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Abstract. The microtubule associated system I fibers 
of the basal apparatus of the flagellate green alga 
Spermatozopsis similis are noncontractile and display a 
28-rim periodicity. Paracrystals with similar periodici- 
ties are formed in vitro by SF-assemblin, which is the 
major protein component of system I fibers. We have 
determined the amino acid sequence of SF-assemblin 
and show that it contains two structural domains. The 
NH2-terminal 31 residues form a nonhelical domain 
rich in proline. The rod domain of 253 residues is 
a-helical and seems to form a segmented coiled coil 
with a 29-residue repeat pattern based on four heptads 
followed by a skip residue. The distinct cluster of 
acidic residues at the COOH-terminal end of the mo- 
tifs (periodicity about 4 rim) may be related to tubulin 
binding of SF-assemblin and/or its self assembly. A 

similar structure has been predicted from cDNA clon- 
ing of/~-giardin, a protein of the complex microtubu- 
lar apparatus of the sucking disc in the protozoan 
flagellate Giardia lamblia. Although the rod domains 
of SF-assemblin and B-giardin share only 20% se- 
quence identity, they have exactly the same length and 
display 42 % sequence similarity. These results predict 
that system I fibers and related microtubule associated 
structures arise from molecules able to form a special 
segmented coiled coil which can pack into 2-rim illa- 
ments. Such molecules seem subject to a strong evolu- 
tionary drift in sequence but not in sequence princi- 
ples and length. This conservation of molecular 
architecture may have important implications for 
microtubule binding. 

T 
H~ basal apparatus of flagellate green algae is the 
functional homologue of the centriolar complex of 
animal cells (for review see Wheatley, 1982; Kalnins, 

1992). It contains among other structures the basal bodies, 
usually four sets of attached flagellar root microtubules and 
two additional types of filamentous structures which have 
been called system I and system H fibers (for reviews see 
Melkonian, 1980; Lechtreck and Melkonian, 1991b). Sys- 
tem II fibers consist of 4-8-nm filaments and contain centrin, 
a Ca2÷-binding protein highly homologous to calmodulin 
(Salisbury et al., 1984, 1988; Huang et al., 1988). Centrin 
filaments connect the basal bodies with each other and with 
the nucleus and can also occur within the flagellar transition 
region (for review see Salisbury, 1989). These centrin based 
fibers seem responsible for various motile functions of the 
basal apparatus (Melkonian et al., 1992). In contrast, the 
system I fibers are not contractile. They are associated with 
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the flagellar root microtubules and thus probably form a 
stabilizing element of the basal apparatus. The system I 
fibers consist of layers of fine 2-rim filaments and show a 
complex cross-striation pattern with a 28-nm periodicity 
(Lechtreck and Meikonian, 1991a). Recent electron micro- 
scopical and image reconstruction studies favor a model in 
which system I fibers are built from rod-like molecules, 48 
nm in length, in a staggered arrangement with identical po- 
larities (Patel et al., 1992). 

The flagellate green alga Spermatozopsis similis has been 
used to obtain homogeneous preparations of basal appara- 
tuses. These yield by mechanical disintegration and high salt 
extraction the system I fibers. The major structural protein 
of the microtubule associated fibers has an apparent polypep- 
tide molecular weight of 34,000 and has been called SF- 
assemblin (SF for striated fiber)? SF-assemblin solubilized 
by 2 M urea forms upon dialysis paracrystals with a staining 
pattern resembling that of the original system I fibers 
(Lechtreck and Melkonian, 1991a; Patel et al., 1992). To un- 

1. Abbreviation used in this paper: SF-assemblin, striated flber-assemblin. 

© The Rockefeller University Press, 0021-9525/93/05/837/9 $2.00 
The Journal of Cell Biology, Volume 121, Number 4, May 1993 837-845 837 



derstand this self-assembly process and to gain insight into 
the structure of the system I fiber, we have determined the 
amino acid sequence of SF-assemblin and analyzed its sec- 
ondary structure by circular dichroism spectroscopy. The 
protein is rich in a-helix and can give rise to a segmented 
coiled coil which shows a 29-residue repeat arising from a 
skip residue which is inserted after every four heptads. We 
also relate our results to recent electron microscopical and 
image reconstruction studies on system I fibers (Patel et al., 
1992). 

Materials and Methods 

Purification of SF-Assemblin 
The procedures for culturing of Spermatozopsis similis have been described 
(Lechtreck and Melkonian, 1991a). Cells were concentrated with a tangen- 
tial flow filtration system (Millipore Corp., Bedford, MA) followed by cen- 
trifugation at 600 g (Sorvall, Dupont RC 28S; rotor GS3). Cells were 
washed once in MT buffer (30 mM Hepes, 5 mM EGTA, 15 mM KCI, 0.1 
mM DTT, pH 7) and lysed by addition of an equal volume of MT buffer 
containing 2-3% Triton X-100. The resulting cytoskeletons were harvested 
at 1,500 g (15 rain) and washed several times with MT buffer with decreas- 
ing concentrations of Triton X-100 (1, 0.5, 0.25%) and twice with MT 
buffer. Pellets were stored at -20"C. Isolated cytoskeletons were extracted 
with 2 M NaC1 in MT buffer for 3-5 h at 4"C with agitation, and then cen- 
trifuged at 48,500 g for 30 rain at 4"C. The resulting pellet was extracted 
with MT buffer containing 2.5 M urea (disassembly buffer) for 3-5 h at 4"C 
and centrifuged at 200,000 g for 60 rain at 4"C. The harvested superuatant 
fraction was dialyzed for 8-16 h at 4"C against reassembly buffer (150 mM 
KCI, 10 mM MES, 2 mM EDTA, 0.1-1 mM DTT, pH 6.25). The 
paracrystals formed during this reassembly step were harvested by centrifu- 
gation (48,500 g, 30 rain, 4"C). For further purification, once reconstituted 
paracrystals were dissolved in a small amount of disassembly buffer, cen- 
trifuged, and again dialyzed against reassembly buffer. Twice recycled 
paracrystals (for reviews see Lechtreck and Melkonian, 1991a) were used 
for the protein sequence work. 

Alternative final purification steps of SF-assemblin started with the 
reconstituted paracrystals. These were dissolved in 8 M urea, 20 raM Tris- 
HC1, 1 mM DTT, pH 7.8, and the solution applied to a Mono Q column 
(HR 5/5, Pharmacia-LKB, Uppsala, Sweden) equilibrated with the urea 
buffer. The column was eluted with a linear salt gradient (0-300 mM KC1) 
in the same solvent. Fractions containing SF-assemblin were identified by 
SDS-PAGE. Dialysis against reassembly buffer yielded again paracrystals. 
In some experiments, once reconstituted paracrystals were dissolved in 
8 M urea, 20 mM Tris-HCi, 50 mM KCI, 1 mM DTT, pH 7.8, and SF- 
assemblin chromatographed by gel filtration in the same solvent on a Hiload 
26/60 Superdex 200 prep grade column (Pharmacia-LKB). SF-assemblin 
eluted at a position corresponding to a fully denatured protein of molecular 
weight 30,000 when the column was calibrated with standard proteins in 
the 8-M urea buffer. Fractions containing SF-assemblin were dialyzed 
against reassembly buffer to remove the urea. Paracrystals were harvested 
by centrifugation (48,500 g for 30 rain at 4"C). When desired, the twice 
reconstituted paraerystals were dissolved in 8 M urea and subjected to anion 
exchange chromatography on Mono Q as described. Purity of SF-assemblin 
was monitored by SDS-PAGE. 

Peptide Mapping of SF-Assemblin by 
Limited Proteolysis 
Peptide mapping with endoproteinase GIu-C (Sigma Chemie, Deisen- 
hofen, FRG) followed the procedure of Cleveland et al. (1977) with minor 
modifications. Bands of interest were cut with a razor blade from the gels 
stained with Coomassie brilliant blue. They were washed for 1 h with sev- 
eral changes of distilled water and incubated in SDS sample buffer with or 
without reducing agent (see also below for oxidative cross-linking). Gel 
pieces were put on top of the stacking gel and overlayed with 2.5-20 ng 
of endoproteinase GIu-C in SDS sample buffer. Subsequent electrophoresis 
was interrupted for 10-20 rain once the running front had reached the sepa- 
ration gel, and then continued normally (Cleveland et al., 1977). For NH2- 
terminal sequencing of proteolytic products, the resulting fragments were 
blotted on PVDF membrane. 

Sequence Analysis 
Preliminary experiments on SF-assemblin transferred from SDS-PAGE to 
a PVDF membrane for NH2-terminal sequencing or for digestion with 
trypsin or endoproteinase Asp-N used the procedures of Bauw et al. 
(1989). The peptides released by digestion were subjected to HPLC and the 
profiles screened by sequencing. Gas phase sequencing was on an Applied 
Biosystems sequenator (model A470) and a Knauer model 810. Both instru- 
ments operated with an on-line PTH amino acid analyzer. In addition, SF- 
assemblin present in a gel band was treated with endoproteinase Glu-C, 
yielding two fragments of molecular weights 20000 and 12,000, respec- 
tively (Fig. 1). The fragments were blotted on PVDF and subjected to 
sequencing. 

SF-assemblin was dissolved in 6 M gnanidine-HCl and reduced with 
2-mercaptoethanol. An excess of 4-vinylpyridine was used to alkylate cys- 
teine residues. Alkylated SF-assemblin was recovered by chloroform/meth- 
anol precipitation (Wessel and Flfigge, 1984). Two thirds of the material 
('~70 Izg) were used for CNBr cleavage. Fragments obtained by HPLC were 
characterized by sequencing. Larger fragments and mixtures were subjected 
to proteolytic cleavage. Endoproteinase Asp-N, Lys-C, and Arg-C were 
from Boehringer-Mannheim, FRG. Secondary fragments obtained by 
HPLC were subjected to extensive sequencing. One third of the alkylated 
SF-assemblin (,~35 ~tg) was subjected to digestion with endoproteinase 
Lys-C in 4 M urea followed by HPLC separation and sequencing of interest- 
ing fragments. Fourier analysis of periodicities in the SF-assemblin se- 
quence wasdone as described (Wiche et al., 1991). 

Circular Dichroism 
Measurements were performed with a Jasco 720 spectropolarimeter (Japan 
Spectroscopic Co., Ltd., Tokyo, Japan) using a cuvette of 0.1 cm pathlength. 
SF-assemblin, purified by Mono Q-chromatography in 8 M urea, was dia- 
lyzed against reassembly buffer to remove the urea. Paracrystals were har- 
vested (see above) and dissolved in 50 mM sodium phosphate buffer, pH 
7.8, supplemented with 2 M urea (ultra pure; Life Technologies, Inc., 
Gaithersburg, MD), and 0.2 mM DTT at ,~0.13 mg/ml. Final protein con- 
centrations were obtained by quantitative amino acid analysis. Due to the 
presence of urea data below 200 nm could not be obtained. 

Electron Microscopy 
Paracrystals (4 izl in reassembly buffer) were applied to pioloform-coated 
copper grids and allowed to adhere for about 2 rain. Grids were stained with 
1% uranyl acetate in distilled water for 90 s to 3 rain, and then observed 
with a Philips CMI2 electron microscope. Protofilaments were obtained by 
dissolving the paracrystals in 50 mM sodium phosphate buffer, pH 7.8, con- 
raining 2 M urea. They were mixed with 30% glycerol by volume, sprayed 
on mica, and shadowed with tantalum/tungsten at an angle of 9°C. 

Oxidative Crosslinking of SF-Assemblin 
Paracrystals formed by SF-assemblin were dissolved in MT buffer, 2 or 
4 M in urea, which lacked a reducing agent. After extensive dialysis against 
the same solvents, SDS-PAGE was performed with a sample buffer lacking 
2-mereaptoethanol. In some experiments when samples with or without 
reducing agent were analyzed in parallel on the same gel, samples contain- 
ing reducing agent were treated before electrophoresis with an excess of io- 
doacetamide to alkylate all free sult'hydryl groups. Peptide mapping by 
limited proteolysis with endoproteinase GIu-C of oxidized SF-assemblin 
was performed essentially as described above, except that all solutions 
lacked reducing agents. In some experiments oxidized SF-assemblin or its 
fragments containing the disulfide bond were reduced before SDS-PAGE. 
This treatment with 2-mercaptoethanol was performed on stained gel 
pieces. Due to the acidic pH of the samples, only a partial reduction of the 
disulfide bond is expected. 

Results 

Amino Acid Sequence of SF-Assemblin 
SF-assemblin blotted from SDS-PAGE on to a PVDF mem- 
brane lacked an NH2-terminal blocking group and 21 
residues were obtained by automated sequencing. When a 
gel slice containing SF-assemblin was treated with en- 
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Figure 1. SDS-PAGE of purified SF-assemblin and the two frag- 
ments produced by treatment with endoproteinase Glu-C. Lane 1 
shows the purity of preparations used for protein chemical studies. 
Gel slices of the 34-kD band were treated according to Cleveland 
et al. (1977) with endoproteinase GIu-C and again subjected to 
SDS-PAGE (lane 3 shows a more extensive treatment than lane 2). 
The resulting two fragments of molecular masses 12 kD and 20 kD 
as well as the untreated SF-assemblin were blotted onto PVDF and 
subjected to NH2-terminal sequencing. Since intact SF-assemblin 
and the 12-kD fragment showed the same sequence (PTPSPE- 
ARVASRPFLDSPLPG, see Fig. 2), the 12-kD fragment spans the 
NH2-terminal part of SF-assemblin. Sequencing of the 20-kD frag- 
ment for 35 steps revealed two sequences staggered by two residues 
(SEVKGLQERT . . . and VKGLQERT . . .). The two cleavage 
sites of Glu-C are glutamic acid 105 and glutamic acid 107, respec- 
tively (see text and Fig. 2). The molecular weights of the fragments 
were calculated from their sequences (Fig. 2). Approximate molec- 
ular weights (45, 36, 29, 24, 20, and 14 kD) are indicated on the left. 

doproteinase Glu-C, two fragments of apparent molecular 
weights 20,000 and 12,000 were produced (Fig. 1). Both 
fragments were blotted on PVDF and sequenced. The 
smaller fragment revealed the NH2-terminal sequence of in- 

tact SF-assemblin and therefore covers the NH2-terminal 
part of the molecule. The larger fragment was sequenced for 
35 residues. It showed two related sequences, which were 
Staggered by two residues. The two cleavage sites of Glu-C, 
which led to the COOH-terminal fragment of molecular 
weight 20,000, were later identified as Glu-105 and Glu-107, 
respectively (Fig. 2). Additional information was obtained 
from SF-assemblin treated on a blot either with trypsin or 
endoproteinase Asp-N. Peptides released from the blot were 
subjected to HPLC and the elution profiles screened for pure 
peptides by sequencing. The combined results accounted for 
more than 120 residues and indicated that SF-assemblin 
could be a new type of a-helical protein with coiled coil 
forming ability. Since such proteins are often easy to se- 
quence (see for instance Geisler and Weber, 1982), we ob- 
tained a full sequence without resorting to cDNA cloning. 

A total of 110/zg of SF-assemblin was alkylated under de- 
naturing conditions with 4-vinylpyridine to modify cysteine 
residues. Two thirds of the recovered protein were subjected 
to CNBr cleavage. HPLC provided four pure fragments-1 
(residues 1-66), 2 (residues 67-74), 4 (residues 138-181) and 
6 (residues 252-284), and several mixtures. These arose 
from overlapping fragments and fragments 3 (residues 75- 
137) and 5 (residues 182-251). Direct sequencing and the 
results obtained on secondary products obtained by en- 
doproteinases Asp-N, Lys-C, and Arg-C established the se- 
quences for all CNBr fragments and showed that fragment 
6 (residues 252-284) was the only CNBr fragment lacking 
a COOH-terminal homoserine. Therefore fragment 6 has to 
span the COOH-terminal region of the polypeptide chain. 
Due to the presence of larger fragments, which arose by in- 
complete CNBr cleavage, nearly all information necessary 
for the linear arrangement of the CNBr fragments was ob- 
tained. At this stage the sequence was complete except for 
a longer direct overlap between fragments 4 and 5. Therefore 
the last third of the alkylated preparation of SF-assemblin 
was digested with endoproteinase Lys-C in the presence of 
4 M urea. Peptides separated by HPLC were subjected to se- 
quence analysis. The digest with Lys-C provided the missing 
overlapping fragment and yielded several additional frag- 
ments, which confirmed the proposed sequence. 

SF-Assemblin Has a Segmented Coiled Coil 

The combined results show that SF-assemblin consists of a 
single polypeptide of 284 residues (Fig. 2). Its chemical mo- 

1 
PTPSPEARVASRPFLDSPLPGSPRSGSPTGYI  TATKA I SAGKLEHVAEKFSNFYNE I ELEKQQRRMADAA 

71 
R F Q M L T D S I A K L E K S L E A E I K R R A E S D K Q I Q V H F E S E V K G L Q E R T A L Q L A D L Q A A F K T S V D G L S R T M Q D L  

t 4 t  
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2 1 1  
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2 8 1  

VNNS 2 8 4  

Figure 2. The amino acid se- 
quence of SF-assemblin of the 
flagellate green alga Spermato- 
zopsis similis. The complete 
sequence was obtained from 
CNBr fragments and proteo- 
lytic fragments as described in 
Results. The lines underneath 
the sequence delineate some 
of the fragments used to estab- 
lish the sequence. The poly- 
peptide chain covers 284 resi- 
dues. 
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Figure 3. Secondary structure 
prediction and the domain 
structure along the SF-assem- 
blin polypeptide chain. The 
sequence from Fig. 2 was ana- 
lyzed for the presence of turns, 
a-helices, and/3 sheets using 
the algorithms of Chou and 
Fasman (1974), labeled CF,, or 
the algorithms of Gamier et 
al. (1978), GOR. The former 
are given in the first three lines, 

the latter in the following three lines. Residue numbers are in the bottom line. The top line demarcates with arrows the nonhelical head domain 
at the NH2 terminus (residues 1-31) and the following rod domain (residues 32-284), which is rich in a-helix. For details see text. 

lecular weight of 32,076 is in good agreement with the appar- 
ent value of  34,000 deduced by SDS-PAGE (Lechtreck and 
Melkonian, 1991). It is an acidic protein with a calculated 
isoelectric point of  5.02. The sequence identifies two struc- 
turally distinct domains. The NH2-terminal 31 residues 
form a nonhelical head domain which is rich in turns. It con- 
tains all eight proline residues of  the protein and four times 
the sequence serine-proline (Fig. 2). Some of its eight serine 
plus threonine residues may be target sites for the reported 
phosphorylated isoforms of  SF-assemblin (Lechtreck and 
Melkonian, 1991). Starting with residue 32, the sequence 

characteristics change totally. The algorithms of  Chou and 
Fasman (1974) predict a series of strong a-helices and raise 
the possibility of a short/3 sheet only around residues 100 
and 195 and at the COOH-terminal end. The procedures 
of Gamier et al. (1978) predict a more or less continuous 
a-helix for most of the rod domain. They do not detect/3 ele- 
ments in the middle region, and indicate this type of struc- 
ture only for the COOH-terminal end (Fig. 3). From these 
calculations we assume that most of  the rod domain (residues 
32-284) is a-helical, while the COOH-terminal 10-20 
residues could harbor/3 sheet conformation. Visual inspec- 
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264 VQAVNDYTRALQDGLRIVNNS 284 

l..,:l .. ,l,ll.:l.. 
239 VNTLEDVVSKIQGGLSMVTKH 259 

Figure 4. Sequence alignments 
of SF-assemhlin from a flagel- 
late green alga and/3-giardin 
from a flagellate protozoan. 
The sequence of/3-giardin (Hol- 
berton et al., 1988), given in 
the lower lines, is aligned ver- 
sus the sequence of SF-assem- 
blin given in the upper lines. 
Identical residues are connected 
by a vertical line, one or two 
points indicate homologous 
residues according to the pro- 
gram used (Needleman and 
~ n s c h ,  1970). Note the size 
and sequence variability of the 
NH2-terminal head domains 
and the length conservation of 
the rod domains (253 residues). 
Here the ix-helices (Fig. 2) are 
displayed in the form of con- 
secutive heptads typical for 
coiled coil forming ability- 
(a-g)-where a and d positions 
have a preference for hydro- 
phobic residues. Note the pres- 
ence of a skip residue, marked 
by a star, after four consecutive 
heptads. The resulting 29-resi- 
due repeat pattern continues 
for six repeats with the skip 
residues being primarily E 

(five times for each rod). Past the sixth repeat, the B-giardin structure is thought to show a heptad reversal and to continue with the repeat 
pattern to the COOH terminus (Holberton et al., 1988). To emphasize the structural similarity, we have followed this interpretation although 
the possibility of a short B structure in the last 12-20 residues cannot be excluded (see Fig. 2 and text). Note that both rod domains of 
253 residues lack a proline. Note also that the two rods are conserved in sequence principles and length but show only a low level of sequence 
identity (20%). For further details see text. 
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tion of the long helical sequences reveals a pronounced 
coiled coil forming ability. The presumptive coiled coil 
shows, over most of the rod domain, a 29-residue repeat pat- 
tern which is based on four heptads followed by a skip resi- 
due (Fig. 4). Five of the first six skip residues are glutamic 
acid, while one is glutamine. 

A segmented coiled coil with a 29-residue repeat pattern 
has been discussed for/3-giardin, a member of the group of 
giardin proteins which seem associated with the complex 
microtubular organization of the sucking disc in the pro- 
tozoan flagellate Giardia lamblia (Holberton et al., 1988). 
~giardin is indeed the only homologous protein found when 
the protein data bank is searched with the sequence of SF- 
assemblin. Fig. 4 shows the sequence alignment of both pro- 
teins. ~-giardin has a minute head domain of 6 residues, four 
of which are charged, while SF-assemblin displays a much 
longer nonhelical domain of 31 residues. Although in the 
subsequent rod domains the proteins never display more than 
two identical residues in a row, these domains reveal good 
homology. Although the level of sequence identity is low 
(20%), the level of sequence similarity is much higher (43 %) 
and the two sequences are aligned over the entire length of 
253 residues without a single gap. In both rods, the third and 
fourth heptads of each 29 residue repeat show the dominance 
of hydrophobic residues in the interior a and d positions, 
while the first two heptads of the repeat have a much less per- 
fect hydrophobic pattern. Furthermore, in both rod domains 
there is a preference for the chemical nature of the skip resi- 
due. Five of the first six skip residues are glutamic acid, the 
other is glutamine. 

Beyond the sixth repeat, the ~/-giardin sequence is thought 
to show a reversal in heptads although it continues with more 
than two full repeats to the COOH-terminal end (Holberton 
et al., 1988). We have followed this proposal with the se- 
quence alignment of SF-assemblin (Fig. 4), although alter- 
native ways of heptad arrangements seem to exist in this 
region. In addition, we note that secondary structure predic- 
tion rules raise the possibility of B-sheet at the COOH-termi- 
nal 10-20 residues (see above). Nevertheless, because of the 
more pronounced sequence identity toward the COOH-ter- 
minal ends and the length agreement, we assume that both 
rod domains have a similar folding in the last segment and 
that the rod domains could continue to the COOH-terminal 
ends. 

Fourier analysis of the rod sequence of SF-assemblin sup- 
ports the proposed coiled coil structure based on 29 residue 
repeats formed by four heptads and a skip residue (data not 
shown; see, however, Fig. 5 as a summary). The Fourier 
transform showed a strong peak for the hydrophobic residues 
near 7/2 with the precise peak position located at 29/8. The 
acidic residues showed the fundamental at 1/29 but the third 
and fourth orders were stronger indicating that there is prob- 
ably a repeat near 8-9 residues. Visual examination of the 
sequence of the 29 residue motifs indicates an approximate 
threefold repeat and shows a strong clustering of acidic 
residues near the COOH-terminal end of the motifs. It is 
present in all complete repeats except for the third one. 
These periodicities are obvious from the alignment of the 
consecutive 29-residue repeats given in Fig. 5. Interestingly, 
a periodic clustering of negative charges at the end of the mo- 
tif is found also, but less pronounced, in/~-giardin (see also 
Holberton et al., 1988). 
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Figure 5. Significant periodicities in the rod domain of SF- 
assemblin. The sequence of the rod domain (residues 32-284 from 
Fig. 4) is written as consecutive 29 residue segments. The skip 
residues in the last column are marked by a star. The number of 
acidic (D and E), basic (K, R, and H), and hydrophobic (.4, V, M, 
L L, F, and Y) residues for each column is recorded. Absence of 
such residues is indicated by dots. The heptad positions in the bot- 
tom line refer to the first six segments (see Fig. 4 and text). The 
sequence repeats every 29 residues and there is a distinct clustering 
of acidic residues near the COOH terminus of the 29 residue 
motifs. 

Molecular Characterization of SF-Assemblin 

Due to the limited amount of pure SF-assemblin, we have 
concentrated on two major predictions made by the sequence 
interpretations. Proteins forming coiled coils renature easily 
after they have been denatured in 8 M urea (see, for instance, 
Gessler et al., 1982; Hatzfeld and Weber, 1990; Steinert and 
Roop, 1988). Therefore, paracrystals were dissolved in 8 M 
urea and SF-assemblin was purified in this solvent by ion ex- 
change chromatography on Mono Q. Dialysis against reas- 
sembly buffer removed the urea and EM documented the ex- 
tensive formation of paracrystals with the striation pattern of 
the original fibers (Fig. 6 A). Solubilization of the para- 
crystals in 50 mM sodium phosphate buffer, pH 7.8, contain- 
ing 2 M urea resulted in the release of individual protofila- 
ments (Fig. 6 B). These can have a considerable length 
corresponding to 50 or more 28-nm repeat units. Their aver- 
age thickness is ,x,4 nm including the metal deposit. They 
often appear to be regularly beaded with the repeat unit sim- 
ilar or most likely identical to the repeat length of 28 nm 
found in the crystals (see also Patel et al., 1992). The spheri- 
cal beads have a diameter which is ~l.5-fold thicker than the 
diameter of the connecting parts. Similar images are seen 
when SF-assemblin is dialyzed against 20 mM Tris-HCl, pH 
8.8, in the presence of 1 mM EDTA, and 0.1 mM 2-mercapto- 
ethanol. 

Purification of SF-assemblin by Mono Q chromatography 
also allowed a spectroscopic analysis. The paracrystals 
formed in reassembly buffer were harvested and solubilized 
in 2 M urea. Circular dichroism measurements revealed a 
high degree of helicity (Fig. 7). Using the approximation 
method of Greenfield and Fasman (1969) at 208 rim, we cal- 
culate an or-helix content of 76%. Thus at least 216 of the 
284 residues of SF-assemblin retain a-helix conformation in 
2 M urea. Therefore the postulated rod domain (residues 32- 
284; Fig. 4) has an a-helix content of at least 85%. This 
value is probably a lower estimate since 2 M urea had to be 
used to dissolve the paracrystals. 

The sole cysteine of SF-assemblin (residue 169; Fig. 2) oc- 
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Figure 7. Circular dichroism of SF-assemblin. Measurements were 
made in 2 M urea buffer (see Materials and Methods). The presence 
of urea, necessary to solubilize the protein, prevented measure- 
ments below 200 nm. [0] is the mean residue ellipticity (deg x 
cm 2 x decimole-t). Note the typical a-helical spectrum. 

Figure 6. Paracrystal formation by renatured SF-assemblin (A) and 
the appearance ofprotofilaments (B). SF-assemblin purified in 8 M 
urea by anion exchange chromatography was dialyzed against reas- 
sembly buffer to remove the urea. An aliquot of the resulting 
paracrystals was analyzed by negative staining with uranyl acetate 
(A). Paracrystals dialyzed against 2 M urea in 50 mM sodium phos- 
phate buffer, pH 7.8, provide protofilaments which are shown as ro- 
tary shadowed structures (B). Such filaments often reveal a regular 
beading with a repeat length similar to that seen in the paracrystals. 
Both micrographs are at the same magnification. Bar, 0.25/~m. 

cupies in the proposed u-helix an interior (d) heptad position 
(Fig. 4). Cysteines present in such positions of the double 
stranded coiled coils of tropomyosin or recombinantly de- 
signed keratins 8 plus 18 yield upon air oxidation a covalent 
dimer due to the formation of the disulfide between the paral- 
lel and in register arranged or-helices (Lehrer, 1975; Stewart, 
1975; Hatzfeld and Weber, 1990). Therefore fibers were 
solubilized in 2 or 4 M urea. These are conditions which 
generally do not lead to denaturation of coiled coils, and par- 

allel gel filtration experiments showed that SF-assemblin still 
forms higher oligomers in these solvents (our unpublished 
results). Subsequent dialysis against the same solvents lack- 
ing a reducing agent lead to a 60-80% conversion of SF- 
assemblin into a component with an apparent molecular 
weight of 96,000 when analyzed by SDS-PAGE under non- 
reducing conditions (Fig. 8). That this derivative is indeed 
a dimer with an aberrant electrophoretic mobility rather than 
a trimer rests on the presence of a single cysteine residue per 
polypeptide (Fig. 2) and on the following experiments (Fig. 
8). Treatment of the 96,000-molecular wt band with en- 
doproteinase GIu-C yielded in subsequent SDS-PAGE under 
nonreducing conditions three fragments with apparent mo- 
lecular weights of 12,000, 45,000, and 75,000. These were 
identified by NH2-terminal sequencing and SDS-PAGE un- 
der reducing conditions. The 12,000--molecular wt compo- 
nent is the monomeric NH~-terminal region of SF-assem- 
blin (see also Fig. 1) and its molecular weight fits the value 
calculated from the sequence (Fig. 2). The 45,000-molecu- 
lar wt component is the dimer of the COOH-terminal frag- 
ment (positions 106 and 108-284) in line with the location 
of the single cysteine at position 169. The component of mo- 
lecular weight 75,000 arises because of incomplete GIu-C di- 
gestion. It contains one intact chain of SF-assemblin linked 
via the disulfide to the COOH-terminal region of a second 
chain which lacks the NH2-terminal region. Thus the re- 
suits show that undenatured SF-assemblin readily forms a 
disulfide-containing dimer, which has an aberrantly low 
electrophoretic mobility (for similar abnormal behavior 
of oxidized proteins in SDS-PAGE see also Bretscher and 
Weber, 1980; Geisler and Weber, 1982; Quinlan and Franke, 
1982). Whether this dimer reflects the coiled coil or arises 
by an inter coiled coil disulfide bond in a higher oligomer 
remains to be seen. 

The Journal of Cell Biology, Volume 121, 1993 842 



Discussion 

The striated microtubule associated fibers (system I fibers) 
in the basal apparatus of  Spermatozopsis similis, a flagellate 
green alga, consist of several layers of 2-nm filaments which 
arise from a single protein. SF-assemblin originally solubi- 
lized by 2 M urea forms paracrystals with the pronounced 
28 nm periodicity typical for system I fibers (Lechtreck and 
Melkonian, 1991; Patel et al., 1992) and the same structures 
are obtained when SF-assemblin purified in 8 M urea on 
Mono Q is dialyzed against reassembly buffer (Fig. 6). Be- 
cause of this self-assembly process, we expected the se- 
quence of SF-assemblin to provide some insights into the 
structural principles involved in the organization of the stri- 
ated fibers. The complete amino acid sequence, which was 
obtained on ~,,100 t~g of protein, documents a single poly- 
peptide chain of 284 residues corresponding to a molecular 
weight of 32,076 (Fig. 2). Thus the four isoforms observed 
in two-dimensional gels (Lechtreck and Melkonian, 1991) 
probably arise by differential and substoichiometric phos- 
phorylation of certain sites. 

The sequence of SF-assemblin allows unexpectedly clear 
structural predictions. It identifies a short nonhelical head 
domain formed by the NHz-terminal 31 residues, which is 
rich in proline (25 %) and hydroxyamino acids (25 %). Some 
of these serines and threonines may serve as targets of  in vivo 
phosphorylation. The following rod domain of 253 residues 
is highly a-helical by secondary structure prediction rules 
(Fig. 3). Circular dichroism spectroscopy measured in 2 M 
urea on solubilized protofilaments confirms this prediction 
(Fig. 7). The pronounced coiled coil forming ability of the 
rod domain is based on a segmented coiled coil built from 
29 residue repeats. The repeat arises from four heptads fol- 
lowed by a skip residue (Fig. 4). Exactly this type of struc- 
ture has been predicted from cDNA cloning for/3-giardin of 

Figure 8. Formation of the disulfide stabilized dimer of SF- 
assemblin and its characterization. (A) Schematic drawing of SF- 
assemblin (lane 3), its disulfide stabilized dimer (lane 5) and the 
fragments resulting by treatment with endoproteinase GIu-C (lanes 
4, 6, and 7), or reduction with 2-mercaptoethanol (lanes 8-10). 
The NH2-terminal head domain of SF-assemblin is indicated by a 
circle, the position of the single cysteine (residue 169) is marked 
by SH or S-S, indicating the monomer or dimer stage, respectively. 
GIu-C treatment is marked by d. and reduction of the disulfide is 
given by r. Lane numbers correspond to the lanes of the SDS-PAGE 
given in B. (B) Paracrystals of SF-assemblin were dissolved in MT 
buffer containing 2 M urea and no reducing agent. The protein was 
allowed to oxidize (see Materials and Methods) before SDS-PAGE 
with (lane 1 ) and without (lane 2) reducing agent. The dimer has 

an aberrantly low mobility corresponding to a molecular mass of 
96 kD. Purified SF-assemblin and the results of a GIu-C treatment 
are shown under reducing conditions in lanes 3 and 4. GIu-C treat- 
ment of the SF-assemblin disulfide (lane 5) yields under nonreduc- 
ing conditions fragments of 75, 45, and 12 kD in addition to the 
residual dimer (lane 6). NH2-terminal sequencing identified the 
12-kD band as the NH2-terminal fragment of SF-assemblin also 
observed when reduced SF-assemblin is treated with GIu-C (com- 
pare lane 4). The molecular mass of the 12-kD band fits the value 
calculated from its sequence. The 45-kD band corresponds by its 
NH2-terminal sequence to the dimer of the COOH-terminal frag- 
ment starting at residues 106 and 108, respectively (see also Figs. 
1 and 2). Its reduction leads to the expected 20-kD fragment (lane 
9). By the same criteria the 75-kD band of lane 6 is the disulfide 
between an intact polypeptide and a polypeptide lacking the NH2- 
terminal 12 kD region. Redigestion of the band with GIu-C yields 
45 and 12-kD bands (lane 7). Reduction of the band provides par- 
tial conversion into the intact monomeric SF-assemblin at 34 kD 
and the monomeric 20-kD fragment (lane 8). Lanes 9 and 10 show 
the incomplete reduction of the 45-kD band and the SF-assemblin 
dimer, respectively. Molecular mass markers are indicated on the 
left. Arrows on the right mark the position of SF-assemblin and its 
dimer. Weak bands are indicated by a dot at the right. Note that all 
Glu-C treatments and all reductions are incomplete. The latter 
point is due to the acidic pH used (see text). The results support 
the existence of a dimer which has an unusually low electrophoretic 
mobility. 
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the protozoan Giardia lamblia (Holberton et al., 1988) and 
fl-giardin is the only protein in the data bank obviously 
related to assemblin. The rod domains of SF-assemblin and 
fl-giardin share 43% sequence similarity but only 20% se- 
quence identity. In spite of a lack of consensus sequences and 
the low level of sequence identity, we note a strong conserva- 
tion of sequence principles for both rods. They are aligned 
without the need to introduce a single gap and have identical 
lengths (253 residues). They can be described as segmented 
coiled coils built from 29 consecutive residue repeats, and 
show a strong preference for the nature of the skip residue. 
In the first six repeats, the skip residue is five times E and 
once Q. In the following two repeats the skip residue can also 
be hydrophobic. Finally, we note that the last repeat, which 
is incomplete, shows low a-helical potential. Nevertheless, 
over this region the rods are well related in sequence, so the 
same conformation can be assumed for both proteins (Figs. 
3 and 4). 

A similar structure for proteins forming a microtubule as- 
sociated organization of 2-nm filaments in a protozoan and 
an alga indicates that related molecules can also be expected 
from higher eukaryotes. In this connection the protozoan 
molecule still poses some problems in interpretation. 
Giardia lamblia reveals an unexpected complexity of the fam- 
ily of giardins in two-dimensional gels (Peattie et al., 1989) 
and at least two additional giardins have been described by 
cDNA sequences. They differ in structural principles from 
the/$-giardin sequence (Peattie et al., 1989; Aggarwal and 
Nash, 1989). This heterogeneity may be related to the high 
complexity of the microtubular dominated sucking disc of 
the protozoan (Holberton and Ward, 1981). Such problems 
of structural interpretation do not arise for the flagellate 
green alga. Here the well documented system I fibers of the 
basal apparatus can be isolated and convincingly reassem- 
bled from SF-assemblin (Lechtreck and Melkonian, 1991; 
Patel et al., 1992; and Fig. 6 A), which is now characterized 
as a single protein species. Since the basal apparatus of the 
alga is the structural homologue of the centriolar apparatus 
of mammalian cells (for reviews see Wheatley, 1982; Kal- 
nins, 1992), the architectural knowledge developed on the 
basal apparatus can most likely be extended to higher eu- 
karyotes. Thus we expect that proteins related to SF-assem- 
blin and/$-giardin may be constituents of flagellar root fibers 
(for example, kinetodesmal fibers of ciliates; Sperling et al., 
1991) in other organisms. 

Search of the sequence of the SF-assemblin rod domain for 
internal periodicities clearly shows that the sequence repeats 
every 29 residues and that there is a very distinct clustering 
of acidic residues near the COOH terminus of the 29 residue 
motif (Fig. 5). This finding fits the observation that the 
microtubule periodicity of 4.2 nm matches 28 residue 
repeats in coiled coil molecules (McLachlan and Stewart, 
1982), and that such a match may be potentially important 
for the interactions between system I fibers and microtu- 
bules. Alternatively, the periodic acidic clusters may also 
somehow contribute to the self-assembly process of SF- 
assemblin into the system I fibers. 

The molecular properties of SF-assemblin so far estab- 
lished offer also a partial answer about the structure of the 
striated microtubule associated fibers. A detailed EM and 
image reconstruction study of system I fibers arrived at an 
overlap-gap model in which rodlike molecules, 48 nm in 
length, have a staggered arrangement and identical polari- 
ties. The unit particle of 48 nm is thought to be a single dou- 

ble stranded coiled coil (Patel et al., 1992). While our results 
support the coiled coil nature of SF-assemblin and document 
a 29-residue repeat pattern, they raise a question concerning 
the molecular identity of the 48-nm particle. In contrast to 
the assumption of Patel et al. (1992) it cannot reflect solely 
a single coiled coil. Because of the nonhelical head domain 
with its eight proline residues, the maximum length of the 
coiled coil cannot exceed the 253 residues of the entire rod 
domain and thus a length of'x, 37 nm. A 48-nm particle could 
arise, however, by additional length contributions from the 
head domain and the COOH-terminal end of the rod being 
possibly in a nonhelical conformation (see Fig. 3). Alterna- 
tively, a 48-nm particle could reflect the presence of two 
coiled coils in a staggered arrangement rather than a single 
coiled coil. This type of structure is found, for instance, as 
the tetrameric building block of intermediate filaments 
(Stewart et al., 1989; Potschka et al., 1990). A systematic 
study is now necessary to define those depolymerization 
conditions, which provide a homogenous population of SF- 
assemblin molecules suitable for determining the oligomeric 
state and the molecular length by hydrodynamic parameters 
and EM. Such conditions should also allow a decision as to 
whether the oxidative crosslink in SF-assemblin (Fig. 8) 
arises from a double stranded coiled coil within register- 
arranged a-helices or from a higher oligomeric state. 

EM of paracrystals of SF-assemblin solubilized by 2 M 
urea reveals long thin filaments. They often display a regular 
beading, which seems very similar to the repeat length ob- 
served in the crystals (Fig. 6). If these filaments represent 
the protofilaments previously identified in the crystals (Patel 
et al., 1992) their appearance argues against the possibility 
that consecutive molecules are separated by a gap. Instead 
it seems conceivable that the dark bands in the crystal repre- 
sent areas of the molecules which have a different affinity for 
the stain, as suggested by Patel et al. (1992) as an alternative 
possibility. The repeat length of 28 nm in the protofilaments 
and in the crystals is too small to be consistent with a single 
extended coiled coil (•37 nm) and thus may result from a 
staggering of neighboring coiled coils as discussed above. In 
such a case, the protofilaments obtained in 2 M urea could 
be built from at least two rows of molecules. 

The extensive morphological literature on ultrathin fila- 
ments present in various cell types and structures sometimes 
assumes that because of the small diameter, such filaments 
are related structures. This is, however, often not the case 
(see also Roberts, 1987). For instance, the ultrathin titin fila- 
ments of the myofibril are built by a single gigantic molecule 
which connects the Z and M lines. Titin arises from 100- 
residue repeats of the immunoglobulin C2-type domains and 
the fibronectin type llI domains, which are entirely built as 

sheet (Labeit et al., 1990; Fiirst et al., 1988; Nave et al., 
1989). In contrast, the 2-nm filaments of the striated 
microtubule associated fiber arise from a small molecule 
with an extended a-helix able to form a special coiled coil. 
Thus the thin titin filaments and the 2-nm filaments arise 
from two entirely distinct molecules which share no se- 
quence relation. Even among coiled coil forming molecules 
a clear distinction can be made. Fine filaments in close prox- 
imity to microtubules have also been described in sea urchin 
sperm. Such filaments, built from so-called tektins with mo- 
lecular weights around 50,000, occur in basal bodies and ax- 
onemes (Linck and Langevin, 1982). The tektins are a-heli- 
cal proteins in circular dichroism analysis and share some 
epitopes with the proteins of the 10-nm filaments (Chang and 
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Piperno, 1987; Steffen and Linck, 1989), which are particu- 
larly well studied in vertebrates (for review see Steinert and 
Roop, 1988). However, the primary structure of tektin A1 re- 
veals only a very remote sequence homology with the 10-nm 
filament proteins (Norrander et al., 1992). While both pro- 
tein types can form a segmented coiled coil due to the sepa- 
ration of the or-helices by nonhelical sequences (Geisler and 
Weber, 1982; Steinert and Roop, 1988; Norrander et al., 
1992), the tektin A1 lacks the consensus sequences of the 10- 
nm filament proteins. Interestingly, tektin A1 shows no obvi- 
ous homology with/3-giardin (Norrander et al., 1992) and 
SF-assemblin. Direct sequence comparison of intermediate 
filament proteins and SF-assemblin shows only a marginal 
homology. This involves a small part of the coil la domain 
of some type II keratins and the phenylalanine/tyrosine rich 
region around residue 55 of SF-assemblin. In contrast, SF- 
assemblin and/3-giardin show a striking structural relation 
over the entire rod domains, including a 29-residue repeat 
pattern based on four heptads followed by a skip residue. 
These results emphasize that coiled coil forming molecules 
have a surprising individuality which is readily recognized 
once extended amino acid sequences are available. 
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