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Abstract: Mole sauce is one of the traditional Mexican foods; it is a complex mixture of ingredients
of diverse origins that directly influence its nutritional value. The objective of this study was to
investigate the antioxidant properties and nutritional components in five varieties of mole from
Hidalgo in Mexico namely verde (V), ranchero (R), almendrado (A), casero (C), and pipian (P).
Proximal chemical analysis and determination of the color index and the content of total starch,
dietary fiber, mineral content (Ca, Na, K, and Mg), total phenolic content, and antioxidant activity by
ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) and DPPH (2,2-diphenylpicrylhydrazyl)
were carried out. All the five varieties of mole reported less than 25% moisture content while fat
content varied from 42.9% to 58.25%. The color index ranged from a deep orange to a deep red color.
A fair percentage of dietary fiber was found in all mole varieties with a low amount of starch as well.
The presence of mostly insoluble dietary fiber, high phenolic content (36.13–79.49 mg GAE/100 g), and
high antioxidant activity could be considered important strengths to boost the consumption of these
traditional preparations. This research will contribute to a better scientific knowledge of traditional
Mexican sauces as functional foods or nutraceuticals that could be used to avoid health disorders.

Keywords: Mexican food; mole; phenolic content; dietary fiber; mineral content; antioxidant activity

1. Introduction

Mole is a traditional Mexican food whose name comes from the Nahuatl word “molli”
(stirred, foamy). It was handcrafted and consumed in Mexico since before the arrival
of the Spaniards. In 2010, the traditional Mexican cuisine was named an “intangible
cultural heritage” by UNESCO (United Nations Organization for Education, Science, and
Culture) [1]. There are different kinds of mole sauces, which are classified according to their
color and geographical origin; all of them comprise a complex mixture of four to seven
different fresh and dry hot peppers ground with nuts, chocolate, oil, dry corn tortilla, and
several spices in different proportions [2]. Mole sauces are used to prepare different kinds
of dishes and marinated meats in traditional Mexican cuisine. Chili (Capsicum annuum)
is especially important in Mexico, where it has culinary applications, such as in sauces
or to give food a spicy flavor [3]; it is used in raw, boiled, dried, and ground forms [4].
Depending on the variety of mole that is made, basically three varieties of chili (Capsicum
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annuum) are used: jalapeño, guajillo, or ancho (mulato, mihuateco, and crystalline), all of
them dehydrated with a moisture content of not more than 12% except green mole, i.e.,
verde mole, which contains fresh jalapeño pepper. The initial maturity state of the peppers
influences the final color of the finished product. However, when the product is made, it is
concentrated by continuous boiling, and then non-enzymatic compounds are produced
due to the application of heat.

Spices and condiments are key ingredients used in the mole; to characterize its flavor,
clove, cumin, pepper, cinnamon, and anise are added. They are present between the
concentration of 1% to 3% in the formulations. The amount of spices added is different
from one production region to another and even among different producers. It is known
that some spices can also provide some other beneficial characteristics, for example having
an antioxidant effect [5] or antimicrobial activity [6].

In previous research, the verde and red mole of the State of Hidalgo were physically,
chemically, and microbiologically characterized, finding strengths such as protein content
(11–12%), texture profile, and the absence of pathogenic microorganisms [7]. Consider-
ing that there is very little information on both the nutritional and nutraceutical value of
Mexican condiments, the objective of the present study was to investigate the antioxidant
capacity as well as the nutritional value (i.e., fat, protein, dietary fiber, starch, mineral
content, etc.) of five traditional Mexican sauces (moles). This study will provide valuable in-
formation to increase the scientific understanding of Mexican traditional foods as functional
foods or nutraceuticals, which could be useful in the prevention of chronic diseases.

2. Results and Discussion
2.1. Proximal Chemical Composition

Table 1 shows the results of the proximal chemical composition of the samples of five
different varieties of mole from Hidalgo state.

Table 1. Proximal chemical composition of five varieties of mole from the Hidalgo state in Mexico.

Mole Type Moisture (%) Fat (%) Protein (%) Crude Fiber (%) Ash (%) NFE (%)

V 21.74 ± 1.08 c 58.25 ± 0.43 d 4.90 ± 0.25 a 3.20 ± 0.11 a 1.15 ± 0.05 a 10.7 ± 0.43 a

R 13.43 ± 0.60 b 39.33 ± 0.03 b 8.53 ± 0.42 b 3.80 ± 0.09 a 2.38 ± 0.10 b 16.97 ± 0.45 b

C 11.30 ± 0.67 a 35.47 ± 0.13 a 9.53 ± 0.57 bc 3.50 ± 0.17 a 3.04 ± 0.09 c 31.56 ± 1.01 c

A 13.26 ± 0.92 b 36.65 ± 0.24 a 10.78 ± 0.75 c 3.10 ± 0.09 a 3.13 ± 0.47 c 33.06 ± 0.08 c

P 11.50 ± 0.43 a 42.90 ± 0.19 c 12.82 ± 0.64 d 12.20 ± 0.98 b 3.51 ± 0.54 c 38.10 ± 0.33 d

The superscripts a, b, c, and d show significant differences (p < 0.05) among the moles using the Tukey mean
comparison technique. NFE: nitrogen-free extract. verde (V), ranchero (R), casero (C), almendrado (A) and
pipian (P).

In general, the protein content of the mole samples was similar, presenting ranges
from 4.9% to 12.82%. Alvarez-Parrilla et al. [2] reported 2.2% to 2.5% of protein in two
samples of dark mole from Guerrero state, and Guemes et al. [7] documented 2.1% to 9%
of protein in moles from the State of Hidalgo. It was observed that the protein content
was higher in those samples that had added seeds such as the almendrado and pipians
formulations, which contain seeds of chili, pumpkin, almond, etc. The protein content of
the verde mole was considerably lower, 4.68%, than reported by Guemes et al. [7] with
11.89% of protein resulting from the addition of ground pumpkin seed.

The main ingredient in a mole is fat, whose percentages were 35.47% for casero mole
and 58.25% for a verde mole. Alvarez-Parrilla et al. [2] reported a fat content of 8.8%
and 13.9%. The values for the crude fiber content were 3.11% fat found in the verdemole
and 12.24% in the pipian mole. The fiber content is variable, which could be due to the
different ingredients in different formulations as shown in the pipian in which there is a
45% addition of dry chili. There is no reference to previous work regarding fiber content.
There was no siginficant difference observed among the studied moles with respect to
crude fiber.
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Guemes et al. [7] reported nitrogen-free extract to be in the range of 31.69% to 40.4% in
the moles of the State of Hidalgo, while the results of our studied varieties were found to be
between 10.70% and 38.10%. Ash content was observed to have a low concentration, with
the lowest in verde (1.15%) and the highest in pipian mole (3.51%) as shown in Table 1.

2.2. Determination of Color Parameters

The color values L*, a *, and b * (Table 2) determine the CI (color index), which allows
classification according to the color of the moles in Table 3. The results obtained show that
there were no significant differences (p < 0.05) between the almendrado, casero, and pipian
samples, although there was a significant difference (p < 0.05) between verde and ranchero
mole.The four varieties with values within the range of +20 to +40 can be considered to be
deep orange to deep red [8]. On the other hand, the verde mole with a CI of −1.082 ± 0.267
ranged from −2 to +2 and could be considered greenish yellow (Table 3).

Table 2. Values of L*, a*, and b* color five varieties of mole from the State of Hidalgo.

Mole Type L* b* a*

V 45.49 ± 0.10 c 16.79 ± 0.13 c 0.82 ± 0.38 d

R 27.34 ± 0.50 a 5.80 ± 0.51 a 3.51 ± 0.06 a

C 30.43 ± 0.48 b 7.79 ± 0.24 b 6.92 ± 0.26 b

A 31.87 ± 0.58 b 8.47 ± 0.31 b 8.00 ± 0.41 c

P 28.37 ± 0.45 a 8.01 ± 0.30 b 6.72 ± 0.17 b

The superscripts a, b, c, and d show significant differences (p < 0.05) among the moles using the Tukey mean
comparison technique; verde (V), ranchero (R), casero (C), almendrado (A) and pipian (P).

Table 3. The color index of five varieties of mole from the State of Hidalgo.

Mole Type Color Index (CI) Interval

V −1.08 ± 0.26 c Greenish yellow (−2 to +2)
R 22.22 ± 0.20 b Deep orange to deep red ( +20 to +40)
C 29.17 ± 0.17 a Deep orange to deep red (+20 to +40)
A 29.63 ± 0.10 a Deep orange to deep red (+20 to +40)
P 29.580 ± 0.26 a Deep orange to deep red (+20 to +40)

The superscripts a, b and c show significant differences (p < 0.05) among the moles using the Tukey mean
comparison technique; verde (V), ranchero (R), casero (C), almendrado (A) and pipian (P).

2.3. Determination of Total, Soluble, and Insoluble Dietary Fiber

As shown in Table 4, there were significant differences (p < 0.05) between the moles
in total dietary fiber (TDF); the casero, ranchero, and almendrado moles had the highest
TDF among the studied moles. There were also significant differences (p < 0.05) among
the moles in insoluble dietary fiber content (IDF), with casero, ranchero, and almendrado
moles containing a higher percentage than verde and pipian moles. Regarding soluble
dietary fiber (SDF), the highest content was observed in the ranchero, and the lowest in the
verde mole. Significant differences (p < 0.05) were also observed between the samples in
the case of SDF (Table 4).

2.4. Determination of Total Starch

Significant differences were also observed between the moles regarding the total starch
content, with the highest content in the casero (3.01%) and the lowest in the pipian (0.78%)
(Table 4).



Molecules 2022, 27, 966 4 of 13

Table 4. The total soluble and insoluble dietary fiber content of five varieties of mole from the State
of Hidalgo.

Mole Type TDF% IDF% SDF% Total Starch%

V 4.60 ± 0.09 a 4.30 ± 0.01 a 0.29 ± 0.01 a 1.08 ± 0.02 b

R 12.20 ± 0.08 c 10.40 ± 0.01 c 1.89 ± 0.08 c 2.42 ± 0.05 c

C 11.50 ± 0.02 c 10.20 ± 0.02 c 1.28 ± 0.04 b 3.01 ± 0.01 d

A 11.80 ± 0.02 c 10.03 ± 0.02 c 1.46 ± 0.01 b 2.36 ± 0.04 c

P 9.80 ± 0.01 b 8.30 ± 0.01 b 1.53 ± 0.02 b 0.78 ± 0.01 a

TDF = total dietary fiber, IDF = insoluble dietary fiber, SDF = soluble dietary fiber. The superscripts a, b, c, and d
show significant differences (p < 0.05) among the moles using the Tukey mean comparison technique; verde (V),
ranchero (R), casero (C), almendrado (A) and pipian (P).

2.5. Mineral Content

Table 5 shows significant differences (p < 0.05) with regard to the magnesium content,
with the highest content found in the pipian mole and the lowest in the verde mole.
Magnesium is an element of vital importance in the human diet with a daily requirement
of 40 mg in the case of infants and up to 335 mg for pregnant or lactating mothers; it was
found in concentrations ranging from 66.89 to 127.72 mg per 100 g of mole (Table 5).

Table 5. Mineral content in five mole types from Hidalgo state, Mexico.

Mole Type
Magnesium Sodium Potassium Calcium

Mg Na K Ca

mg/100 g mg/100 g mg/100 g mg/100 g
V 66.89 ± 2.36 a 315.16 ± 36.50 c 552.85 ± 3.21 a 110.91 ± 0.21 a

R 91.25 ± 1.78 b 127.93 ± 10.47 a 999.83 ± 10.08 b 96.47 ± 2.74 b

C 105.31 ± 0.94 c 115.77 ± 3.09 a 1279.58 ± 4.38 d 119.91 ± 5.03 a

A 111.33 ± 0.94 c 181.93 ± 4.66 b 987.79 ± 18.63 b 96.06 ± 1.37 b

P 127.72 ± 3.22 d 125.22 ± 4.96 a 1420.5 ± 40.40 c 115.08 ± 6.24 a

The superscripts a, b, c, and d show significant differences (p < 0.05) among the moles using the Tukey mean
comparison technique; verde (V), ranchero (R), casero (C), almendrado (A) and pipian (P).

No significant differences (p < 0.05) were found in the calcium content of the verde,
pipian, and casero varieties and between the ranchero and almendrado varieties. The
recommended daily intake (RDI) is 450 to 1200 mg of calcium depending on the physio-
logical state [9]. The concentration of calcium ranged from 96.06 to 119.91 mg per 100 g
of the mixture. Regarding the potassium content, significant differences (p < 0.05) were
found between samples, with the highest content found in pipian and the lowest content
in the mole verde with a concentration ranging from 552 to 1420 mg per 100 g of the mix,
representing a significant contribution if one considers a recommended daily intake of
800 mg in infants to 2700 mg in adults [9]. The sodium content is directly influenced by
salt (NaCl), significant differences (p < 0.05) were apparent in the sodium content, with the
verde having the highest range and the casero mole having the lowest. Mole contains a
sodium contribution of 115.77 to 315.16 mg for each 100 g. The RDI is 115 mg in infants
and 3300 mg in adults. The World Health Organization advises that salt intake should not
exceed 6 g per day in adults [9]. Therefore, the minimum requirement is 1 g of salt per
day (400 mg of sodium). The big problem is that processed foods provide 77% of the RDI
for sodium [9]. The results could be significant considering that only one formulation has
added salt. The remaining four have sodium from other sources, which can justify their
low sodium content and add nutritional value.

These values are for the preserved product; the consumer will have to prepare it for
consumption by adding between 60% and 75% water to the preparation, which dilutes the
concentrations of the original mixture.
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2.6. Phenolic Content and Antioxidant Activity
2.6.1. Total Phenolic Content

Table 6 shows the total phenolic contents of five varieties of mole; significant differ-
ences (p < 0.05) were found among the varieties. It was observed that the verde, which
contains fresh jalapeño chili, had a lower content of phenols than the ranchero, casero,
almendrado, and pipian moles, which contain mixtures of red dried chilies and have a
higher range (Table 6). Ozgur et al. [10] report a phenol content for Capsicum annuum L.
chili peppers of 55.447 ± 0.18 mg GAE/g dry weight for green chili and 89.82 ± 4.7218 mg
GAE/g for red chili. They show that the content of phenolic compounds is higher in red
chili peppers. These results are similar to our investigation, in which the moles with red
chili peppers had a higher phenol content. Yazdizadeh Shotorbani et al. [11] also report
higher phenolic content in sweet varieties (Capsicum annuum L.) of red chili than in green
ones. Ozgur et al. [10] observed the highest range of phenolic compounds in fresh red
chili peppers, reporting 130.79 ± 2.141 mg GAE/g dry weight. These results suggest that
the higher content of phenols in the red moles is because the formulations of these moles
contain red chili peppers.

Table 6. Total phenolic content in five mole types from Hidalgo state, Mexico.

Mole Type mg GAE/100 g (dw)

V 36.13 ± 0.27 a

R 49.13 ± 0.48 b

C 50.23 ± 0.53 b

A 79.49 ± 0.35 d

P 56.03 ± 0.40 c

The superscripts a, b, c, and d show significant differences (p < 0.05) among the moles using the Tukey mean
comparison test. GAE—gallic acid equivalent; verde (V), ranchero (R), casero (C), almendrado (A) and pipian (P).

The content of phenolic compounds found in the mole is within the ranges reported
for Mexican chili peppers: 200–7820 µg of GAE/g [12,13]. In the analyzed samples, it was
observed that the phenol content of the moles was lower than that reported by the authors
in the pericarp of fresh chili pepper and subjected to hot air drying at different temperatures,
but it must be taken into account that the mole is a complex mixture of ingredients, in which
fat is added and the mixture is subjected to high heat treatment for long periods—more than
80 ◦C for three to four hours—conditions that can affect the content of phenolic compounds.
The results regarding the total phenolic content are contradictory. Some authors report an
increase in the content of phenolic compounds, while others report a decrease.

Lima et al. [14] observed a great loss of phenolic content in edible vegetables due to
heat treatment. Roy et al. [15] found that lowering the temperature of treatment preserved
80–100% of the phenolic compounds in some vegetables. López et al. [16] reported that
an increase in the drying temperature can significantly affect the total phenolic content
in blueberries compared to that in the fresh sample. Heat treatments for drying with
prolonged times at low temperatures can reduce the antioxidant effect. On the other
hand, short drying times at high temperatures (90 ◦C) show a significant increase in the
concentration of polyphenols, probably due to the generation of different antioxidant
compounds with a variable degree of activity. Chen et al. [17] observed that when citrus
peels were dried at 50 and 60 ◦C, the phenolic contents were lower than those of fresh peels;
however, the phenolic content increased gradually as the drying temperature increased.
The phenol content increased about twofold. Que et al. [18] indicated that the formation
of phenolic compounds in pumpkin (Cucurbita moschata var. Duch.) occurs during drying
at 70 ◦C and mentioned that the construction of phenolic compounds could be due to
non-enzymatic interconversion between phenolic molecules.

De Jesús Ornelas-Paz et al. [4] reported that cooking operations (boiling and roasting)
reduced the total phenolic content significantly (16–26.9%) in yellow, red, and green bell
peppers. Likewise, Lee et al. and Chuah et al. [13,19] observed losses of phenolic com-
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pounds from non-industrial domestic cooking due to heat treatment in peppers (green,
yellow, and red), squash, leeks, and other vegetables.

2.6.2. Antioxidant Activity

Table 7 shows the inhibition percentages of ABTS and DPPH of the five varieties.
A lower percentage of inhibition was found in the green mole (25.60%) and a higher
percentage in the red ones; with values ranging from 35.30% to 41.47% inhibition of
the ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) radical. An inhibition
percentage of the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical of 10.23% was observed
in case of the green mole sauce and values in the range from 19.69% to 24.32% inhibition
activity were displayed by red moles (Table 7). The ABTS radical inhibition values showed
significant differences (p < 0.05). A significant difference (p < 0.05) was observed among
the verde, casero, and pipian samples, while there was no significant difference (p > 0.05)
found between the almond and ranch (almendrado and ranchero) varieties with respect
to DPPH radical inhibition values. The ABTS and DPPH values were different because
these are different methods based on different mechanisms and they do not measure the
same radical. In addition, the compounds interact with each other, inducing synergistic or
inhibitory effects [20,21].

Table 7. Percentages of inhibition of five varieties of moles of the State of Hidalgo by the method of
ABTS and DPPH.

Mole Type ABTS% DPPH%

V 25.60 ± 0.67 a 10.23 ± 0.22 a

R 37.48 ± 0.48 b 24.32 ± 0.45 d

C 41.47 ± 0.86 d 19.69 ± 0.58 b

A 39.95 ± 0.44 c 23.58 ± 0.075 d

P 35.30 ± 0.92 b 21.51 ± 0.42 c

The superscripts a, b, c, and d show significant differences (p < 0.05) among the moles using the Tukey mean com-
parison test. ABTS: (2,2′-azino-bis(3- ethylbenzothiazoline-6-sulfonic acid), DPPH: (2,2-diphenyl-1-picrylhydrazyl).
verde (V), ranchero (R), casero (C), almendrado (A) and pipian (P).

The phenolic compounds found in the moles may be contributing to their antioxidant
capacity, and the presence of high levels of phenols in the fruit of Capsicum annuum L. has
been reported by some authors. Materska and Perucka [22] found high antioxidant activity
of isolated fractions of flavonoids in hot pepper (C. annuum L.). Guil-Guerrero et al. [23]
compared the antioxidant capacity of different bell pepper cultivars (Capsicum annuum
L.) in their extracts of the chili cultivars. Matsufuji et al. [24] conducted a study on the
differences in antioxidant capacity between the different colorations of the pericarp of bell
pepper (C. annuum L.). The finding revealed that the highest radical inhibition occurred
in the pericarp of the red bell pepper (around 90%) and the lowest capacity in the green
one (approximately 10%). Helmja et al. [25] carried out a study in some products of the
Solanaceae family (aubergine, chili, potato, and tomato) and observed an intermediate
antioxidant capacity (50% inhibition of the DPPH radical) in the pungent chili (C. annuum
L.). Ünver et al. [26] carried out study in nine spices and found that the highest antioxidant
capacity measured through the inhibition of the radical DPPH was for C. annuum with a
concentration of 0.103 mg/mL, which represents a 50% inhibition of the radical.

The results expressed in ascorbic acid equivalent milligrams for both methods (DPPH
and ABTS) are shown in Table 8. Although it can be considered that the antioxidant activity
is low in relation to that reported by other researchers in chili paste and in fresh chili pep-
pers in which the temperature and drying time were controlled [21,22]. A high temperature
above 80 ◦C, in the course of processing the mole, can modify the compounds with antioxi-
dant activity and favor the formation of new compounds with variable antioxidant activity.
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Table 8. Antioxidant activity of five types of mole from the State of Hidalgo, by the ABTS and DPPH
method expressed in ascorbic acid equivalents (mg AAE/100 g of dry base sample).

Mole Type ABTS mg AAE/100 g DPPH mg AAE/100 g

V 77.67 ± 0.47 a 87.38 ± 0.82 a

R 92.12 ± 0.94 c 116.32 ± 0.58 d

C 96.97 ± 1.19 d 106.82 ± 1.05 b

A 95.12 ± 0.16 d 114.82 ± 0.55 d

P 89.47 ± 0.88 b 110.56 ± 1.13 c

The superscripts a, b, c, and d show significant differences (p < 0.05) among the moles using the Tukey mean com-
parison test; ABTS: (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), DPPH: (2,2-diphenyl-1-picrylhydrazyl,
AAE: ascorbic acid equivalents. verde (V), ranchero (R), casero (C), almendrado (A) and pipian (P).

The radical scavenging activity of blueberry varieties was investigated by controlling
the drying air temperature. Dehydration at high temperatures (at 80 and 90 ◦C) shows
higher antioxidant activity rather than that at low temperatures (50, 60, and 70 ◦C) [16].
This behavior could be related to the low-temperature drying process, which implies long
times and may cause a decrease in antioxidant activity observed.

Garau et al. [27] found the highest inhibition values of the DPPH radical scavenging
effect in extracts of citrus peels (Citrus sinensis L.) dried at 100 ◦C.

3. Materials and Methods
3.1. Establishment of the Experiment

This research was carried out in the Food Science and Technology laboratories of the
Food Science and Technology Research Center and the Institute of Agricultural Sciences,
which belongs to the Autonomous University of the State of Hidalgo.

Samples of artisanal mole were collected from the State of Hidalgo; they were selected
according to different colorations and formulations: ranchero (R), pipian (P), almendrado
(A), casero (C), and verde (V). Figure 1 shows the physical state of the collected samples.

3.2. Proximal Chemical Analysis

Proximal chemical analysis of the five samples was performed using the official
methods recommended by the AOAC [28]. Protein content was quantified by the Kjeldahl
950.36 method, crude fiber 950.37, ash 930.22, fat 935.38, and humidity 935.36. All tests
were carried out in triplicate.

3.3. Color Determination

The color of the samples was determined in terms of the L *, a *, and b * values by the
colorimeter (MINOLTA CM-508 d, Tokyo, Japan).

For the determination of the color index (CI), the following formula was used:

CI
a × 1000

L × b
(1)

They were interpreted as follows:

(a) CI, negative (−40 to −20), its value is related to the colors ranging from blue-violet to
deep green.

(b) CI, negative (−20 to −2), its value is related to the colors that go from deep green to
yellowish green.

(c) CI, between (−2 to +2), its value represents greenish yellow.
(d) CI, positive (+2 to +20), is between the colors ranging from pale yellow to deep orange.
(e) CI, positive (+20 to +40), relates to deep orange to deep red colors.
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The color of the samples was determined in terms of the L *, a *, and b * values by the 

colorimeter (MINOLTA CM-508 d, Tokyo, Japan). 
For the determination of the color index (CI), the following formula was used: 

CI∗ = 
a × 1000

L × b
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They were interpreted as follows: 
(a) CI, negative (−40 to −20), its value is related to the colors ranging from blue-violet to 
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(d) CI, positive (+2 to +20), is between the colors ranging from pale yellow to deep 

orange. 
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Figure 1. The physical state of the five mole samples from the State of Hidalgo in Mexico. They were
selected according to different colorations and formulations: casero (C), verde (V), almendrado (A),
pipian (P), and ranchero (R).

3.4. Preparation of Samples for Dietary Fiber, Total Phenols, and Antioxidant Activity

The samples were dried by the oven method, which consisted of weighing 5 to 10 g
of sample in a capsule previously set at a constant weight. The capsule was placed in
the air oven for 2 h at 110 ◦C. After this time; it was transferred to the desiccator, where
it was allowed to cool to room temperature and was weighed for later calculations. To
degrease the samples, 5 g of dry sample was placed in a Büchi-brand Soxhlet extraction
equipment, which consists of the ethereal extract collected in the receiving flasks, and the
defatted residue from the cartridges was placed in the oven to obtain a constant weight by
evaporating the solvent residues and kept in vials for later analysis.

3.5. Determination of Total, Soluble, and Insoluble Dietary Fiber Content

A Fiber Tech System E mod. 1023 Filtration module FOSS TECATOR was used. The
amounts of total, soluble, and insoluble dietary fiber were determined by the gravimet-
ric enzymatic method described in AOAC [28]. The enzymes used were thermostable
α-amylase, amyloglucosidase, and proteases of the Sigma brand. This test was carried
out using three crucibles for fiber to which 0.5 g of celite (Sigma C-8656) suspended in
10 mL of 78% alcohol was added, forming a scattered layer. They were placed in the oven
at 130 ◦C for 12 h till a constant weight was obtained. Samples of 1 g of defatted residue
were weighed in triplicate and transferred to the 500 mL flasks of the kit. Next, 50 mL of
0.05 N phosphate buffer was added at pH 6 (9.65 g of anhydrous NaH2PO4 and 1.4 g of
NaH2PO4.7H2O were weighed, they were dissolved with 700 mL of distilled water, the pH
was adjusted to 6 with 0.325 N HCl or 0.275 N NaOH and was gauged to 1 L).

The flasks were placed for 10 min in a boiling water bath under constant agitation.
Without removing them, 0.1 mL of the thermostable α-amylase enzyme (Sigma A-3306)
was added, and they were stirred for 15 min at the same speed. After agitation, the flasks
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were removed and cooled in a cold water bath to room temperature; the pH was measured
and adjusted to 7.5. The flasks were placed again in the water bath, heating up to 60 ◦C
for 10 min; without removing them, 0.1 mL of protease was added (Sigma p-3910, 25 mg
of dissolved protease in 0.5 mL of phosphate buffer at pH 6), leaving them to incubate
at that temperature for 30 min, keeping them under stirring. After that time, they were
removed from the bath and allowed to cool to room temperature and adjusted to pH 4–4.3.
They were again taken to the water bath for 10 min until they reached a temperature of
60◦, later 0.1 mL of amyloglucosidase (Sigma A-9913) was added. They were incubated at
the mentioned temperature for 30 min with constant shaking. At the end of that time, 95%
ethanol was added while preheating to 60 ◦C, in an approximate ratio of 1

4 (v/v), and they
were left to rest at said temperature for 1 h. The content of each flask was vacuum filtered
in each of the crucibles at a constant weight and with the celite. The residue deposited in
the flasks was washed with three 20 mL portions of 78% ethanol, two doses of 95% ethanol,
and two 10 mL portions of acetone. The crucibles were placed in the oven for 1.5 h at
130 ◦C; the weight was recorded at the end of the incineration. The sample residues from
the crucibles were incinerated for 4 h at 550 ◦C. Two blanks were run similarly to the TDF
procedure but without sample addition.

%TDF =
(Dry residue weight− ash − control weight)

W
× 100 (2)

where w = weight of the sample (dry base).
The percentage of IDF was determined similarly to that of TDF but without the

addition of the volume of 95% alcohol. The calculations were carried out again as per those
used to determine the TDF. The determination of the percentage of SDF was carried out
as follows:

%SDF = %TDF −%IDF (3)

3.6. Determination of Total Starch

The method of Goñi and Carrón [29] was used, based on estimating the starch diges-
tion rate through controlled hydrolysis with pancreatic α-amylase. Previously, protein
hydrolysis with pepsin was carried out under conditions that emulate gastric ones. The
subsequent hydrolysis of digestible starch was monitored by taking aliquots at different
incubation times. The aliquots were then treated with amylo-glucosidase to achieve the to-
tal hydrolysis of the products resulting from the action of α-amylase (maltose, maltotriose,
limit dextrins, etc.), determining the constituent glucose by an enzymatic-colorimetric
method (GOD-PAP). The absorbance at 500 nm was read against reagent blanks; a stan-
dard curve with known amounts of glucose was plotted, and a linear regression analysis
was obtained.

3.7. Mineral Content Quantification

Following the sample preparation method of Ferguson et al. [30] for mineral analysis,
the samples were calcined to ash at 450 ◦C in a muffle for 12 h. After this time and when the
samples were cooled, a few drops of concentrated analytical-grade nitric acid were added,
and then it was returned to the muffle to recalcinate for 15–16 h. The ashes obtained were
dissolved in 5 mL of analytical-grade 6N HCl and constituted to 25 mL using deionized
distilled water. The Ca, Mg, Na, and K contents of triplicated solutions were determined
by atomic absorption spectrophotometry (AAnalyst 400 AA).

3.8. Total Phenol Content and Antioxidant Activity
3.8.1. Determination of Total Phenols by the Folin–Ciocalteu Method

The Folin–Ciocalteu assay has been used for many years to measure the content of total
phenolic compounds in natural products. However, the basic mechanism of the method is
a redox reaction, so it can be considered as another method for measuring total antioxidant
activity. The method currently used is a modification made by Singleton and Rossi [31]. The
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oxidation of the phenols present in the sample causes the appearance of a blue coloration
that has an absorption maximum at 760 nm and is quantified by spectrophotometry based
on a standard gallic acid line. For the execution of this method, the Folin–Ciocalteu
reagent was used at a concentration of 1 N; this reagent was protected from light and was
placed under refrigeration until use. A 20% sodium carbonate (Na2CO3) solution was also
prepared. The samples were prepared by placing 100 µL of the extract in glass tubes; to this,
7.9 mL of water was added and subsequently 500 µL of the Folin–Ciocalteu reagent. They
were mixed in a vortex for 15 s, and then 1500 µL of the solution of 20% sodium carbonate
was added and vortexed again for 15 s. It was allowed to stand for 120 min, and finally, it
was read in a spectrophotometer (AAnalyst 400 AA) at 760 nm. Since the results had to be
expressed in gallic acid equivalents, it was necessary to produce the respective calibration
curve, where a gallic acid stock solution was prepared (20 µg/mL) previously. It was done
in the dark to avoid oxidation.

3.8.2. Antioxidant Activity
Determination of Antioxidant Capacity by Free Radical Blocking (ABTS)

The antioxidant activity was determined using the ABTS methodology developed by
Re et al. [32]. The ABTS reagent was dissolved in water at a concentration of 7 mM. The
ABTS radical cation was produced by reacting the ABTS stock solution with potassium
persulfate (0.45 mM), and the mixture was stored at room temperature in the dark for
16–24 h before use. Subsequently, a small amount was diluted with ethanol until reaching
an initial absorbance of 0.7 ± 0.20 at 734 nm (initial Abs). Briefly, 100 µL of sample in vials
and 1000 µL of the reagent, diluted and stabilized at 0.7 ± 0.20 nm, were added, mixing for
30 s and immediately measuring the absorbance, and after 6 min (final Abs). The percent
inhibition was calculated following Equation (4). According to the calibration curve, the
results were expressed as mg of ascorbic acid per mg of ascorbic acid, with concentrations
from 0 to 200 µg/mL, and their respective inhibition percentages (r2 = 0.990). The blanks
were methanol and acetone, respectively, for the extracts of the samples. Likewise, autozero
was performed with an empty cell to correct the values.

% Inhibition o f ABTS =
(Abs control − Abs sample)

Abs control
× 100 (4)

Determination of Antioxidant Activity by DPPH

The antioxidant activity of the samples was determined according to method adopted
by Brand-Williams et al. [33], modifying some amounts, and is described below.

To prepare the 0.2 Mm DPPH solution, 7.8 mg of DPPH was dissolved in 100 mL of
80% ethanol in the dark. The preparation of the samples was done in glass tubes; 1000 µL
of the 0.2 Mm DPPH solution was placed, adding 250 µL of the extract (sample), then
the initial absorbance readings were taken immediately and then remained at rest and in
the dark for 120 min. The readings were carried out at 517 nm in the spectrophotometer
(AAnalyst 400 AA). The blank was 80% ethanol. The results were expressed as a percentage
of inhibition of the radical DPPH, and the samples were analyzed in triplicate.

% Inhibition o f DPPH radical =
Abs control − Abs sample

Abs control
× 100 (5)

where:
Abs control: is the absorbance of the blank, and
Abs test: is the absorbance of the sample.
The blanks were methanol and acetone, respectively, for the sample extracts.

3.9. Analysis of Results

One-way analysis of variance was applied and Tukey’s test was used to determine
differences between means of the analyzed samples. All data were analyzed using the



Molecules 2022, 27, 966 11 of 13

NCSS 2000, version 5, software (Wireframe Graphics, Kaysville, UT, USA). All experiments
were performed in triplicate. The results were expressed as mean values ± standard
deviation (SD).

4. Conclusions

Mole is a high-protein and high-fat food by nature of its formulation. Regarding the
content of phenolic compounds in the moles, the results suggest that the higher range
of phenols in the red moles is because these moles contain red chili peppers. Significant
differences (p < 0.05) were found among the samples. It was observed that the verde mole,
which contains fresh jalapeño chili, has a lower content of phenols than the other ranchero,
casero, almendrado, and pipian moles, which contain mixtures of red dried chilies. The
ABTS radical inhibition values showed significant differences (p < 0.05).

In Mexico and the United States, mole has become a popular and frequently available
prepared culinary product. The outcome of this study could establish the basis for its future
clinical utilization in modern food science. In addition, most of the traditional uses of mole
sauce still need to be analyzed using more modern methods and further clinical trials. A few
more aspects such as pharmacological, antiviral, anticancer, anti-inflammatory properties,
etc., should be determined to study its phytochemical profile and health benefits.

5. Possible Recommendations

Prolonged heat treatment, at a temperature higher than 80 ◦C in the case of the
mole preparation, can modify the compounds with antioxidant activity and promote the
formation of new compounds with variable antioxidant activity. Moreover, the interactions
of the other ingredients of the formulations, such as fat, are unknown, as fat is a complex
mixture (e.g., the interaction of fat with phenolic compounds and their activity based on the
processing method). Therefore, the following research stages could be used: investigation of
the origin of dietary fiber, as well as its interactions with the other ingredients; correlation of
the antioxidant activity of the components individually with the final antioxidant activity of
the mole; evaluation of the interaction of fat with antioxidant compounds; and identification
of the modified compounds with antioxidant activity formed by the interactions between
carbohydrates, fats, sugars, and the application of heat.
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