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Abstract: We have exploited the capability of in-cell NMR to selectively observe flexible regions within
folded proteins to carry out a comparative study of two members of the highly conserved frataxin fam-
ily which are found both in prokaryotes and in eukaryotes. They all contain a globular domain which
shares more than 50% identity, which in eukaryotes is preceded by an N-terminal tail containing the
mitochondrial import signal. We demonstrate that the NMR spectrum of the bacterial ortholog CyaY
cannot be observed in the homologous E. coli system, although it becomes fully observable as soon
as the cells are lysed. This behavior has been observed for several other compact globular proteins as
seems to be the rule rather than the exception. The NMR spectrum of the yeast ortholog Yfh1 contains
instead visible signals from the protein. We demonstrate that they correspond to the flexible N-
terminal tail indicating that this is flexible and unfolded. This flexibility of the N-terminus agrees with
previous studies of human frataxin, despite the extensive sequence diversity of this region in the two
proteins. Interestingly, the residues that we observe in in-cell experiments are not visible in the crystal
structure of a Yfh1 mutant designed to destabilize the first helix. More importantly, our results show
that, in cell, the protein is predominantly present not as an aggregate but as a monomeric species.
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Introduction

Direct observation of folded proteins inside cells by

nuclear magnetic resonance (NMR) techniques, an

approach originally introduced by Doetsch et al.,1

provides an attractive potentiality that could allow

the observation of proteins in their natural milieu

without lengthy and intrusive steps of purification.

It was, however, recently realized that the spectra of

globular proteins are often not observable, probably

because of non-specific interactions and/or confine-

ment2–10 which make molecular tumbling too slow.

On the contrary, the spectra of intrinsically unstruc-

tured proteins are mostly observable when over-

expressed in bacteria.3 This different behavior offers

a unique possibility to distinguish between flexible

parts and more rigid parts also when studying in-

cell NMR of folded proteins.

Here, we applied this concept to compare the

spectra and the flexibility in cell of two orthologues

of the same protein family. Frataxins are small

proteins (10212 kDa) highly conserved in most
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organisms from bacteria to humans.11,12 They are

essential components of the cell, taking part in iron

sulphur cluster biogenesis through interactions with

the Nfs1/Isu complex (or IscS/IscU in prokaryotes)

that is central to this machinery.13 In prokaryotes, the

structure of frataxin (called CyaY in bacteria) consists

of a compact globular domain (1002120 amino acid in

length) with a ab fold, which is common to all species

(pdb code 1ew4).14–16 In eukaryotes, frataxins are pro-

duced in the cytoplasm and successively imported in

the mitochondria.17,18 The conserved globular domain

is thus preceded by an N-terminal tail that is specific

to eukaryotes and is responsible for mitochondrial

import (pdb code 2fql).19,20 A detailed study has

suggested that in vitro the import signal of human

frataxin overexpressed in E. coli is, as most mitochon-

drial import signals, intrinsically unfolded.12 However,

evidence from the yeast ortholog (Yfh1) suggests a

role for the import signal in the formation of spheroi-

dal assemblies that have been suggested to ligate iron

and keep it in a functionally available form.21,22 A

crystal structure of a Yfh1 mutant in which Y73 was

mutated to A73, supports this hypothesis in that it

shows a trimer, that is the minimal component of the

assembly.23 The trimer protomers pack against each

other in such a way that their N-terminal region plays

a crucial role in the stabilization of the trimer. The

residual small helix located on the N-terminal part

after the Y73A mutation has made the whole N-

terminal more flexible, packs against the b sheet of

the adjacent protomer. Formation of these assemblies

seems to be modulated by the presence of oxygen as

in strictly anaerobic conditions no assembly is

observed.

To understand better the dynamical properties

of frataxins we resorted to in cell NMR in the hope

of observing frataxins from different species directly

in cell. Here, we report a comparative study that

helps to clarify the role of the N-terminal part and

provide an example of the power of this technique

when correctly tailored to the scientific question.

Materials and Methods

Sample preparation and optimization of the

in-cell protocol

The two frataxin orthologues, cloned in pET21a vec-

tors, were transformed in BL21(DE3) E. coli cells

and selected for transformation in ampicillin plates,

according to previously published protocols.16,24

CyaY comprised the full-length 106 amino acid pro-

tein sequence, whereas the Yfh1 construct contained

residues 522174 which corresponds to the mature

form of Yfh1.19 Val52 was mutated to a methionine

for molecular biology purposes. Single colonies were

grown overnight at 37�C in 3 mL of Luria Broth

medium and 2 mL of the overnight cultures were

used to inoculate 100 mL of fresh medium. Different

values of optical density between 0.6 and 1.0 were

tried before deciding that a value of 0.8 was the best

for all preparations. When the cells reached the

desired optical density, they were harvested by cen-

trifugation at 3580 g for 15 min at room tempera-

ture. The pellet was then resuspended in 100 mL of
15N enriched minimal medium, incubated in a rotary

shaker at 37�C for 10 min and induced with IPTG

(0.5 mM). These conditions were the result of explor-

atory work using IPTG concentrations in the range

0.0221 mM and adaptation times in the range

10230 min. The cells were harvested by centrifuga-

tion at 5000 rpm for 15 min after induction times

varying from 1 h to 4 h. It can be appreciated (Fig.

S1 Supporting Information) that there is a substan-

tial gain in doubling the induction time from 1 h to

2 h. Longer times afforded no appreciable advant-

age. Shorter induction times proved systematically

better. Following induction, the cells were washed

once with 25 mL of the M9 solution, centrifuging for

15 min at 3850 g at room temperature. The final

pellet was resuspended in 500 mL of M9 medium

mixed with 50 mL of D2O, before transferring it into

standard 5 mm NMR tubes using a Pasteur pipette

and used immediately for NMR experiments.

To exclude the possibility that the NMR spectra

stem from leakage to the supernatant, for each experi-

ment we run spectra of the supernatant of the in-cell

NMR samples and checked the actual content of har-

vested cells by lysing them by sonication. The in-cell

NMR samples were spun at 10,000g for 5 min at room

temperature and the supernatant used for the leakage

control measurement. The pellet was resuspended as

before in 500 mL of M9 medium mixed with 50 mL

D2O and sonicated on ice for 3 min using a Branson

sonifier 250 (duty cycle 40%, output power at level 5).

The lysate was further centrifuged at 15,000g for 20

min at room temperature and its supernatant placed

in the NMR tube. When specified, strict anaerobic con-

ditions were obtained by lysing the cells in an anaero-

bic chamber (Belle Technology) under nitrogen and

transferring the lysate to an NMR tube (5 mm inter-

nal diameter) closed with a rubber septum. In this

case, cells were lysed by 10 freeze-thawing cycles on

dry-ice. The pellet was resuspended in the anaerobic

chamber using degassed lysis buffer (450 mL of M9

medium mixed with 50 mL D2O) supplemented with

lysozyme and DNAseI (Roche) to reach the final con-

centrations of 1 mg/mL and 1 mg/mL, respectively.

NMR experiments

HSQC and SOFAST experiments were typically

recorded at 25227�C and 600 MHz making sure

that data collection would not exceed 10215 min

(but typically time was much shorter) to avoid cell

lysis. Data processing was performed in Biopack

(with linear prediction in the 15N dimension) and

NMRPipe.25 The spectra were analyzed using CCPN
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software.26 To avoid leakage, careful sample han-

dling was required to prepare the cell slurry.27

A standard NOESY experiment was carried out

on purified Yfh1 using a mixing time of 100 ms. 15N

T1, 15N T2 and heteronuclear 15N-[1H] NOE data at

25�C and 600 MHz on the Yfh1 lysate were measured

at 600 MHz using standard pulse sequences. Overlap-

ping resonances were not included in the analysis. An

estimate of the overall rotational correlation time sc

was obtained from the trimmed average T1/T2 ratio,

i.e., excluding residues with T1/T2 values greater

than one standard deviation from the mean.28

Results

CyaY is undetectable by in-cell NMR
When we overexpressed CyaY, the bacterial ortholog

of frataxin, in E. coli the in-cell spectrum resulted

not visible: the spectrum [Fig. 1(A)] contains very

few peaks and these resonances are present also in

the spectrum of the noninduced sample [Fig. 1(B)].

The spectrum is certainly that of a protein in cell

because controls carried out by spinning down the

cells and recording the spectrum of the supernatant

did not show any protein signal (data not shown).

The three most intense peaks have been recognized

to belong to a metabolite and must thus be consid-

ered background.29 Conversely, when the induced

cells were lysed by sonication, the spectrum reap-

peared in full [Fig. 1(C)], with features that are sim-

ilar to the spectrum of the purified protein [Fig.

1(D)]. This behavior has been ascribed to weak

interactions with other cellular components or to the

effect of confinement that restricts the protein tum-

bling inside the cell.2–9 A difference between the two

spectra is the presence of more peaks in the in-cell

spectrum probably due to some degradation which

we could reduce using blander lysis conditions but

not eliminate. There are also noticeable variations of

chemical shifts which are likely due to the different

composition of the medium which is expected to

have a strong influence particularly for members of

the frataxin family since these proteins are able to

bind several cations.16,30 Finally, the in-cell spec-

trum is overall more broadened as compared to the

spectrum of the purified protein as expected for a

protein in a more viscous medium.

The N-terminal tail of yeast Yfh1 is flexible
We observed a similar scenario in the spectrum of

Yfh1 but, in addition to the peaks of the metabolite,

there are about nine clearly identifiable resonances

that are absent in the noninduced control and that

have thus to arise from the protein [Fig. 2(A,B)]. A

Figure 1. 15N HSQC NMR spectra of CyaY in cell and in the lysate. A: Spectrum of whole cells suspension after induction of

the protein. B: Superposition of spectra of whole cells suspension with and without protein induction. C: Spectrum of lysed

cells after induction of the protein. D: Spectrum of the purified protein. All spectra were recorded at 600 MHz and 25�C. Com-

parable counter plot levels were used for all spectra.
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control carried out by spinning down the cells and

recording the spectrum of the supernatant did not

show any protein signal (Fig. S2 Supporting Infor-

mation). The difference spectrum shows that it is

possible to eliminate nonrelevant background sig-

nals to isolate the peaks belonging to the N-

terminus [Fig. 2(C)]. The remaining peaks can be

assigned to residues from E53 to V61 of Yfh1 which

belong to the unstructured N-terminal tail that is

the remaining part of the mitochondrial import sig-

nal. Selective observation of the Yfh1 spectrum is in

full agreement with the recent suggestion that in-

cell NMR is easier for intrinsically unstructured

chains that, being flexible, remain visible also in the

milieu of the E. coli cytosol3. Interestingly, these res-

idues could not be observed in the crystal structure

of a mutant because they are part of the trimer

interface.23 Also in this case, the spectrum was fully

recovered after cell lysis [Fig. 3(A)], showing some

broadening which becomes less pronounced after

spinning down membranes and other cell compo-

nents [Fig. 3(B)]. The spectrum is similar to that of

the purified protein [Fig. 3(C)] except for some shifts

and some additional resonances presumably due to

the process of cell lysis. Peaks coincident with those

of Figure 2(C) (from E53 to V61) are colored in red.

These results tell us that the N-terminus of

Yfh1 is highly flexible and has dynamics different

from the attached globular domain.

Ordering starts around V61 of Yfh1

To assess further the state of fold of the N-terminus,

we acted on the lysate in which the spectrum of

Yfh1 is visible and plotted the chemical shift indexes

[Fig. 4(A)]. Using the assignment recently

obtained,24 the first 10 residues have low chemical

shift indexes although not completely null. The

chemical shifts of the corresponding in-cell resonan-

ces are indistinguishable from these values indicat-

ing that the residues must have the same secondary

structure in cell and in the lysate (Fig. 3).

We also analyzed a 3D 15N NOESY to test the

presence of NOEs between the N-terminus and the

globular domain according to what would be

Figure 2. Comparison of the 15N HSQC NMR spectra of cells expressing Yfh1. A: Spectrum of whole cells suspension without

protein induction. B: Spectrum of whole cells suspension after induction of the protein. C: Difference spectrum. Visible protein

peaks originating from the N-terminal are shown in black. Gray peaks correspond to two very intense background resonances

of panel A. The spectra were recorded at 600 MHz and 25�C.

Figure 3. Comparison of the 15N HSQC NMR spectra of cells expressing Yfh1. A: NMR spectrum of Yfh1 cell lysate (1min son-

ication). B: NMR spectrum of Yfh1 cell lysate of harvested cells after spinning down membranes and other cell components. C:

NMR spectrum of Yfh1 after purification. N-terminal peaks coincident with those of Figure 2(C) are colored in red.
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expected from an NMR structure (2ga5). We found

no NOEs in the N-terminus other than those due to

the primary structure up to residue N63. The amide

of N63 forms a sequential NOE with the following

amide (E64) suggesting the presence of a bending or

a local turn [Fig. S3 and 4(B)]. These observations

suggest the presence of local structure at this resi-

due in an otherwise unstructured region.

In cell, Yfh1 is predominantly a low molecular
weight species

Yfh1 has been suggested to form iron-promoted aggre-

gates,21 raising the possibility that the absence of an

in-cell spectrum could be explained by self-

aggregation. We approached this hypothesis in differ-

ent ways. We measured the relaxation rates to get a

more quantitative idea about the difference of tum-

bling time of the protein when purified and in the

lysate (Fig. 5). NMR relaxation measurements (T1,

T2, and hetero-nuclear 15N-[1H] NOE values) were

recorded at 25�C and 600 MHz on a 15N uniformly

labeled sample of Yfh1 to provide a measure of the

local degree of flexibility. We observed a correlation

time of 16.3 ms. This value corresponds approxi-

mately to a protein of about 24 kDa that is almost the

value expected for a isotropically tumbling dimer of

Yfh1 (the monomer is 13 kDa).31 For comparison, the

Figure 4. NMR structure and chemical shift analysis of Yfh1. A: NMR bundle of 20 structures (pdb id 2ga5). B: Mean structure

of the 20 structures of Figure 4(B), represented as ribbon. The side chain of residue P62 is marked by an asterisk. Molecular

models were generated by MOLMOL.40 C: Chemical shift indexes of Yfh1. The N-terminal region values are close to zero, as

expected for a disordered segment. The bar corresponding to P62 is indicated in black. The secondary structure is indicated

below using cylinders for helices and arrows for sheets.

Figure 5. NMR relaxation parameters of Yfh1 in cell suspen-

sion as measured at 600 MHz and 25�C on a uniformly 15N-

labeled sample of Yfh1 at 0.3 mM concentration. (A) T1 val-

ues (s), (B) T2 values (s), and (C) 15N-[1H] heteronuclear NOE.

The secondary structure is indicated below using cylinders

for helices and arrows for sheets.
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correlation time calculated for CyaY in the lysate is

11.5 ms which corresponds to a protein of about 17.6

kDa as compared with the expected value of 11 kDa.

Increased values in cell are expected because of the

crowded environment. Additionally, while CyaY is

globular and roughly isotropic, Yfh1 contains an

unfolded tail which greatly increases the anisotropy

of the protein. It was previously demonstrated that

an unstructured tag of 11 residues increases of about

30% the correlation time of the titin domain I27.32

Our results thus exclude the formation of appreciable

quantities of large aggregates since the observed val-

ues would barely account for a dimer. They could

reflect a mixture between low and high molecular

weight species in which, however, the formers would

be largely predominant.

Finally, we reasoned that, because the aggre-

gates of Yfh1 are known to be destabilized by aero-

bic conditions,33,34 they could be artificially

disrupted in our assays. We thus measured the

dynamical properties of the lysate breaking the cells

under strict anaerobic conditions. The appearance of

the spectrum and the line widths were indistin-

guishable from those obtained under aerobic condi-

tions (data not shown). These results bring no

support to the concept of ferritin-like aggregates at

least in bacterial cells.

Discussion
The initial impression from the first results of in-cell

NMR1 was that it could be the ultimate solution to

many of the problems of structural biology. In princi-

ple, it would allow structure determination of pro-

teins in solution directly in cell, bypassing lengthy,

invasive and possibly troublesome purification steps

and, even more important, allowing the study of bio-

logical macromolecules directly in their cellular envi-

ronment. The first, and so far only, protein structure

determined inside a cell was that of TTHA1718, a

signal protein from a thermophile organism.35 A few

investigations did find differences, albeit small,

between in vitro and in-cell NMR parameters. Serber

et al.1 observed that the chemical shifts and relaxa-

tion rates of residues in the metal-binding loop of

NmerA are slightly different from the corresponding

ones of the in vitro state, suggesting possible biologi-

cally relevant variations in local conformation and

dynamics. Hubbard et al.36 showed that in the case

of CheY, a signaling protein, the mode of binding of a

small molecular-weight compound was similar in

vivo and in vitro. Burz et al.37 proposed a general

use of in-cell NMR to map structural changes that

accompany protein2protein interactions (STINT-

NMR). Unfortunately, these aspects could be con-

firmed only in a few ad hoc cases. It has soon become

clear that the behavior of the protein at the center of

the study of Serber et al.,1 namely NmerA, was an

exception rather than the rule. Most folded proteins,

when overexpressed in bacteria, do not show an

NMR spectrum. However, it was also noticed that

intrinsically disordered proteins are invariably

observable when overexpressed in bacteria. In a

comparative study, Li et al.3 concluded that it is

easier to detect in-cell signals from disordered pro-

teins than those originating from folded proteins and

that this difference could be exploited, in principle,

to distinguish between flexible parts and more rigid

parts also when studying in-cell NMR of folded

proteins.

Here, we have shown how we can exploit this

behavior to selectively observe only specific disor-

dered regions of proteins otherwise well ordered,

and identify their flexibility. We have studied in par-

allel two members of the frataxin family and shown

that the spectrum of the evolutionary conserved

folded domain which corresponds to the full-length

protein in prokaryotes is not observable in cell. Con-

versely, resonances from the N-terminus of the yeast

ortholog which contains the mitochondrial signal

can be selectively observed demonstrating that this

region is unfolded and flexible. This result is inter-

esting for various reasons. It agrees with previous

studies on human frataxin which has a similar

behavior despite the extensive sequence diversity of

this region in the two proteins.13 In a solution struc-

ture (2ga5), the N-terminus consistently bends back

by about 180� in all the structures of the NMR bun-

dle and packs against the conserved globular

domain.38 This is at variance with what we observed

in the NMR spectra: the flexibility of this region is

clearly supported by the relaxation parameters and

by the chemical shift indices. We were also unable to

identify NOEs between the N-terminal tail and helix

1 as it would be expected from the 2ga5 structure

(for instance between residues Q59, E64, and E71).

We can thus conclude that the N-terminus of Yfh1 is

flexible and unstructured at least up to residue P62.

Another interesting outcome from our work is

that our results do not support the suggestion that

in-cell Yfh1 is present as an iron-induced aggre-

gate,21 at least in prokaryotic cells. Even if it could

be suggested that the reason why we do not observe

the in-cell spectrum is the formation of such aggre-

gates, our data do not support the presence of appre-

ciable quantities of high molecular weight species

which, if present at all, must provide only a minor

contribution. The correlation time observed in the

lysate is consistent with the presence of predomi-

nantly monomeric or low molecular weight species,

resolving the debate on whether frataxins work as

large ferritin-like aggregates.21 The formation of

iron-induced aggregates in the cytosol is anyway

unlikely because iron-promoted aggregation was

mostly observed under very low ionic strengths

which are very distant from the in-cell conditions.33

Interestingly, the residues that we detected in-cell
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are not visible in the crystal structure of a Yfh1

mutant (pdb id 2fql) designed to destabilize the first

helix by mutating Y73 into an alanine.23 As a result,

helix 1 in this structure is one turn shorter than

what is observed in other orthologs14 or expected on

the basis of the chemical shift indices. This region is

instead expected to form a short 310 helix in the

wild-type.39

In conclusion, we have discussed an interesting

application of in-cell NMR in which we have

exploited to our advantage the selective observation

in-cell of flexible regions of a protein to gain precious

information about protein dynamics. This approach

can nicely complement the more traditional relaxa-

tion data being more rapid and direct, since it does

not require purification and long measurement

times. Along these lines, in-cell NMR may be

exploited in the future to study other interesting

and challenging systems.
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