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Diffusion adaptive filtering 
algorithm based on the Fair cost 
function
Sihai Guan1,2*, Qing Cheng3, Yong Zhao4 & Bharat Biswal5,6

To better perform distributed estimation, this paper, by combining the Fair cost function and 
adapt-then-combine scheme at all distributed network nodes, a novel diffusion adaptive estimation 
algorithm is proposed from an M-estimator perspective, which is called the diffusion Fair (DFair) 
adaptive filtering algorithm. The stability of the mean estimation error and the computational 
complexity of the DFair are theoretically analyzed. Compared with the robust diffusion LMS (RDLMS), 
diffusion Normalized Least Mean M-estimate (DNLMM), diffusion generalized correntropy logarithmic 
difference (DGCLD), and diffusion probabilistic least mean square (DPLMS) algorithms, the simulation 
experiment results show that the DFair algorithm is more robust to input signals and impulsive 
interference. In conclusion, Theoretical analysis and simulation results show that the DFair algorithm 
performs better when estimating an unknown linear system in the changeable impulsive interference 
environments.

Adaptive filter algorithms are often used in equalization, active noise control, echo cancellation, biomedical 
engineering, and many other fields1–5. Distributed adaptive signal processing is an extension of adaptive filters 
over graphs6. There are three widely-used distributed estimation cooperation strategies: incremental, consensus, 
and diffusion3. Besides, the asymmetry problem may lead to the unstable growth of consensus technology, and 
the asymmetry problem can be passed through the network. However, among them, the diffusion strategy can 
eliminate the asymmetry problem. So, the diffusion strategies were used frequently, and they include the adapt-
then-combine (ATC) scheme6 and the combine-then-adapt (CTA) scheme3,7. The specific explanation is that 
in the CTA formulation of the diffusion strategy, the name combine-then-adapt is that the first step involves a 
combination step, while the second step involves an adaptation step; a similar implementation can be obtained by 
switching the order of the combination and adaptation steps. Moreover, Cattivelli and colleagues analyzed these 
two structures’ performance for these two kinds of structures, showing that the ATC scheme outperforms the 
CTA scheme6. Then, the ATC scheme becomes a research focus in distributed adaptive filtering algorithms6,8–15. 
The Wiener filtering principle is the fundamental of the adaptive filtering algorithm16, based on the parameter 
mean square error (MSE) to construct an efficient cost function. Cost functions are used to learn parameters 
that explain the estimation well, and they define how costly our adaptive algorithm estimation mistakes are17. 
The cost function should penalize “large" estimation error and “very-large" estimation error almost equally. 
Also, if we want better estimation properties, then we have to give good computational complexity properties.

Roughly speaking, if a line connecting two points never intersects the cost function, the cost function is 
convex, and the convex cost function has only one global minimum value. Strictly convex cost functions have a 
unique global minimum value, and the sum of convex cost functions is also convex properties. Therefore, MSE 
has only one global minimum value. Furthermore, outliers are examples of data that are far from most other 
examples. Unfortunately, they happen more in reality than we hoped. Up to now, many types the cost functions 
have been used to design adaptive filtering algorithms, such as least mean absoult third18, least mean fourth19, 
entropy20, least-squares estimator21, absolute value estimator22, the Cauchy23, Geman–McClure24, Welsch25,26, 
and Huber function27–30. Specifically, the least-squares estimator is not robust because their influence function is 
not bounded21, and the absolute value estimator is not stable because the function of estimate error ( |e(i)| ) at i-th 
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is not strictly convex22. Indeed, the second derivative at e(i) = 0 is unbounded, and an in determinant solution 
may result. The absolute value estimator reduces the influence of large errors, but they still have an influence 
because the influence function. Combine least-squares and absolute value estimator take both the absolute value 
estimators’ advantage to reduce the influence of large errors and that of least-squares estimators to be convex31. 
They behave like least-squares for small e(i) and like absolute value estimators for large e(i) , hence the name of 
this type of estimators. The least p-powers function represents a family of cost functions32. It is the least-square 
method when p = 2 and the absolute value estimator when p = 1 . The smaller p, the smaller is the incidence of 
large estimation errors in the estimate p . It seems that p must be fairly moderate to provide a relatively reliable 
estimate, or in other words, an estimate that is hardly disturbed by outlying data. The selection of an optimal p 
has been investigated, and for p around 1.2, good estimated performance may be expected33. However, many 
difficulties are encountered when parameter p is in the range of interest 1 < p < 2 , because zero residuals are 
troublesome. The other remaining functions have the same problem as the Cauchy function23. As can be seen 
from the influence function, the influence of large estimation errors only decreases linearly with their size. The 
Geman–McClure24 and Welsch25,26 functions try to further reduce the effect of large estimation errors. It seems 
complicated to select a cost function for general use without being somewhat arbitrary. The Huber cost func-
tion was often used26–29, but the Huber cost function is convex, differentiable, and robust to outliers. However, δ 
setting is not an easy task. Huber’s function is a parabola in the vicinity of zero, and increases linearly at a given 
level |e(i)| > δ . This the estimator is very satisfactory and is rarely found that it is inferior to some other cost 
functions, so it is recommended in almost all situations. However, sometimes difficulties are encountered, which 
may be due to the discontinuous gradient value of the cost function due to its discontinuous second derivative. 
Tukey’s loss is non-convex, non-differentiable34; it seems complicated to select a cost function for general use 
without being somewhat arbitrary. Following35, for the regression problems, the best choice is the Lp despite its 
theoretical no robustness: they are quasi-robust. However, it suffers from computational difficulties. However, the 
Fair function can yield nicely converging computational procedures. Compared to the quadratic cost function, 
the adaptive Fair function can track the statistical characteristics of the estimation error, which is conducive to 
improving the robustness of the proposed algorithm. In contrast, the Fair function is preferable since it is con-
tinuously derivable, while the Huber function is a piecewise function with unsmooth points.

Besides, system measurement interference will affect the error cost function, where impulse interference will 
significantly affect the estimation accuracy and most diffusion estimation algorithms on the network. There-
fore, designing a robust distributed adaptive algorithm to deal with impulse interference of different intensities 
is necessary. Recently, Wen proposed the diffusion least mean p-power algorithm36, robust to the generalized 
Gaussian noise environment. Still, DLMP was proposed with a fixed power p-value, so p is the critical factor, 
which means the DLMP algorithm performance is highly susceptible to the p-value. Using minimization of 
L1-norm subject to a constraint on the estimate weight vectors, Ni and colleagues designed a diffusion sign 
subband adaptive filtering (DSSAF) algorithm37. Still, the computational complexity of the DSSAF algorithm is 
relatively large. By combining the diffusion least mean square (DLMS) algorithm9 and the sign operation to the 
estimated error at each iteration moment point, Ni and colleagues derived a diffusion sign-error LMS (DSELMS) 
algorithm38. The DSELMS algorithm architecture is simple and easy to implement, but the DSELMS algorithm 
has a significant drawback (i.e., the steady-state error is high)39. Besides, inspired by the least logarithmic absolute 
difference (LLAD) operation, Chen and colleagues designed the DLLAD algorithm7. Nevertheless, the robust-
ness of this algorithm to the input signal and impulsive interference has not been performed. By combining the 
ATC strategy and the probabilistic LMS algorithm8,40, Guan and colleagues proposed a diffusion probabilistic 
least mean square (DPLMS) algorithm41. Based on the Huber objective function, a similar set of algorithms 
by Guan and colleagues27, Wei and colleagues41 have been proposed as the DNHuber DRVSSLMS algorithms, 
respectively. Besides, the computational algorithm complexity of the DRVSSLMS algorithm is high, which is 
not conducive to implementing practical engineering projects. Soheila and colleagues29 used the pseudo-Huber 
cost function instead of the square error to design the RDLMS algorithm based on the Huber cost function; 
however, the RDLMS algorithm was not designed for impulsive interference. By applying the modified Huber 
function together with an adaptive threshold, YU and colleagues proposed a novel diffusion normalized least 
mean M-estimate algorithm (DNLMM) against impulsive interference30 for impulsive interference. However, the 
basis of the DNLMM algorithm is still based on the Huber function. Huber’s function is a parabola in the vicin-
ity of zero and increases linearly at a given level |e(i)| > δ . And from time to time, difficulties are encountered, 
which may be due to the lack of stability in the gradient values of the cost function because of its discontinuous 
second derivative. Furthermore, the adaptive Fair function can track the statistical characteristics of the esti-
mated error e(i) , which helps to improve the robustness of the proposed algorithm. In contrast, the Fair cost 
function is preferable since it is continuously derivable while the Huber cost function is a piecewise function 
with unsmooth points. So, we propose a robust distributed adaptive filtering algorithm by combining the Fair 
cost function and ATC scheme at all distributed network nodes in this paper, namely the DFair algorithm. The 
stability of the mean estimation error and the computational complexity are analyzed theoretically. Simulation 
experiment results indicate that the DFair algorithm is more robust to the input signal and impulsive interference 
than the RDLMS29, DNLMM30, DGCLD42, and DPLMS41 algorithms.

The remainder of this paper is organized as follows. The proposed DFair algorithm is proposed in detail 
in “Proposed the DFair algorithm” section. The DFair algorithm’s statistical behavior, including the stability 
performance, computation complexity, and parameter ( δ ) for the DFair algorithm, is studied in “Performance 
analysis” section. The simulation experiments are described in “Simulation results” section. Finally, the conclu-
sion is provided in “Conclusion” section.
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Proposed the DFair algorithm
In this section, the DFair algorithm is developed. Firstly, an adaptive filtering algorithm based on the Fair cost 
function is proposed. Then we modify this adaptive filtering algorithm by extending at all network agents to 
develop the DFair algorithm.

The adaptive filter algorithm based on the fair cost function.  Let W(i) be the system estimated 
weight vector with length M, X(i) the input signal vector of the adaptive filter at iteration i, and the prediction 
error e(i) between the desired signal d(i) and the actual output y(i) can be expressed by

where Wo(M × 1 ) is the parameter of interest system, which needs to be estimated and v(i) is the measurement 
interference.

Fair adaptive filter aims to minimize the Fair cost function defined as

where δ > 0 is the cut-off value.
According to the steepest descent method, the system estimated weight vector update of the Fair adaptive 

filter is

where sgn() is the symbolic function, and µ is the step size.

The adaptive diffusion filter based on the fair cost function.  Our previous paper’s research consid-
ers a network of N sensor nodes distributed over a geographic area (as Fig. 1)18,28,41. We assume an undirected 
graph so that if agent n-1 is a neighbor of agent n, then agent n-1 is also a neighbor of agent n. We assign a pair 
of nonnegative scaling weights to the edge connecting n and n-1. A network is connected if paths with nonzero 
scaling weights can be found linking any two distinct agents in both directions, either directly when they are 
neighbors or by passing through intermediate agents when they are not neighbors. In this way, information can 
flow in both directions between any two agents in the network. Xn(i) and dn(i) are the input signals and observa-
tion output signals at agent n, respectively.

An adaptive network equips the network’s nodes with local learning rules or local adaptive filters. The avail-
able communication topology is then employed to efficiently implement a cooperation protocol among the nodes 
to exploit spatial and temporal information efficiently. Different learning rules allied with different cooperation 
protocols give rise to different adaptive networks. Based on Fig.  1, using the local cost function 
J localn (W(i)) = δ2

(

|en(i)|
δ

− log
(

1+ |en(i)|
δ

))

 , we seek the optimal linear estimator that minimizes the global cost 
function:

where at each time instant i, each sensor node n ∈ {1, 2, · · · ,N} has access to some zero-mean random process 
{dn(i),Xn(i)} , dn(i) is a scalar and Xn(i) is a regression vector ( M × 1 ). Suppose these measurements output 
follows a standard model given by:

(1)e(i) = d(i)− y(i) = WoTX(i)+ v(i)−WT(i)X(i)

(2)J(i) = δ2
( |e(i)|

δ
− log

(

1+ |e(i)|
δ

))

(3)W(i + 1) = W(i)+ µδ

( |e(i)|
δ

1+ |e(i)|
δ

)

sgn(e(i))X(i) = W(i)+ µ
δe(i)

δ + |e(i)|X(i)

(4)Jglobal(W(i)) =
∑

n

J localn (W(i)) =
∑

n

δ2
( |en(i)|

δ
− log

(

1+ |en(i)|
δ

))

(5)dn(i) = XT
n (i)W

o + vn(i)

Figure 1.   A network consisting of N agents18,28,41.
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where Wo(M × 1 ) is the unknown system parameter vector with length M, and vn(i) is the measurement inter-
ference with variance σ 2

v,n and each node has a different value of vn(i).
In9, the DLMS algorithm is obtained by minimizing a linear combination of the local MSE:

where the set of nodes that are connected to n (including n itself) is denoted by Nn and is called the neighbor-
hood of nodes n. The weighting coefficients al,n are real and satisfy 

∑

l∈Nn
al,n = 1 . al,n forms a nonnegative 

combination matrix A.
The DLMS algorithm obtains the estimation via two steps, adaptation and combination. According to the 

order of these two steps, the updating equation of the DLMS algorithm can be expressed as

where µn is the step size (learning rate), and ϕn(i) is the local estimates at node n.
Based on Eq. (7), the derivative of the local instantaneous approximations for Wn(i) can be formulated as:

As shown in Fig. 1 for the framework of the ATC diffusion strategy, the diffusion algorithms first update the 
local intermediate estimate by the steepest descent method. Then, each node combines the local intermediate 
estimates from its neighbors. The steps of the diffusion strategy for distributed estimation are as follows: (1) 
adaptation step, utilizing the stochastic gradient descent method, the intermediate estimate of node k for the 
parameter update is derived as:

where µn is a learning step-size and Wn(i) is the estimate of Wo for node n at the time instant i.
(2) combination step, in this step, the node receives all intermediate estimates from its neighbors as follows:

For simplicity, a summary of the DFair algorithm procedure based on the analysis presented above is given 
in Table 1.

Performance analysis
The DFair adaptive filtering algorithms, including mean behavior and computational complexity, will be dis-
cussed in this subsection. Firstly, to facilitate analysis and expression, we define some equations at agent n and 
time i, Ŵn(i) = Wo −Wn(i) , ϕ̂n(i) = Wo − ϕn(i) , which are then collected to form the system weight error 
vector and intermediate system weight error vector, i.e., W(i) = col{W1(i),W2(i), . . . ,WN (i)} , 
ϕ(i) = col{ϕ1(i),ϕ2(i), . . . ,ϕN (i)} , Ŵ(i) = col

{

Ŵ1(i), Ŵ2(i), . . . , ŴN (i)
}

 , ϕ̂(i) = col
{

ϕ̂1(i), ϕ̂2(i), . . . , ϕ̂N (i)
}

 , 
µ(i) = diag

{

µ1
δ

δ+|e1(i)| ,µ2
δ

δ+|e2(i)| , . . . ,µN
δ

δ+|eN (i)|

}

 , and e(i) = col{e1(i), e2(i), · · · , eN (i)}.

Mean weight error vector behavior.  To facilitate performance analysis, we make the following assump-
tions:

Assumption 1  All measurement interferences are independent of any other signals.

Assumption 2  X(i) is zero-mean Gaussian, temporally white, and spatially independent with 
Rxx,n = E

[

Xn(i)X
T
n (i)

]

.

(6)J localn (W(i)) =
∑

l∈Nn

al,nE|el(i)| =
∑

l∈Nn

al,nE
∣

∣

∣
dl(i)− XT

l (i)W(i)
∣

∣

∣

(7)

{

ϕn(i) = Wn(i − 1)+ µnXn(i)en(i)
Wn(i) =

∑

l∈Nn

al,nϕl(i)

(8)∇J localn (Wn(i)) =
∂

∂W(i)

(

J localn (Wn(i))
)

= − δen(i)

δ + |en(i)|
Xn(i)

(9)ϕn(i) = Wn(i − 1)− µn∇J localn (Wn(i)) = Wn(i − 1)+ µn
δen(i)

δ + |en(i)|
Xn(i)

(10)Wn(i) =
∑

l∈Nn

al,nϕl(i)

Table 1.   The DFair algorithm summary.
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Assumption 3  The regression vector Xn(i) is independent of Ŵk

(

j
)

 for all k and j < i.

The DFair algorithm will be obtained. Equations (9) and (10) can be written as

where C = C⊗ I , Sµ = µ⊗ I , SSe (i) = Se(i)⊗ I , X(i) = col{X1(i),X2(i), . . . ,XN (i)}, Se(i) = diag{e(i)}, and 
⊗ denotes the Kronecker product operation.

Taking the expectation of Eqs. (11) and (12),

D e n o t e  t h e  m e a s u r e m e nt  i n t e r f e r e n c e  v e c t o r  b y  V(i) = col{v1(i), v2(i), . . . , vN (i)}  , 
g(i) = col

{

g1(i), g2(i), . . . , gN (i)
}

  ,  Im(i) = col{Im1(i), Im2(i), . . . , ImN (i)}   ,  Sg(i) = diag
{

g(i)
}

  , 
SIm(i) = diag{Im(i)}  ,  SX(i) = diag{X1(i),X2(i), . . . ,XN (i)}  .  S o ,  f r o m  E q .   ( 1 )  w e  h a v e 

e(i) = STX(i)Ŵ(i − 1)+ V(i) = eo(i)+ V(i) . Then, let 
{

eg (i) = eo(i)+ g(i)
eIm(i) = eo(i)+ Im(i)

 , 
{

SSg (i) = Sg (i)⊗ I
SSIm(i) = SIm(i)⊗ I

.

So,

From Eq. (14), one can see that the asymptotic unbiasedness of the DFair algorithm can be guaranteed if the 
matrix CT

[

INM − Sµdiag
{

Rxx,1,Rxx,2, . . . ,Rxx,N

}]

 is stable. The matrix 
[

INM − Sµdiag
{

Rxx,1,Rxx,2, . . . ,Rxx,N

}]

 
is a block-diagonal matrix and it can be easily verified that it is stable if its block-diagonal entries 

[

I − µnRxx,n

]

 
is stable. So, the condition for stability of the mean weight error vector (as Eq. (15)) is given by

where ρmax denotes the maximal eigenvalue of Rxx,n . So, based on Eqs. (13) and (15), we obtain E
[

Ŵ(∞)

]

= 0.

Parameters δ for the proposed algorithm.  The choice of δ in Eq. (8) plays a vital role in the perfor-
mance of the DFair algorithm. When |en(i)|/δ → 0 , µ̂n(i) = 0 for each time i ≥ 0 and each agent n. When 
|en(i)|/δ → ∞ , µ̂n(i) = µn for each time i ≥ 0 and each agent n. So, when large µ̂n(i) = µn lead to a large MSD 
and even cause loss of convergence, while a small µ̂n(i) = 0 degrade the tracking speed of the DFair algorithm, 
which means that a large step-size responds quickly to plant changes during the initial convergence, and then a 
tiny step-size is used as the algorithm approaches its steady state. In other words, the DFair algorithm has been 
presented to obtain a fast convergence rate and a small steady-state error. Therefore, it is necessary to discuss 
the value of δ under the different intensities of impulsive interference. We set six experiment groups in a system 
identification application to choose the optimum cut-off value δ under different input signals, impulsive inter-
ference, and different network structures. Another method that can get the optimum cut-off value δ based on 
the theory derivation method for different input signals, various impulsive interferences, and various network 
structures. For the theory derivation method, although the optimal parameters δ of the proposed two algorithms 
are obtained based on minimizing the mean-square deviation (MSD) at the current time. The specific derivation 
methods are similar so that readers can refer to our previous published paper for details43. However, the optimal 
parameters δ must be time-varying with MSD, which increases the complexity of the algorithm. Therefore, for 
the sake of simplicity and this paper mainly discusses the design of a novel cost function structure, iterative 
formulas will increase the computational complexity. So, in this paper, find the approximate optimal parameter 
value δ of the proposed diffusion adaptive filtering algorithm by designing multiple sets of simulation experi-
ments in different situations. Several experiments were performed in a system identification application in the 
presence of impulsive interference and Gaussian noise. Gaussian noise is a white Gaussian random process with 
zero mean and variance equal to 0.01. Impulsive interference is a Bernoulli–Gaussian distribution18 that was 
added to the unknown system output also. The Bernoulli–Gaussian impulsive interference, v(i) = f (i)g(i) is a 
product of a Bernoulli process g(i) and a Gaussian process f (i) , where f (i) is a white Gaussian random process 
with zero mean and variance σ 2

f  , and g(i) = {0, 1} is a Bernoulli process with the probabilities p(1) = Pr and 
p(0) = 1− Pr.

In this part, nodes of network topology are set as N = 20, and the input regresses Xn(i) of this distributed 
network are assumed to be spatiotemporally independent zero-mean white Gaussian distributed with different 
covariance matrixes Rxx,n . The impulsive interference is also assumed to be spatially and temporally independent 
distributed with power σ 2

f  . For the adaptation and combination weights, we apply the uniform rule (i.e., 
al,n = 1/Nn , where the set of nodes that are connected to n is denoted by Nn ). We evaluate the relative efficiency 
of different δ estimators based on their MSD to evaluate the performance of DFair, where 

MSD(i) = 1
N

N
∑

n=1
E
[

|Wo −Wn(i)|2
]

28,41. Also, the independent Monte Carlo number is 10, and each run has 800 

iteration numbers. The different probability density of impulsive interference is considered 0%, 20%, 40%, 60%. 

(11)ϕ̂(i) = Ŵ(i − 1)− SµSSe (i)X(i)

(12)Ŵ(i) = CTϕ̂(i)

(13)E
[

Ŵ(i)
]

= CTE
[

Ŵ(i − 1)
]

− CTSµE
[

SSe (i)X(i)
]

(14)E
[

Ŵ(i)
]

= CT
[

INM − Sµdiag
{

Rxx,1,Rxx,2, . . . ,Rxx,N

}]

E
[

Ŵ(i − 1)
]

(15)0 < µn <
2

ρmax

(

Rxx,n

)
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Figures 2, 3(Left), and 4(Left) considering the convergence rate and the steady-state estimated error, we know 
the DFair algorithm is robust for the different probability density of interference when δ = 0.1.

Computational complexity.  The adaptive filtering algorithm’s computational complexity is the number of 
arithmetic operations per iteration of the weight vector or coefficient vector. That is the number of multiplica-
tions, additions, and et.al. The multiplication operation’s time-consuming operation is far greater than the addi-
tion operation’s time-consuming operation, so the multiplication operation occupies a large proportion of the 
adaptive filtering algorithm’s computational complexity. Therefore, computational complexity is an important 
property that affects the performance of the adaptive filtering algorithm. According to the above description, the 
DFair algorithm can be regarded as the structure of the variable step size DLMS algorithm with the following 
characteristics: µ̂n(i) = µn

δen(i)
δ+|en(i)| (from Table 1). The DFair algorithm has only two more multiplication oper-

ations than the DLMS algorithm. But for DPLMS, there are need more multiplication operations when 
µn(i) = µnαn(i) in Eq. (16)41 will be computed. Also, for the RDLMS algorithm, there have more multiplication 
operations when µ̂n(i) = µn

bnen(i)√
1+(en(i)/δ)

2
 in Eq.  (17)29 will be run. In addition, for the DNLMM algorithm, 

µ̂n(i) = µn
en(i)√
1+Xn(i)

2
2

 in Eq.  (13a) and Eq.  (15)30 will be consider. Furthermore, 
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Figure 2.   MSD curve with different δ of the DFair algorithm (μ = 0.4) when network topology and neighbors 
to be decided by probability (probability = 0.2): (Left) Rxx,n = σ 2

x,nIM , Pr = 0.6, and σ 2
f = 0.5 . (Right) 

Rxx,n = σ 2
x,n(i)IM , i = 1, 2, 3, . . . ,M , Pr = 0.2, and σ 2

f = 0.5.
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Figure 3.   MSD curve with different δ of the DFair algorithm (μ = 0.4) when network topology and neighbors 
to be decided by closeness in the distance (radius = 0.3): (Left) Rxx,n is a diagonal matrix with possibly different 
diagonal entries chosen randomly, Pr = 0.4, and σ 2

f = 0.5 . (Right) Rxx,n = σ 2
x,n(i)IM , i = 1, 2, 3, . . . ,M , Pr = 0, 

and σ 2
f = 0.5.
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µ̂n(i) = µn

(

1+ en(i)
δ(1+δ[exp(−�ek(i−1)α)])

)

 in Table 1 and Eq. (15)42 will add more multiplication operations. So, 
the computational complexity of the DFair algorithm smaller than RDLMS29, DNLMM30, DGCLD42, and 
DPLMS41 algorithms.

Simulation results
In this paper, we focus on the distributed adaptive filtering algorithm and compare the DFair algorithm with 
the RDLMS29, DNLMM30, DGCLD42, and DPLMS41 algorithms in linear system identification under different 
types of input signal and impulsive interference. In this part, to demonstrate the robustness performance of the 
proposed DFair algorithm in the presence of different intensity levels of impulsive interference and input signal, 
we set several group simulation experiments with different impulsive interference and different input signal 
types. For this unknown linear system, we set M = 8, and the parameters vector was selected randomly. Each 
distributed network topology consists of N = 20 nodes. An impulsive interference with a Bernoulli–Gaussian 
distribution18 was added to the system output (as described in “Computational complexity” section). Besides, 
we set the impulsive interference as spatiotemporally independent. For the adaptation weights in the adaptation 
step and combination weights in the combination step, we apply the uniform rule i.e. al,n = 1/Nn . We use the 
network MSD to evaluate the performance of diffusion algorithms28,41.

Simulation experiment 1.  Illustrating our proposed DFair algorithm is more robust to the input signal 
than the RDLMS, DNLMM, DGCLD, and DPLMS algorithms. In this experiment, there have the same network 
topology and the same impulsive interference. If any two network topology nodes are declared neighbors, con-
nect probability greater than or equal to 0.2, the network topology is shown in Fig. 5. The MSD iteration curves 
for RDLMS ( µ equal to 0.4), DNLMM ( µ equal to 0.4), DGCLD ( µ equal to 0.4), DPLMS, and DFair ( µ equal 
to 0.4) algorithms in Figs. 6, 7, and 8 are different types of the input signal when the measurement interference 
in an unknown linear system is impulsive interference with Pr = 0.4, σ 2

f = 0.09 and the cut-value δ = 0.1 for the 
DFair algorithm. Besides, the independent Monte Carlo number is 10, and each run has 800 iteration numbers.

Figures 6, 7, and 8 show that although different input signals are used, the DFair algorithm still has a faster 
convergence rate and lowest steady-state estimated error than the RDLMS, DNLMM, DGCLD, and DPLMS 
algorithms. Besides, the DFair algorithm is more robust to the input signal. In a word, from Simulation experi-
ment 1, we can get the DFair algorithm superior to the RDLMS, DNLMM, DGCLD, and DPLMS algorithms with 
different input signals, impulsive interference when using the same distributed network topology.

Simulation experiment 2.  Illustrating the DFair algorithm is more robust to σ 2
f  for impulsive interfer-

ence with a constant Pr and faster convergence rate and lower steady-state estimated error than the RDLMS, 
DNLMM, DGCLD, and DPLMS algorithms. This experiment has the same network topology: the same Pr of 
impulsive interference and the same input signal. If any two nodes in network topology are declared neighbors, a 
certain radius for each node is larger than or equal to 0.3, and the network topology is shown in Fig. 9(Left). The 
MSD iteration curves for RDLMS ( µ equal to 0.3), DNLMM ( µ equal to 0.3), DGCLD ( µ equal to 0.3), DPLMS, 
and DFair ( µ equal to 0.3) algorithms in Fig. 10 with Pr = 0.4 and the cut-value δ = 0.1 for the DFair algorithm. 
Also, the independent Monte Carlo number is 10, and each run has 800 iteration numbers.

In this experiment, we want to show that the DFair algorithm is more robust to different the probability den-
sity of impulsive interference, so we set four sub-experiments with different density σ 2

f  of impulsive interference, 
the same Pr of impulsive interference, the same input signal, and the same distributed network topology. From 
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Figure 4.   MSD curve with different δ of the DFair algorithm (μ = 0.4) when network topology and neighbors 
to be decided by closeness in the distance (radius = 0.3): (Left) Rxx,n is a diagonal matrix with possibly different 
diagonal entries chosen randomly, Pr = 0.4, and σ 2

f = 0.2 . (Right) Rxx,n = σ 2
x,n(i)IM , i = 1, 2, 3, . . . ,M , Pr = 0.4, 

and σ 2
f = 0.4.
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Fig. 10, we can find that although different probability density of impulsive interference is considered, the DFair 
algorithms have a slightly faster rate than the RDLMS, DNLMM, DGCLD, and DPLMS algorithms. The DFair 
algorithm still has a minor steady-state error than the RDLMS, DNLMM, DGCLD, and DPLMS algorithms. 
In a word, from Simulation experiment 2, we can observe that the DFair algorithm is more robust to impulsive 
interference than the RDLMS, DNLMM, DGCLD, and DPLMS algorithms.

Simulation experiment 3.  To illustrate our algorithm, it is more robust to Pr for impulsive interference 
with a constant σ 2

f  and has a faster convergence rate and lower steady-state error than the RDLMS, DNLMM, 
DGCLD, and DPLMS algorithms. In this experiment, there have the same network topology, same σ 2

f  for impul-
sive interference and the same input signal. If any two nodes in network topology are declared neighbors, a 
certain radius for each node is larger than or equal to 0.3, and the network topology is shown in Fig. 11(Left). 
The MSD iteration curves for RDLMS ( µ equal to 0.4), DNLMM ( µ equal to 0.4), DGCLD ( µ equal to 0.4), 
DPLMS, and DFair ( µ equal to 0.4) algorithms in Fig. 12 with σ 2

f = 0.04 and the cut-value δ = 0.1 for the DFair 
algorithm. Besides, the independent Monte Carlo number is 10, and each run has 800 iteration numbers.
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Figure 5.   Random network topology is to be decided by probability.

0 5 10 15 20
node

9.5

10

10.5

11

11.5

va
ria

nc
e
of

in
pu

ts
ig
na

l

0 5 10 15 20
node

-1.6

-1.58

-1.56

-1.54

va
ria

nc
e
of

no
is
e

0 100 200 300 400 500 600 700 800
Iterations

-30

-25

-20

-15

-10

-5

0

5
M
ea
n
Sq

ua
re

D
ev
ia
tio

n
(d
B
)

RDLMS (Ashkezari-Toussi et al. 2019)
DNLMM (Yu Y, et al. 2020)
DGCLD (Li X,et al. 2020)
DPLMS (Guan,et al. 2020)
DFair (Proposed)
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In this experiment, four sub-experiments with different Pr of impulsive interference were set with the same 
density of impulsive interference, the same input signal, and the same distributed network topology. From Fig. 12, 
we can find that although different Pr of impulsive interference is considered, the DFair algorithm has a slightly 
faster rate than the RDLMS, DNLMM, DGCLD, and DPLMS algorithms. The DFair algorithm still has a minor 
steady-state error than the RDLMS, DNLMM, DGCLD, and DPLMS algorithms. In a word, from Simulation 
experiment 3, we can observe that the DFair algorithm is more robust to impulsive interference than the RDLMS, 
DNLMM, DGCLD, and DPLMS algorithms.

Conclusion
This paper proposed a novel diffusion algorithm by using the Fair cost function, namely the DFair algorithm. The 
method is developed to combine and modify the DLMS algorithm and the Fair cost function at all distributed 
network nodes. Compared with some existing distributed adaptive filtering algorithms, the DFair algorithm has 
low computational complexity. The theoretical analysis demonstrates that the DFair algorithm can effectively 
estimate from an M-estimation cost function perspective. Besides, theoretical mean behavior interpreted that 
the DFair algorithm can achieve accurate estimation under the convergence interval. Besides, experimental 
simulation results showed that the DFair algorithm is more robust to the input signal and impulsive interfer-
ence than the RDLMS, DNLMM, DGCLD, and DPLMS algorithms. Overall, the DFair algorithm has superior 
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Figure 7.   (Left_top) the input signals {Xn(i)} variances of at each network node with Rxx,n = σ 2
x,nIM , (Left_

bottom) the measurement interference variances εn(i) at each network node; (Right) Transient network MSD 
(dB) iteration curves of the RDLMS, DNLMM, DGCLD, DPLMS, and DFair algorithms.
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Figure 8.   (Left_top) the input signals {Xn(i)} variances of at each network node with 
Rxx,n = σ 2

x,n(t)IM , t = 1, 2, 3, . . . ,M , (Left_bottom) the measurement interference variances εn(i) at each 
network node; (Right) Transient network MSD (dB) iteration curves of the RDLMS, DNLMM, DGCLD, 
DPLMS, and DFair algorithms.
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Figure 9.   (Left) Random network topology to be decided by a certain radius; (Right_top) the input signals 
{Xn(i)} variances of at each network node with Rxx,n is a diagonal matrix with possibly different diagonal entries 
chosen randomly, (Right_bottom) the measurement interference variances εn(t) at each network node.
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Figure 10.   Transient network MSD (dB) iteration curves of the RDLMS, DNLMM, DGCLD, DPLMS, and 
DFair algorithms. (Up_Left) with, σ 2
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f = 0.06 , and (Down_left) with σ 2
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(Down_Right) with σ 2
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Figure 11.   (Left) Random network topology to be decided by a certain radius; (Right_top) the input signals 
{Xn(i)} variances of at each network node with Rxx,n = σ 2
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measurement interference variances εn(t) at each network node.
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Figure 12.   Transient network MSD (dB) iteration curves of the RDLMS, DNLMM, DGCLD, DPLMS, and 
DFair algorithms. (Up_Left) with Pr = 0.1 , (Up_right) with Pr = 0.2 , and (Down_left) with Pr = 0.4 , and 
(Down_Right) with Pr = 0.6.
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performance when estimating the unknown linear system under different input signals and the changeable 
impulsive interference environments.
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