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Abstract

Background: The mosquito-borne dengue viruses are a major public health problem throughout the tropical and
subtropical regions of the world. Changes in temperature and precipitation have well-defined roles in the transmission cycle
and may thus play a role in changing incidence levels. The El Niño Southern Oscillation (ENSO) is a multiyear climate driver
of local temperature and precipitation worldwide. Previous studies have reported varying degrees of association between
ENSO and dengue incidence.

Methods and Findings: We analyzed the relationship between ENSO, local weather, and dengue incidence in Puerto Rico,
Mexico, and Thailand using wavelet analysis to identify time- and frequency-specific association. In Puerto Rico, ENSO was
transiently associated with temperature and dengue incidence on multiyear scales. However, only local precipitation and
not temperature was associated with dengue on multiyear scales. In Thailand, ENSO was associated with both temperature
and precipitation. Although precipitation was associated with dengue incidence, the association was nonstationary and
likely spurious. In Mexico, no association between any of the variables was observed on the multiyear scale.

Conclusions: The evidence for a relationship between ENSO, climate, and dengue incidence presented here is weak. While
multiyear climate variability may play a role in endemic interannual dengue dynamics, we did not find evidence of a strong,
consistent relationship in any of the study areas. The role of ENSO may be obscured by local climate heterogeneity,
insufficient data, randomly coincident outbreaks, and other, potentially stronger, intrinsic factors regulating transmission
dynamics.
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Introduction

Dengue viruses infect millions of people each year leading to

significant morbidity and thousands of deaths [1]. The viruses and

their mosquito vectors are endemic in many tropical and subtropical

regions of the world [1]. Transmission in these areas typically

follows a seasonal pattern punctuated every few years by a major

epidemic (Figure 1A). The factors leading to major epidemics are

not understood. There may be intrinsic regulation related to host-

virus interactions, principally mediated by serotype-specific immu-

nity, or extrinsic drivers such as changes in weather patterns [2].

Here, we focus on the potential role of climate. Temperature

and precipitation can influence dengue transmission via their

impact on the vector population. Abundance of the predominant

vector, Aedes aegypti, is partly regulated by precipitation, which

provides breeding sites and stimulates egg hatching [3]. Temper-

ature influences the ability of these insects to survive and

determines their development and reproductive rates [4,5]. It is

also critical for their ability to transmit virus: increased

temperatures increase the frequency of feeding [4,6] and decrease

the time it takes for mosquitoes to become infectious [7]. The

combined effect is that as temperatures rise (within a range that

does not increase mortality) mosquitoes have a greater probability

of becoming infected and infecting another host within their

lifespan.

In light of these biological relationships between climate and

transmission potential, several studies have suggested an associa-

tion between dengue epidemics and the El Niño Southern

Oscillation (ENSO) [8–13]. ENSO is the fluctuation of atmo-

spheric pressure and sea surface temperature in the equatorial

Pacific Ocean. As ENSO cycles, the path of the Pacific Jet Stream

and other global climate drivers change causing variation in local

temperature and precipitation worldwide. ENSO thus provides a

natural experiment to assess the impact of multiyear climate

variation on dengue transmission.

Analysis of the relationship between ENSO, local weather, and

dengue incidence presents unique challenges. Temperature,

precipitation, and dengue incidence all vary on seasonal scales

resulting in strong time-lagged association between all three

variables. Though the seasonal association with weather can

account for a large portion of the variability in dengue incidence, it

is difficult to separate the effects of temperature, precipitation, or

other seasonal drivers. Furthermore, the strength of seasonal

associations obscures the potential role of long-term climate

change. To more directly address this problem, some investigators

have sacrificed temporal resolution and summarized both ENSO

and dengue incidence to a yearly scale [8,10]. More recently,

Cazelles et al. [11] used wavelet analysis to decompose Thai

dengue data into seasonal and multi-annual components. The

investigators then looked for associations specifically between the

multi-annual components of dengue incidence, weather, and

ENSO.

Wavelet analysis involves transformation of a data series with a

wavelet, a localized wave. The data are transformed into the

frequency domain, in which periodic behavior is more easily

analyzed. Like its predecessor, Fourier analysis, wavelet analysis

allows the resolution of frequency-specific variation. In the case of

dengue incidence for example, it can differentiate multi-annual

patterns of variation from a strong seasonal component. Unlike

Fourier analysis however, the basis function for the transformation

is a time-localized wave, so it can also detect nonstationary

behavior, behavior that changes over time in frequency,

amplitude, or both. Nagao and Koelle [14], for example, used

wavelet analysis to demonstrate a shift in the frequency of major

dengue epidemics in Thailand. Another advantage of wavelet

analysis is coherence analysis in which the frequency components

of different time series can be compared directly. Thus, even if a

driver, such as ENSO, is undergoing nonstationary change, its

association with a given outcome, such as dengue incidence, can

be measured.

Wavelet analysis thus provides two major benefits for

assessing the relationship between ENSO, weather, and dengue

transmission: first, it allows separation of effects by time-scale,

Figure 1. Wavelet spectra of dengue, temperature, and
precipitation in Puerto Rico and ENSO. (A) Reported cases of
dengue in Puerto Rico by month. (B) Wavelet spectrum of (A). Power
increases from blue to red. Areas where power is significantly high (95%
confidence level) are encircled by black lines. Shaded areas indicate the
presence of significant edge effects. (C) Wavelet spectrum of monthly
average mean temperature in Puerto Rico (average minimum and
maximum temperature behave similarly to mean temperature and are
not shown). (D) Wavelet spectrum of monthly cumulative precipitation
in Puerto Rico. (E) Wavelet spectrum of ENSO.
doi:10.1371/journal.pmed.1000168.g001
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and second, it provides a domain in which to measure

nonstationary association. In the current study, we assess and

compare the relationships between ENSO, temperature,

precipitation, and dengue incidence in Puerto Rico, Mexico,

and Thailand. We also consider the statistical assessment of

wavelet power and coherence for epidemiological studies.

Epidemiological time series are often characterized by strong

autocorrelation, a property that gives rise to random nonsta-

tionary, frequency-specific, wavelet power. Here we apply

significance tests that allow for underlying autocorrelation.

Furthermore, we assess the properties of random, nonstationary

coherence and consider their implications for the interpretation

of coherence analysis.

Methods

Data
Clinically suspected cases of dengue fever (DF) and dengue

hemorrhagic fever (DHF) in Puerto Rico are reported to the

surveillance system maintained by the Puerto Rico Department of

Health and the Centers for Disease Control and Prevention. The

data analyzed here include all reported cases from July 1986

through December 2006 by month. Reported cases, rather than

laboratory confirmed cases, are used because approximately 60%

of cases lack the samples necessary for a definitive laboratory

diagnosis. Summaries of suspected dengue cases reported in

Mexico in the years 1985–2006 were obtained from the Mexican

Secretariat of Health (www.dgepi.salud.gob.mx/anuario). Month-

ly counts of reported DF and DHF were combined. In contrast,

Thailand historically only included DHF in national surveillance.

We analyzed Thai reported DHF cases for the years 1983–1996

[15]. Although, this represents only a portion of the cases actually

occurring, it is a consistent measure through time in Thailand

where DHF has long been established. Whether using confirmed

or reported DF or DHF case counts, inaccurate estimation of the

true burden of disease is inherent. However, for the purposes of

this analysis, the absolute quantity is immaterial as long as the data

accurately represent change over time. All included datasets

represent relatively consistent measures of incidence over time.

Although it is possible that DF and DHF exhibit different

dynamics, they are expected to be highly correlated in settings with

long-term endemicity such as Thailand. Each dengue time series

was log-transformed and normalized prior to analysis to reduce

skewing, remove the mean, and standardize the amplitude. As a

result, change over time, the focus of this analysis, is more directly

analyzed.

Weather data were obtained from the TYN CY 1.1 dataset of the

Climate Research Unit at the University of East Anglia, United

Kingdom [16]. This dataset is composed of 0.5u gridded,

interpolated observations for the years 1901 through 2000

summarized to political boundaries [17–19]. The datasets used

for each study area were normalized total monthly precipitation and

minimum, maximum, and mean average monthly temperatures.

The ENSO index used is the normalized Oceanic Niño Index

sea surface temperature anomaly index for Niño region 3.4

available from the Climate Prediction Center of the US National

Weather Service (www.cpc.ncep.noaa.gov). This index is the

difference between the 3-mo running average sea surface

temperature for the area between 5uN, 5uS, 120uW, and 170uW,

and the average of that value for the years 1971–2000 [20].

Wavelet Transformation
In the following we present the critical details of our analyses.

For further depth, Torrence and Compo [21] is an excellent

resource from which much of our methodology was derived.

Wavelet analysis requires the selection of a basis function for the

transformation. Here we use the Morlet wavelet, a complex sine

wave localized by a Gaussian distribution,

y0 gð Þ~p{1=4eiv0ge{g2=2

where g is a scaled time unit and v0 describes the relative

frequency of the sine wave (v0~6 here to satisfy admission

criteria) [22]. Because it is a localized periodic function, it is ideal

for analyzing periodic behavior such as multiyear ENSO or

seasonal dengue variation.

The continuous wavelet transform is the convolution of the

series xn and the wavelet y0 at time t and scale s, where xn is a

series of observations x0, x1, …, xN21 equally spaced in time by dt.

This is defined as

Wn,s~
XN{1

n0~0

xn0y
� dt n{n0ð Þ

s

� �
,

where y* is the complex conjugate of the wavelet normalized by a

factor of (dt/s)1/2 to ensure unit energy, allowing comparability

between scales and analyses [21]. dt is included to adjust the scales to

a meaningful time frame for interpretation. Scales range from

s0~2dt, the finest temporal resolution present in the dataset, to

sJ*n=dt, the minimum temporal resolution, where sj~s02jdj . The

scale resolution, dj~1=10, was selected on the basis of criteria

detailed in the wavelet coherence significance section below and

Figures S1 and S2. The wavelet transformation is complex and

describes the time- and frequency-specific power and phase. The

power, |Wn,s|
2, indicates the strength of the wavelet-like behavior at

every point and is presented in the power spectrum of each

transformation. Phase (h) indicates the angular position of each point

in its cyclical trajectory, from a trough at p radians to a peak at 0 or

2p radians. It is calculated as the inverse tangent of the imaginary

component of the transform divided by the real component:

hn,s~arctan
= Wn,sð Þ
< Wn,sð Þ

� �
:

The wavelet itself extends both forwards and backwards in time.

Consequently, in wavelet analysis the beginning and end of a time

series are effectively joined in a loop so that there is prior and post

information at every time point. To disconnect the beginning and

end, we pad the time series with zeros. The zeros still have an

effect on the transform at the extremities though, so, following

Torrence and Compo [21], we shade the area of the transform

where edge effects are significant.

The transform can be inverted to reconstruct the original time

series,

xn~
djd

1=2
t

Cdy0 0ð Þ
XJ

j~0

< Wn,sj

� �
s

1=2
j

,

where Cd is an empirically defined wavelet basis-specific

reconstruction factor (Cd~0:776 for the Morlet [v0~6] wavelet)

[21]. As written above, the reconstruction uses all scales (j).
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However, the scales over which the summation occurs in the

second part of the equation can be limited to reconstruct scale-

specific components of the original series. Reconstruction is

imperfect due to the edge effects of the transformation, but

information loss is minimal [21].

Significance of the Wavelet Power Spectrum
The significance of a wavelet power spectrum is assessed by

comparison with simulated or theoretical spectra representing a

null hypothesis. Cazelles et al. [23] used the null hypothesis that

‘‘the variability of the observed time-series or the association

between two time series is no different to that expected from a

purely random process.’’ This definition implicitly assumes that

sequential observations are independent. In fact, many geophys-

ical [24] and ecological [25] processes exhibit significant memory,

such that they are more accurately described as autocorrelated

processes. In general terms, the observation xn is related to the

previous l observations of x by

xn~a1xn{1za2xn{2z:::zalxn{lzen, e*N 0,s2
� �

,

where l, the order of autocorrelation, is particular to the system

under study. For infectious diseases, such as dengue, intrinsic first-

order autocorrelation results from the fact that transmission is

dependent on a source of infection, such that for any given time

point, current incidence is associated with incidence at the previous

time point. Thus, current observations are correlated with past

observations. Because autocorrelation limits instantaneous change

in a variable, these time series are more likely to vary over longer

periods of time, and power in the frequency domain shifts to longer

periodicities simply due to observation-to-observation autocorrela-

tion. All of the time series analyzed here exhibit first-order

autocorrelation and are thus susceptible to appearing to vary over

long time periods solely owing to stability over short time periods.

To account for the potential influence of short-term autocorrelation

on long-term characteristics, we employ a stricter null hypothesis:

the variability of the observed time-series is equivalent to the

expected variability of a random process with similar first-order

autocorrelation. We estimate the first-order autocorrelation of the

time series to be analyzed and create a theoretical Fourier power

spectrum of a Gaussian process with equivalent first-order

autocorrelation [24] and a x2 estimator [21] which allows us to

establish 95% confidence bounds for the null hypothesis.

Wavelet Coherence
In the current study, our interest is the relationship between

dengue incidence and climate on multiyear scales. Coherence

measures time- and frequency-specific association between two

wavelet transforms. High coherence indicates that two time series

associate at a particular time and frequency, precisely the way that

climate may influence dengue on multiyear scales. Here we

calculate squared coherency (R2),

R2
n,s~

S s{1W XY
n,s

� ���� ���2
S s{1 W X

n,s

�� ��2� �
S s{1 W Y

n,s

�� ��2� � ,

where s21 normalizes the energy, WX is one wavelet transform,

WY is the other, WXY is the cross-wavelet spectrum (WXWY*), and

S(W) is the sequential smoothing function Sscale(Stime) [26]. Stime is

the scale-specific convolution of W with a normalized Gaussian

filter and Sscale is the time-specific convolution of the result with a

normalized boxcar filter of width 0:6djz1 [27]. In the

denominator, the power spectra are smoothed and in the

numerator, the cross-wavelet spectrum is smoothed prior to

finding the modulus and squaring. This ensures that the

numerator and denominator are nonidentical.

The phase of coherency measures time- and frequency-specific

differences in phase between the two time series:

hdiff
n,s ~arctan

= S s{1W XY
n,s

� �� �

< S s{1W XY
n,s

� �� �
0
@

1
A:

The phase difference can be converted back into a time scale to

measure the lag of coherence.

Significance of Wavelet Coherence
Statistical significance for coherence is determined by simula-

tion. Pairs of time series representing the null hypothesis are

generated and assessed for coherence to provide a measure of

coherence that occurs by chance, as opposed to coherence due to

a true association. A certain amount of coherence is intrinsic to

the analysis because of the scale filtering process; variance on a

particular frequency is likely to exhibit coherence with other time

series on that same frequency solely because the frequency is

roughly matched. As observed previously [28] and shown in

Figure S2A, although coherence is theoretically sensitive to

autocorrelation of individual time series, spectra of simulated time

series with varying degrees of autocorrelation show that

autocorrelation has no discernable effect on coherence. Thus,

we generated the null series as simple random Gaussian variables.

On the other hand, scale selection does affect coherence.

Although the approximate minimum (s0) and maximum (sJ) scales

are dictated by the resolution and length of the dataset, the scales

selected for analysis depend on the scale resolution, dj. At low dj

random coherence varies markedly while at higher dj it stabilizes

(Figure S2B). We selected dj to maximize computational efficiency

while minimizing the random coherence associated with low dj.

Not only does coherence arise by chance, but, because it is

random, it occurs in a nonstationary fashion. Random processes

drift in and out of coherence transiently, mimicking nonstationary

association. At small scales, random coherence is relatively brief,

but as scales increase, it tends to occur over longer time periods.

Because coherence occurs with or without a true relationship, we

assess both the occurrence of transient coherence, as described

above, as well as the duration of this coherence. For the latter test,

we again generate random pairs of time series and assess them for

significant coherence as described above. We then calculate the

maximum duration of significant coherence on each scale over the

area where edge effects are minimized. Using Monte Carlo

simulations (10,000 here), we generate a scale specific distribution

of the duration of maximum random coherence, which serves as a

basis for measuring the probability of finding significant coherence

of any given duration at any given scale.

Computing Environment
All analyses were performed using the statistical package R

(version 2.6.0) [29]. Much of the code was adapted from

MATLAB code by Torrence and Compo [21] and Grinsted

Multiyear Climate Variability and Dengue
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[28]. The complete code is available from the corresponding

author.

Results

Wavelet Transforms
Figure 1B shows the wavelet power spectrum of dengue

incidence in Puerto Rico. High power indicates frequency- and

time-specific periodicity. The wavelet transform of dengue

incidence in Puerto Rico showed significant periodicity on the 1-

y scale. High power was also present in the 3–6-y period range, but

did not reach significance compared to the autocorrelated null

hypothesis. The temporal location of this power corresponds

mainly to the large epidemics of 1994 and 1998. Temperature and

precipitation in Puerto Rico also showed consistent significant

power on the 1-y scale, but not at larger scales (Figure 1C and 1D).

In contrast, ENSO exhibited little periodicity at the 1-y scale, and

significant periodicity at 2–7 y (Figure 1E). Dengue incidence in

Mexico and Thailand exhibited similar behavior to that in Puerto

Rico (Figure S3). The yearly periodic was strong and significant

through time and regions of higher (but not statistically significant)

power occurred at a mode of approximately 8 y in Mexico (the

detection limit for the length of the time series) and in the 1.5–3-y

range in Thailand.

Coherence
We first analyzed the direct association between dengue

incidence and ENSO in the three regions. In Puerto Rico, dengue

incidence showed significantly coherence with ENSO on a 3.3- to

6-y scale from approximately 1995 to 2002 (Figure 2A). The

significant local coherence between ENSO and dengue in Puerto

Rico occurred over a maximum of 68 mo at a scale of

approximately 3.6 y. In 10,000 simulations the probability of

significant coherence of this duration or longer at this scale given

randomly generated unrelated time series was 0.016. The phase

difference between 1995 and 2002 shows increased dengue

incidence followed increased ENSO by approximately 6 mo

(Figure 2B). Figure 2C shows the reconstructed dengue and ENSO

signals at the period of peak interannual coherence. In Mexico, no

notable coherence occurred at time scales greater than 1 y

(Figure 3A). Although there was coherence at multiyear scales in

Thailand (in the 2–3-y mode), it did not reach statistical

significance (Figure 3B).

If ENSO has an effect on dengue transmission it is hypothesized

that this will occur via changes in local temperature and

precipitation. We assessed coherence between ENSO and local

temperature and precipitation from 1950 to 2000. In both Puerto

Rico (Figure 4A) and Thailand (Figure S5A), temperature cohered

with ENSO on multiyear scales. In Puerto Rico, the longest period

of significant coherence was approximately 197 mo at a frequency

mode of approximately 2.5 y (Monte Carlo significance: p,0.001).

The maximum duration in Thailand was 172 mo at a frequency of

approximately 2 y (Monte Carlo significance: p,0.001). The

association with temperature in both areas was positive; increased

temperature followed a rise in the ENSO index by approximately

5 and 3 mo, for Puerto Rico and Thailand, respectively. There

was no significant multiyear coherence between temperature and

ENSO in Mexico (Figure S4A). In Thailand, precipitation was also

positively associated with ENSO (Figure S5B, 108 mo at the 3-y

mode with a 14-mo lag; Monte Carlo significance: 0.018). Both

Puerto Rico (Figure 4B) and Mexico (Figure S4B) exhibited short-

term coherence between ENSO and precipitation but they did not

reach significance by the Monte Carlo test of duration.

Given the observed associations between ENSO and local

weather, we analyzed coherence between local weather and local

dengue incidence. In all three areas, temperature and precipitation

cohered to dengue incidence on the annual scale (Figures 4C, 4D,

Figure 2. Coherence between ENSO and dengue in Puerto Rico.
(A) Squared coherence plot of dengue incidence in Puerto Rico and
ENSO. Coherence increases from blue to red. Areas where coherence is
significantly high (95% confidence level) are encircled by black lines.
Shaded areas indicate the presence of edge effects. (B) Phase of ENSO
(solid black) and dengue incidence (red) and phase difference (dashed
black) at a periodicity of 3–4.5 y. (C) Reconstructed ENSO (black) and
dengue incidence (red) at a periodicity of 3–4.5 y. A similarly scaled
Morlet wavelet is superimposed (blue).
doi:10.1371/journal.pmed.1000168.g002

Figure 3. Coherence between ENSO and dengue in Mexico and
Thailand. (A) Squared coherence plot of ENSO and dengue incidence
in Mexico. (B) Squared coherence plot of ENSO and dengue incidence in
Thailand. Features are as described in Figure 2A.
doi:10.1371/journal.pmed.1000168.g003
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S4C, S4D, S5C, S5D). At interannual scales the associations

varied. Temperature did not cohere significantly with dengue

incidence at multiyear scales in any of the areas. In Puerto Rico,

precipitation cohered significantly with dengue incidence (60 mo

at the 1.8-y mode; Monte Carlo significance: p = 0.006). The phase

difference between precipitation and dengue incidence during the

time period of significant coherence can be interpreted in two ways

(Figure S6). The closest temporal association suggests that

precipitation follows, rather than leads, variation in dengue

transmission by approximately 4 mo. Alternatively, the phase

difference observed could represent an inverse relationship where

decreased precipitation leads to increased dengue 7 mo later. In

Thailand, precipitation cohered significantly with dengue inci-

dence (36 mo at the 2.5-y mode; Monte Carlo significance:

p = 0.030). The phase difference suggests a negative association

between precipitation and dengue incidence 2 mo later, similar to

the results observed in Puerto Rico. In Mexico, precipitation did

not cohere with dengue incidence on multiyear scales.

Discussion

Multiyear dengue incidence patterns in Puerto Rico, Mexico,

and Thailand were not explicitly periodic. Though we found high

power at multiyear scales in wavelet spectra of all three, the power

did not reach significance relative to randomly generated

autocorrelated time series. The high degree of interannual

variation in dengue incidence is often described as periodic, but

our analysis suggests that this oscillation lacks a regular periodicity.

This does not mean that dengue transmission does not cycle on

multiyear scales, but that there is not enough data to support

explicit determination of stationary or nonstationary cycles. It is

possible that this seemingly chaotic behavior is a result of serotype-

specific dynamics of dengue transmission in human populations

[30–33]. In contrast, significant periodicity was present on the

annual scale for both dengue and weather variables and on the

interannual scale for ENSO.

Using coherence analysis to compare these time series in the

frequency domain, we found some associations between climate

and dengue incidence. In Puerto Rico, Mexico, and Thailand we

found strong coherence between temperature, precipitation and

dengue incidence at a periodicity of approximately 1 y. This

finding is expected due to the regular seasonality observed in all

three. Of greater interest are the relationships on multiyear scales.

In Puerto Rico, we found significant association between ENSO

and dengue incidence between 1995 and 2002. The biological

basis for this relationship is that ENSO drives local changes in

weather, and local changes in weather affect dengue transmission.

Analyzing this pathway, we found that ENSO was associated with

temperature but not precipitation, and that precipitation but not

temperature was associated with dengue incidence. As a result, we

must treat this link cautiously. The observed time lag of the effect

of rainfall on dengue incidence is also problematic. Dengue

incidence influencing precipitation is a biologically implausible

relationship. It is more plausible that decreased precipitation

increases subsequent dengue transmission given the observation

that decreased rainfall can lead to increased water storage and

thus, increased Ae. aegypti breeding habitat [10,34]. However, the

observed lag of 7 mo is also suspicious, because it would require

the effect to occur over many Ae. aegypti generations.

In Thailand, ENSO was associated with changes in local

temperature and precipitation, but only precipitation cohered with

dengue incidence. The lag of the positive effect of ENSO on

precipitation was 14 mo and the negative effect of precipitation on

dengue incidence was observed a further 2 mo later. This is

biologically plausible as decreasing ENSO could result in

decreased rain leading to increased water storage, increased Ae.

aegypti breeding habitat, and, later, increased dengue transmission.

However, there is reason for skepticism. The two associations

occur on slightly different frequency modes (2.6–4 y for ENSO-

precipitation and 2.3–2.6 y for precipitation-dengue), and direct

coherence between ENSO and dengue incidence was not

significant. Furthermore, the observed relationships are nonsta-

tionary implying that sometimes precipitation plays a role and at

other times, it does not. Biologically, the nonstationarity is difficult

to explain as breeding habitat is always necessary for the mosquito

vector.

These results combined with the complete lack of multiyear

coherence with any of the datasets for Mexico suggest that neither

ENSO nor temperature or precipitation are the most important

determinants of multiyear variability in dengue incidence in these

endemic settings. The tenuous relationships demonstrated on the

multiyear scale are clearly different from coherence on the

seasonal scale where the case for the effect of weather is much

stronger. There are several plausible explanations for our findings.

One is that ENSO has no effect on dengue transmission. While

this is possible, the biology of transmission suggests that

temperature and precipitation, and thus the effects of ENSO,

Figure 4. Coherence between ENSO, weather, and dengue in
Puerto Rico. (A) Squared coherence plot of ENSO and temperature. (B)
Squared coherence plot of ENSO and precipitation. (C) Squared
coherence plot of temperature and dengue incidence. (D) Squared
coherence plot of precipitation and dengue incidence. Features are as
described in Figure 2A.
doi:10.1371/journal.pmed.1000168.g004
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are important determinants of transmission efficiency. If these

effects do exist, we may lack sufficient long-term datasets with

which to observe them. Another possibility is that local effects of

ENSO are obscured by summarizing weather and dengue

incidence to large political boundaries. Although Puerto Rico is

a relatively small geographical area, the association of temperature

and precipitation with dengue incidence varies geographically

[35]. On the scale of Mexico, the extent of spatial heterogeneity is

likely much larger, possibly explaining the lack of any significant

associations in the current analysis. Finally, the effects may be

present but obscured by other more prominent factors. In

particular, a theoretical basis for complex multiyear oscillations

in dengue incidence based solely on intrinsic factors has been

hypothesized by several groups [30–33,36]. These factors may

overshadow any extrinsic effects of ENSO.

Indeed, many of the observed associations may be the result of

independent, coincident El Niño episodes and major dengue

epidemics. At the scale of highest coherence in Puerto Rico, ENSO

is periodic throughout the observed time period while dengue

incidence fluctuates in the pattern of a single Morlet wavelet

(Figure 2C). The similarity between the reconstruction and the

wavelet used for transformation, suggests that transformation is

capturing a single event rather than a periodic pattern. This means

that the observed coherence may simply be the result of a single

dengue outbreak occurring on the same scale as ENSO variation.

The reported association in Thailand appears to follow this same

pattern [11]. Unfortunately, the very nature of multi-annual

variation makes it difficult to find relationships that are more than

coincidental because of the vast amount of data required. In

Mexico, for example, there appears to be two or three multi-annual

peaks in dengue incidence over 22 y (Figure S2A). Though this may

reflect an 8-y periodic, at least one more event is required to assess

its significance (observe the shaded region of Figure S2B). Even

then, it may be hard to differentiate coherence from coincidence.

Wavelet analysis, because of its ability to decompose and

compare frequency specific components of time series, is a

powerful tool for the analysis of long-term epidemiological data.

While particularly well-suited to comparing periodic variations at

different time scales, wavelets also can be used to assess other types

of temporal changes such as those related to vaccine introduction

[37]. Integral to any analysis is the testing of significance. Unlike

previous analysis of the potential effect of ENSO and weather on

dengue incidence, we consider the effects of autocorrelation on

frequency-specific decomposition. The autocorrelation of epide-

miological data over time leads to higher spectral power at low

frequencies than would be expected from independent observa-

tions. We allow for this by using a statistical test incorporating

autocorrelation in the null hypothesis. In the coherence analysis

we assessed the role of autocorrelation and scale selection.

Autocorrelation was found to have little effect and scale resolution

was selected to balance computational efficiency and sensitivity to

low resolution. Because random coherence still occurs at a high

rate, we also developed a test for random coherence based on the

duration over which it occurs.

With these considerations, the associations between tempera-

ture, precipitation, and dengue incidence on the annual scale in

Puerto Rico, Mexico, and Thailand are clear. Although these

associations are indistinguishable by wavelet analysis, they

demonstrate how a strong temporal relationship can be charac-

terized by coherence analysis. Both ENSO and dengue incidence

vary on multiyear scales, but they do not exhibit similarly strong

coherence. It is possible that there is a nonstationary relationship

between climate and dengue incidence, but further evidence

explaining the nonstationarity and demonstrating its occurrence at

more than one time point is necessary to effectively support this

hypothesis. Moreover, given the magnitude of interannual

variation in dengue transmission, it is unlikely that a weakly

supported nonstationary effect is the dominant driver of this

important component of dengue transmission dynamics. Further

elucidation of these dynamics may require explicit modeling of

intrinsic factors. In particular, though difficult to do, there is a

need to go beyond theory to the application and assessment of

biologically reasonable theories using empirical data.

Supporting Information

Figure S1 Wavelet spectra of dengue in Puerto Rico under

different dj selections. Power increases from blue to red. Areas

where power is significantly high (95% confidence level) are

encircled by black lines. Shaded areas indicate the presence of

significant edge effects. Decreasing dj (from 1/2 to 1/100 as

indicated on the left) increases the scale resolution picking up more

detail in the wavelet transformation. A sufficiently fine scale must

be selected to capture the features of interest and stabilize random

coherence as shown in Figure S2B. Increased resolution, however,

comes with a cost, particularly when analyzing coherence

significance.

Found at: doi:10.1371/journal.pmed.1000168.s001 (5.11 MB

TIF)

Figure S2 Sensitivity of coherence to autocorrelation and scale

selection. In (A) and (B), the mean coherence of 10,000 simulations

is plotted for each scale under different conditions. In each

simulation, two random (autocorrelated in specified cases) 240-

mo-long series are generated and assessed for coherence. Periods

are expressed in years. (A) Coherence under varying conditions of

autocorrelation (dj = 1/10). The correlation coefficient varies from

0.0 (no autocorrelation) to 0.99 (very strong autocorrelation).

Coherence shows little sensitivity to autocorrelation. (B) Coher-

ence under various scale sets as determined by dj. dj ranges from 1

to 1/40. As dj decreases (i.e., the scale resolution increases),

random coherence stabilizes.

Found at: doi:10.1371/journal.pmed.1000168.s002 (6.44 MB

TIF)

Figure S3 Wavelet spectra of dengue in Mexico and Thailand.

(A) Reported cases of dengue in Mexico by month. (B) Wavelet

spectrum of (A). (C) Reported cases of dengue in Thailand by

month. (D) Wavelet spectrum of (C). Features of wavelet spectra

are as described in Figure S1.

Found at: doi:10.1371/journal.pmed.1000168.s003 (4.66 MB

TIF)

Figure S4 Coherence between ENSO, weather, and dengue in

Mexico. (A) Squared coherence plot of ENSO and temperature.

Coherence increases from blue to red. Areas where coherence is

significantly high (95% confidence level) are encircled by black

lines. Shaded areas indicate the presence of edge effects. (B)

Squared coherence plot of ENSO and precipitation. (C) Squared

coherence plot of temperature and dengue incidence. (D) Squared

coherence plot of precipitation and dengue incidence.

Found at: doi:10.1371/journal.pmed.1000168.s004 (4.67 MB

TIF)

Figure S5 Coherence between ENSO, weather, and dengue in

Thailand. (A) Squared coherence plot of ENSO and temperature.

(B) Squared coherence plot of ENSO and precipitation. (C)

Squared coherence plot of temperature and dengue incidence. (D)

Squared coherence plot of precipitation and dengue incidence.

Features of coherence plots are as described in Figure S4.
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Found at: doi:10.1371/journal.pmed.1000168.s005 (4.67 MB

TIF)

Figure S6 Coherence between precipitation and dengue in

Puerto Rico between 1985 and 1991. (A) Phase of precipitation

(solid black) and dengue incidence (red) and phase difference

(dashed black) at a periodicity of 1.6–2 y. (B) Reconstructed

precipitation (black) and dengue incidence (red) at a periodicity of

1.6–2 y.

Found at: doi:10.1371/journal.pmed.1000168.s006 (2.33 MB

TIF)

Acknowledgments

Derek Cummings holds a Burroughs Wellcome Career Award at the

Scientific Interface.

Author Contributions

ICMJE criteria for authorship read and met: MAJ DATC GEG. Agree

with the manuscript’s results and conclusions: MAJ DATC GEG. Designed

the experiments/the study: MAJ DATC GEG. Analyzed the data: MAJ

GEG. Collected data/did experiments for the study: MAJ. Wrote the first

draft of the paper: MAJ GEG. Contributed to the writing of the paper:

MAJ DATC GEG.

References

1. Gubler DJ (2006) Dengue/dengue haemorrhagic fever: history and current

status. Novartis Found Symp 277: 3–16.

2. Halstead SB (2008) Dengue virus-mosquito interactions. Annu Rev Entomol 53:

273–291.

3. Christophers SR (1960) Aedes aegypti (L.): the yellow fever mosquito. Cambridge:

The University Press.

4. Focks DA, Haile DG, Daniels E, Mount GA (1993) Dynamic life table model for

Aedes aegypti (Diptera: Culicidae): analysis of the literature and model

development. J Med Entomol 30: 1003–1017.

5. Keirans JE, Fay RW (1968) Effect of food and temperature on Aedes aegypti (L.)

and Aedes triseriatus (Say) larval development. Mosq News 28: 338–341.

6. Pant CP, Yasuno M (1973) Field studies on the gonotrophic cycle of Aedes aegypti

in Bangkok, Thailand. J Med Entomol 10: 219–223.

7. Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A (1987) Effect of

temperature on the vector efficiency of Aedes aegypti for dengue 2 virus.

Am J Trop Med Hyg 36: 143–152.

8. Hales S, Weinstein P, Woodward A (1996) Dengue fever epidemics in the South

Pacific: driven by El Niño Southern Oscillation? Lancet 348: 1664–1665.

9. Hales S, Weinstein P, Souares Y, Woodward A (1999) El Niño and the dynamics

of vectorborne disease transmission. Environ Health Perspect 107: 99–102.

10. Gagnon AS, Bush ABG, Smoyer-Tomic KE (2001) Dengue epidemics and the

El Niño Southern Oscillation. Climate Research 19: 35–43.

11. Cazelles B, Chavez M, McMichael AJ, Hales S (2005) Nonstationary influence

of El Niño on the synchronous dengue epidemics in Thailand. PLoS Med 2:

e106. doi:10.1371/journal.pmed.0020106.

12. Bangs MJ, Larasati RP, Corwin AL, Wuryadi S (2006) Climatic factors

associated with epidemic dengue in Palembang, Indonesia: implications of short-

term meteorological events on virus transmission. Southeast Asian J Trop Med

Public Health 37: 1103–1116.

13. Hurtado-Dı́az M, Riojas-Rodrı́guez H, Rothenberg SJ, Gomez-Dantés H,

Cifuentes E (2007) Short communication: impact of climate variability on the

incidence of dengue in Mexico. Trop Med Int Health 12: 1327–1337.

14. Nagao Y, Koelle K (2008) Decreases in dengue transmission may act to increase

the incidence of dengue hemorrhagic fever. Proc Natl Acad Sci U S A 105:

2238–2243.

15. Cummings DA, Irizarry RA, Huang NE, Endy TP, Nisalak A, et al. (2004)

Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand.

Nature 427: 344–347.

16. Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive

set of high-resolution grids of monthly climate for Europe and the globe: the

observed record (1901–2000) and 16 scenarios (2001–2100). Norwich (UK):

Tyndall Centre for Climate Change Research.

17. Mitchell TD, Hulme M, New M (2002) Climate data for political areas. Area 34:

109–112.

18. New M, Hulme M, Jones P (1999) Representing twentieth-century space-time

climate variability. Part I: Development of a 1961–90 mean monthly terrestrial

climatology. J Climate 12: 829–856.

19. New M, Hulme M, Jones P (2000) Representing twentieth-century space-time

climate variability. Part II: Development of 1901-96 monthly grids of terrestrial

surface climate. J Climate 13: 2217–2238.
20. Trenberth KE (1997) The definition of El Niño. B Am Meteorol Soc 78:

2771–2777.
21. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. B Am

Meteorol Soc 79: 61–78.

22. Farge M (1992) Wavelet transforms and their applications to turbulence. Annu
Rev Fluid Mech 24: 395–457.

23. Cazelles B, Chavez M, Magny GC, Guégan JF, Hales S (2007) Time-dependent
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Editors’ Summary

Background. Every year, as many as 50–100 million people
become infected with one of four closely related dengue
viruses through the bite of a female Aedes aegypti mosquito
that has acquired the virus by feeding on infected human
blood. Dengue is endemic (always present) in many tropical
and subtropical countries but its incidence (the number of
new cases in a population over a given time period) follows a
seasonal pattern. This is because the abundance of Ae.
aegypti is regulated by rainfall, which provides breeding sites
and stimulates egg hatching, and by temperature, which
influences the insects’ survival and their rate of development
and reproduction. Temperature also affects the mosquitoes’
ability to transmit dengue virus—higher temperatures
increase transmission rates. Although some people who
become infected with dengue have no symptoms, many
develop dengue fever, a severe, flu-like illness that lasts a few
days. Other people—more than half a million a year—
develop dengue hemorrhagic fever, a potentially fatal
condition. There is no vaccine to prevent dengue and no
specific treatment for the disease, but standard medical care
can prevent most deaths from dengue.

Why Was This Study Done? As well as seasonal variations
in the incidence of dengue, large dengue outbreaks
(epidemics) occur every few years. To help with health care
planning, public health officials would like a way to predict
when these epidemics are likely to occur, but to develop
such a system requires a good understanding of the factors
that lead to major epidemics. Although variations in host–
virus interactions (for example, changes in host immunity to
dengue) almost certainly play an important role in the timing
of dengue epidemics, interannual changes in temperature
and rainfall could also be involved. One major cause of
global interannual weather variation is the El Niño Southern
Oscillation (ENSO), a climate cycle centered on the Pacific
Ocean that repeats every 3–4 years. Previous studies have
reported varying degrees of association between ENSO and
dengue. In this study, the researchers reanalyze the
relationship between ENSO, local weather, and dengue
incidence in three dengue-endemic countries using ‘‘wavelet
analysis.’’ This mathematical technique can separate the
effects of seasonal weather variations on dengue incidence
from those of interannual weather fluctuations.

What Did the Researchers Do and Find? The researchers
retrieved data on the incidence of dengue fever and dengue
hemorrhagic fever in Puerto Rico, Thailand and Mexico since
the mid 1980s from national surveillance systems. They also
collected historical weather data for each country and
information on ENSO. They then used these data and
wavelet analysis to investigate the relationship between
ENSO, local weather, and dengue incidence in each country
on the annual scale and on the multiyear scale. On the

annual scale, temperature, rainfall, and dengue incidence
were strongly associated in all three countries. On the
multiyear scale, ENSO was associated with temperature and
with dengue incidence in Puerto Rico, but only for part of
the study period. Only local rainfall was associated with the
incidence of dengue in that country. The lack of a direct path
of association from ENSO to either weather variable to
dengue incidence suggests that the ENSO–dengue
association may be a spurious result. In Thailand, ENSO
was associated with both temperature and rainfall, and
rainfall was associated with dengue incidence. However,
detailed analysis suggests that this latter association was also
probably spurious. Finally, there was no association between
any of the variables in Mexico on the multiyear scale.

What Do These Findings Mean? Although these findings
show a strong associations between both temperature and
rainfall and dengue incidence on the annual scale in Puerto
Rico, Thailand, and Mexico, they provide little evidence for
any relationship between ENSO, climate, and dengue
incidence. Multiyear climate variability may play a role in
interannual variations in dengue incidence, the researchers
suggest, but their study does not provide any evidence for a
strong and consistent relationship between climate
variability and dengue incidence. It is possible that the
effects of ENSO on dengue incidence are being masked by
local variations in weather or by stronger factors regulating
disease transmission such as host–virus or host–vector
interactions. Future studies into the relationship between
dengue outbreaks and multiyear climate variability will need
to include these and other factors. For now, however,
information on ENSO cannot be used to design an early
warning system for dengue outbreaks.

Additional Information. Please access these Web sites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1000168.

N This study is further discussed in a PLoS Medicine
Perspective by Pejman Rohani

N The US Centers for Disease Control and Prevention
provides detailed information about dengue fever and
dengue hemorrhagic fever (in English and Spanish)

N The World Health Organization provides information on
dengue fever and dengue hemorrhagic fever around the
world (in several languages)

N Links to additional resources about dengue are provided
by MedlinePlus (in English and Spanish)

N Wikipedia has pages on the El Niño Southern Oscillation
and on wavelet analysis (note that Wikipedia is a free
online encyclopedia that anyone can edit; available in
several languages)
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