP-Liberal
Alliance b

0.69 25.9 1.9

1982 Conservative 0.18 17.6 1.9
1982 Labour 0.96 31.3 1.8
1982 Liberal 0.24 20.4 1.7

1983 Conservative 0.17 19.1 1.8
1983 Labour 0.57 29.5 1.8
1983 Liberal 0.51 22.4 2.0

1984 Conservative 0.81 19.5 1.7
1984 Labour 0.6 23.8 1.6
1984 Liberal 0.07 21.2 1.8

1985 Conservative 0.23 16.7 1.8
1985 Labour 0.29 27.7 1.4
1985 Liberal 0.63 20.1 1.8

1986 Conservative 0.35 18.3 1.8
1986 Labour 0.64 27.9 1.6
1986 Liberal 0.28 21.2 1.7

1987 Conservative 0.51 17.1 1.9
1987 Labour 0.21 25.5 1.6

1987 SDP-Liberal
Alliance a

0.61 18.2 1.7

1987 SDP-Liberal
Alliance b

0.16 20.5 1.9

1988 Conservative 0.47 16.5 1.9
1988 Liberal 0.42 20.6 1.8

1989 Conservative 0.12 16.9 1.9
1989 Labour 0.06 22.0 1.5

1990 Conservative 0.16 15.1 1.7
1991 Conservative 0.11 13.0 1.8

1991 Labour 0.11 22.7 1.6
1992 Conservative 0.26 12.8 1.7

1992 Labour 0.42 23.8 1.7
1992 Liberal

Democrat
0.39 18.8 1.6

1993 Conservative 0.23 17.5 1.6
1993 Labour 0.51 25.6 1.8
1993 Liberal

Democrat
0.43 19.9 1.7

1994 Conservative 0.11 19.6 1.6
1994 Labour 0.36 19.6 1.6
1994 Liberal

Democrat
0.88 17.8 1.8

1995 Conservative 0.17 12.7 1.8
1995 Labour 0.12 21.7 1.5
1996 Liberal

Democrat
0.44 15.3 1.6

1997 Conservative 0.44 17.1 1.6
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Year, Party I Place, p-Value II Place, p-Value III Place, p-Value

1998 Conservative 0.07 18.1 1.7
1998 Labour 0.13 20.9 1.6
1988 Liberal

Democrat
0.09 13.1 1.5

1999 Liberal
Democrat a

0.74 15.9 1.7

2001 Conservative 0.1 18.0 2.4
2001 Liberal

Democrat
0.13 13.4 1.5

2002 Conservative 0.28 16.8 2.0
2002 Liberal

Democrat
0.21 13.4 1.9

2003 Conservative 0.16 11.4 1.9
2003 Liberal

Democrat
0.05 12.4 1.9

2004 Conservative 0.08 12.0 2.0
2004 Labour 0.24 17.7 1.2
2004 Liberal

Democrat
0.19 14.8 1.6

2005 Conservative 0.64 16.7 1.9
2005 Labour 0.07 16.4 1.6
2005 Liberal

Democrat
0.19 15.3 2.0

2006 Conservative a 0.15 13.0 1.6
2007 Conservative 0.1 23.2 1.7

2007 Labour 0.16 23.8 1.9
2007 Liberal

Democrat
0.11 14.7 2.0

2008 Conservative 0.17 16.2 1.6
2008 Labour 0.19 25.6 1.8
2008 Liberal

Democrat
0.49 12.3 1.9

2009 Conservative 0.06 15.1 1.8
2009 Labour 0.53 23.8 2.0
2009 Liberal

Democrat
0.17 13.4 1.9

2010 Conservative 0.23 14.5 1.6
2010 Labour 0.45 18.3 1.8

2011 Conservative 0.3 14.5 1.7
2011 Liberal

Democrat
0.25 11.9 1.6

2012 Conservative 0.16 15.2 1.4
2012 Liberal

Democrat
0.49 19.4 1.8

2013 Conservative 0.19 14.4 1.6
2013 Liberal

Democrat
0.64 20.8 1.8

2014 Conservative 0.13 16.7 1.6
2014 Labour 0.17 14.9 1.8
2014 Liberal

Democrat
0.32 20.5 1.7

2015 Conservative 0.2 15.5 1.6
2015 Labour 0.18 15.7 1.7
2015 Liberal

Democrat
0.42 18.1 1.8

2016 Labour 0.37 23.6 2.0
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Year, Party I Place, p-Value II Place, p-Value III Place, p-Value

2016 Liberal
Democrat

0.07 16.8 1.5

2017 Labour 0.16 19.7 1.8
2017 Liberal

Democrat
0.31 17.2 1.8

2018 Labour 0.16 21.5 2.0
2018 Liberal

Democrat
0.41 18.7 1.8
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