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Abstract: Rabbit hemorrhagic disease virus (RHDV) is the causative agent of rabbit hemorrhagic
disease (RHD), and its infection results in mortality of 70–90% in farmed and wild rabbits. RHDV is
thought to replicate strictly in rabbits. However, there are also reports showing that gene segments
from the RHDV genome or antibodies against RHDV have been detected in other animals. Here, we
report the detection and isolation of a RHDV from diseased Alpine musk deer (Moschus sifanicus).
The clinical manifestations in those deer were sudden death without clinical signs and hemorrhage
in the internal organs. To identify the potential causative agents of the disease, we used sequence
independent single primer amplification (SISPA) to detect gene segments from viruses in the tissue
samples collected from the dead deer. From the obtained sequences, we identified some gene
fragments showing very high nucleotide sequence similarity with RHDV genome. Furthermore,
we identified caliciviral particles using an electron microscope in the samples. The new virus was
designated as RHDV GS/YZ. We then designed primers based on the genome sequence of an RHDV
strain CD/China to amplify and sequence the whole genome of the virus. The genome of the virus was
determined to be 7437 nucleotides in length, sharing the highest genome sequence identity of 98.7%
with a Chinese rabbit strain HB. The virus was assigned to the G2 genotype of RHDVs according to
the phylogenetic analyses based on both the full-length genome and VP60 gene sequences. Animal
experiments showed that GS/YZ infection in rabbits resulted in the macroscopic and microscopic
lesions similar to that caused by the other RHDVs. This is the first report of RHDV isolated from
Alpine musk deer, and our findings extended the epidemiology and host range of RHDV.
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1. Introduction

The Alpine musk deer (Moschus sifanicus) is a musk deer species belonging to the genus Moschus
of the family Moschidae and is found only in the eastern Himalayas in Nepal, Bhutan, India, and
China. In China, this animal is native to the plateau regions of several northwestern provinces,
including Tibet, Qinghai, Sichuan, Xinjiang, and Gansu. The total number of this animal has been
decreasing continuously worldwide; therefore, the International Union for Conservation has listed
it as Endangered. The Alpine musk deer is facing a threat of extinction due to habitat destruction
by deforestation and livestock farming, biological use as traditional medicine, and fatal diseases [1].
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To protect this animal species, China has set up several national reserves, and one of them, Xinglongshan
National Nature Reserve, is located in the Xinglong mountain, Gansu Province [2].

Rabbit hemorrhagic disease virus (RHDV), the causative agent of rabbit hemorrhagic disease
(RHD), belongs to the Lagovirus genus in the Caliciviridae family. RHDV virions are nonenveloped
spherical particles with a diameter between 30 and 40 nm [3]. The viral genome is a positive-sense
single-stranded RNA, which is approximately 7437 nucleotides (nt) in length and is composed of
two open reading frames (ORFs)—ORF1 and ORF2. ORF1 encodes the major capsid protein VP60
and several nonstructural proteins, including a helicase, a protease, and an RNA-dependent RNA
polymerase (RdRp), while ORF2 encodes the minor structural protein VP10 [4]. The VP60 gene is
always used to deduce the phylogenetic relationships among RHDV isolates.

The highly virulent RHDV was first reported in domestic rabbits in China in 1984 [5], from where
the virus has spread to Europe and other continents [6–12]. RHDV infections result in high morbidity
(100%) and mortality (70–90%) in adult European wild rabbits [13]. Historically, RHDVs have been
divided into six genogroups (G1–G6) based on temporal distributions [14], and belong to a single
serotype. RHDV2, a new variant of RHDV, emerged in France in 2010 and represents a unique branch
in the phylogenetic tree [15]. Since then, RHDV2 viruses have been reported in many European
countries [14,16–18] and other continents [19,20]. G1, G2, G6, and RHDV2 viruses have been reported
in China, but the dominant circulating strains are from the G6 group [21,22]. RHDV is believed to
have very strict host specificity, and there is no evidence to show that this virus can naturally or
experimentally infect animals other than rabbits [23]. However, antibodies against RHDV have been
detected in animals that live in sympatry with rabbit populations infected with RHDV [24], and RHDV
RNA has also been isolated from sympatric wild animals, including rodents [25] and wild Tasmanian
devils [26]. The possible roles of these animals in the ecology of RHD and whether RHDV can infect
and cause diseases in other animal species remain unknown.

During December 2010 to January 2011, the Xinglongshan National Nature Reserve experienced
acute fatalities in Alpine musk deer, resulting in the death of a total of 105 young animals (less than
one year old) of both sexes, with a case-fatality rate of approximately 100%. Most of the animals died
without visible clinical signs. The causative agent of this disease has not yet been determined. In this
study, we report the identification of an RHDV strain from tissue samples collected from diseased
Alpine musk deer, and we also compared the new isolate with previously characterized strains in
terms of phylogeny and pathogenicity.

2. Materials and Methods

2.1. Ethics Statement

The animal experiment was approved by the Animal Management and Ethics Committee of
Gansu Agricultural University (10 April 2015). This study was carried out in strict accordance with the
recommendations in the Guide for the Care and Use of Laboratory Animals of the Ministry of Science
and Technology of the People’s Republic of China (GB 14925-2001). Written informed consent was
obtained from the relevant responsible person of Xinglongshan National Nature Reserve involved in
our study.

2.2. Sample Collection Site

The diseased Alpine musk deer were raised in an enclosure in the Xinglongshan National Nature
Reserve (E 103◦50′–104◦10′, N 35◦38′–35◦58′). A total of ~1000 deer were kept there at the end of 2010.
These animals were fed with forage and occasionally leaves collected from their natural habitat.

2.3. Clinical, Histopathological and Immunohistochemical Examination

To investigate the potential cause of the disease, we conducted field investigations and postmortem
examinations in January 2011. During the investigation, three dying Alpine musk deer at approximately
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6 months of age were examined for clinical and postmortem signs. To examine their histological
changes, tissue samples, including lung, liver, spleen, and kidney were collected and fixed in 10%
neutral phosphate-buffered formalin, routinely processed and stained with H&E for microscopic
examination. The tissue samples for virus isolation and bacterial culture were also collected and stored
at −80 ◦C and 4 ◦C, respectively. In order to detect the RHDV antigen, immunohistochemistry was
performed on livers of the dead Alpine musk deer. The primary antibody of the mouse anti RHDV
VP60 protein was prepared by ourselves, with the working concentration of 1:100, and the secondary
antibody of goat anti mouse IgG (H + L) conjugated with HRP (Invitrogen, CA, United States) was
diluted at 1:5000. The immunohistochemistry was conducted as previously described [11].

2.4. Sequence Independent Single Primer Amplification (SISPA) and Sequencing

SISPA was conducted to identify potential viral agents in the tissue samples. In brief, a total
of 5 g of the tissue mixture from each of the three animals was homogenized in 10 volumes of
phosphate-buffered saline (PBS) and freeze-thawed repeatedly three times. The homogenates from
the three animals were pooled and centrifuged at 10,000× g for 20 min to remove cell debris, filtered
through a 0.22 µm syringe filter, and stored at −80 ◦C for further use. The pellet was resuspended in
1 mL PBS after ultracentrifugation at 160,000× g and 4 ◦C for 4 h (Beckman Coulter Optima XPN-100
Ultracentrifuge). To remove the exogenous nucleic acid contamination, the sample was treated with
10 U each DNase I and RNase I at 37 ◦C for 3 h. Viral DNA/RNA was extracted from samples with the
Body Fluid Viral DNA/RNA Kit (Axygen, Wujiang, China) according to the manufacturer’s instructions.
First-strand cDNA was synthesized with SuperScript I reverse transcriptase (Takara, Dalian, China)
and K9N primers (Table 1) [27,28], and second-strand cDNA synthesis was then conducted by using
Klenow fragment polymerase (Takara, Dalian, China). PCR amplification of viral nucleic acids was
performed with LA Taq polymerase (Takara, Dalian, China) and K primers (Table 1). Fragments larger
than 500 bp were purified by 1% agarose gel and subcloned into the pMD 18-T vector (Takara, Dalian,
China) for sequencing by Comate Bioscience Co., Ltd. (Jilin, China).

Table 1. Primers designed for detecting and amplifying the complete genome of rabbit hemorrhagic
disease virus (RHDV) strain GS/YZ.

Primer Location Sequence (5′–3′) Length (bp)

K9N GACCATCTAGCGACCTCCCANNNNNNNNN
K GACCATCTAGCGACCTCCCA

RHDV-F1 1–30 GTGAAAGTTATGGYGGCTATGTCRCGCCTT
1363RHDV-R1 1333–1363 CCTCRTTRGCCATTTTCACAACTGTCATAAC

RHDV-F2 1222–1244 GGTGCTGGCAARCTCACAACCTT
1097RHDV-R2 2290–2318 CCYTCGATATGTGAACTTGATTGTATGGG

RHDV-F3 2224–2255 TGGAARCAGTACTTTGTYATGTATGGTTGTGT
1375RHDV-R3 3569–3598 CAATCTTKGTGGAGTCTGACAATGTCTTCT

RHDV-F4 3296–3322 ATGYTCWCCCACYACTGAYCTGTGCCT
1156RHDV-R4 4426–4451 GRGATGTCATRTCAACGCCAACTGC

RHDV-F5 4352–4328 TGYTRTGGGGYTGTGACGTTGGTGT
971RHDV-R5 5298–5322 CGGGCTTTGCCCTCCATAACATTC

RHDV-F6 5209–5240 CARTTYARTGTTTACAGCTACGATGCTGCTAG
1499RHDV-R6 6678–6707 TGACRACAGAYGCRAACATGATGGGTGTG

RHDV-F7 6377–6402 GTGCAATCTGGAACAGTAACAGCGGT
995RHDV-R7 7335–7371 CTGGAYTCRCCWGTGGTRTTATARATCTTAACACTAT

3′-terminus-F 6942–6967 CTTGACTGAACTCATTGACGTACGCC
536TX22 7372–7394 GGGAATTCCATATGTTTTTTTTTTTTTTTTTTTTTT

2.5. Negative Staining Electron Microscopy (EM)

A total of 2 g of the liver was homogenized in 5 volumes of sterilized PBS. Large cell debris
was removed by centrifugation twice at 4000× g for 20 min, and supernatants were collected and
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centrifuged at 10,000× g for 30 min. The pellets were resuspended in 100 µL PBS. A 25 µL drop of
the sample suspension was adsorbed to a glow-discharged carbon-coated copper grid, washed with
two drops of deionized water, and stained with 2.5% phosphotungstic acid for 30 s. The grids were
examined by an electron microscope (Hitachi 7650) at an acceleration voltage of 80 kV.

2.6. Bacterial Culture and Virus Isolation

To identify potential pathogenic bacteria, tissue specimens were cultured in aerobic and anaerobic
conditions on enrichment media (blood agar-OXOID) at 37 ◦C for 24 h. To isolate possible viral agents,
tissue homogenates prepared for virus isolation were inoculated in Vero, Hela, MDBK, MDCK, CRFK,
and RK-13 cells and blindly passaged for three generations. Cytopathic effect (CPE) was observed
daily during the inoculation.

2.7. Genome Characterization

To obtain the full-length genome sequence of the RHDV detected in this study, a set of primers
(Table 1) was designed based on the reference genome of the RHDV CD/China strain (AY523410.1),
and one-step RT-PCR was carried out to amplify each gene fragment. The amplicons were purified
using a TIANgel Midi Purification Kit (TIANGEN, Beijing, China), subcloned into the pMD18-T vector,
and sequenced by Genewiz Biotech Co., Ltd. (South Plainfield, NJ, USA). The genomic sequences were
assembled using the SeqMan program implemented in Lasergene 7.1 [29]. The subsequent multiple
alignment of the assembled full-length genomes was performed with Clustal W [30]. The complete
genome of RHDV GS/YZ was deposited in GenBank under the accession number MN478485.

To analyze the phylogeny of the new RHDV isolate, we constructed phylogenetic trees based
on the nucleotide sequences of the full-length genome and VP60 of the new isolate and 85 reference
RHDV strains downloaded from GenBank. Multiple sequence alignments were completed with Clustal
W, and then, the aligned results were submitted to build neighbor-joining trees using the Kimura
2-parameter evolutionary model, implemented in MEGA 7 [30]. Bootstrap resampling was performed
on 1000 replicates.

2.8. Animal Experiment

A total of nine New Zealand white rabbits (O. cuniculi) were purchased from a commercial rabbit
farm. All of the rabbits had not been vaccinated with RHDV vaccines, and were of approximately
4 months old, with a body weight of ~1.5 kg. The rabbits were randomly divided into three groups (G1,
G2 and G3) with equal numbers per group. Rabbits in the G1 group were inoculated intraperitoneally
with 1 mL of 10% 0.22 µm syringe filtrated liver homogenate the same as the initial preparation
used for SISPA and sequencing. The G2 group was inoculated subcutaneously with the same dose
of the material as the G1 group. G3 rabbits were inoculated intraperitoneally with 1 mL PBS as
controls. Rabbits in different groups were housed separately and monitored daily for clinical signs.
After death, necropsies were performed immediately, and tissue samples were harvested for histology,
immunohistochemistry and RT-PCR detection.

3. Results

3.1. Clinical and Histopathological Symptoms of Diseased Alpine Musk Deer

During December 2010 and January 2011, the Alpine musk deer base at Xinglongshan National
Natural Reserve suffered sudden deaths of 105 animals from a population of approximately 1000 at
that time. Through the investigation, we found that most of the affected deer developed an acute
disease and suddenly died without visible clinical signs. The disease mainly occurred in younger
animals within one year of age, with a case-fatality rate of approximately 100%. The animals with
elongated disease processes showed symptoms of depression, anorexia, and opisthotonos (Figure 1A).
Postmortem examination of dead Alpine musk deer showed that hyperemia, hemorrhage, and necrosis
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were commonly present in most organs. Specifically, the lungs manifested by edematous and congested
lobes and patchy areas of consolidation (Figure 1B). The stomach and intestines showed a dark red
appearance (Figure 1C). The spleens showed diffuse dark red color, severe hyperemia, and were
engorged, with rounded edges (Figure 1D). The livers were enlarged and brittle, showing a diffuse
dark red color and severe hyperemia (Figure 1E). The tracheal mucosa was hyperemic and contained
abundant yellow frothy fluid (Figure 1F).
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Figure 1. Macroscopic lesions observed in diseased Alpine musk deer. A dead Alpine musk deer (A)
and common signs of hyperemia, hemorrhage, and necrosis observed in the lung (B), stomach and
intestine (C), spleen (D), liver (E), and trachea (F).

The histopathological results of the diseased animals showed moderate diffuse congestion in the
alveolar capillary and blood vessels, extensive hemosiderin deposition, and dilation of bronchioles
in the lung (Figure 2A); disorganization of the splenic architecture, extensive necrosis and atrophy
of the white pulp with severe lymphocyte depletion, and moderate hemorrhage in the parenchyma
of the spleen (Figure 2B); vacuolar degeneration of hepatocytes in the central zone of the lobule,
karyopyknosis and karyolysis in some hepatocytes, and mild sinusoidal dilation and congestion in the
liver (Figure 2C); congestion of interstitial blood vessels, microthrombosis in the glomerular capillaries,
and degeneration and karyopyknosis in numerous tubular epithelial cells in the kidney (Figure 2D).
The results of immunohistochemistry showed that VP60 positive signals, showing as dark brown
staining, scattered in the cytoplasm of hepatic cells and sinusoid (Figure 3A). No positive signal was
found in the negative control (Figure 3B).

3.2. Identification of the RHDV Strain GS/YZ

To identify the potential pathogens, the SISPA method was used to amplify the gene fragments
from viral genomes. After the sequencing and analysis of 20 selected positive clones, we obtained
20 gene segments that all showed very high similarities with the genome fragments of RHDV, and no
other genes from viruses or bacteria were detected. To detect the potential casual pathogens, negative
staining samples were prepared with tissue homogenates collected from the diseased Alpine musk
deer and examined by EM. From these samples, we found viral particles ~35 nm in diameter with
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morphological characteristics of caliciviruses (Figure 4). Taken together, we believe these viral particles
are RHDVs and designated the strain as RHDV GS/YZ.
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Figure 2. Histopathological lesions observed in diseased Alpine musk deer. Lung (A): moderate,
diffuse congestion in alveolar capillary and blood vessels, extensive hemosiderin deposition, and
dilation of bronchioles; liver (B): vacuolar degeneration of hepatocytes in the central zone of the lobule,
karyopyknosis and karyolysis in some hepatocytes, and mild sinusoidal dilation and congestion; spleen
(C): disorganization of the splenic architecture, extensive necrosis and atrophy of the white pulp with
severe lymphocyte depletion, and moderate hemorrhage in the parenchyma; kidney (D): congestion
of interstitial blood vessels, microthrombosis in the glomerular capillaries, and degeneration and
karyopyknosis in numerous tubular epithelial cells. (H&E, 100×).
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3.3. Bacterial Culture and Virus Isolation

The results of the bacterial culture showed that there was no bacterial growth on the enrichment
media. No CPE was observed in Vero, HeLa, MDBK, MDCK, CRFK, and RK-13 cells inoculated with
the tissue homogenates of dead Alpine musk deer after blind passaging for three generations.

3.4. Genomic and Phylogenetic Characteristics of RHDV GS/YZ

To obtain the full-length genome sequence of RHDV GS/YZ, we designed eight pairs of primers,
the products of which covered the whole RHDV genome (Table 1). Through amplification and
sequencing, we obtained the full-length genome sequence of RHDV GS/YZ, which was 7437 nt in
length. The genomic structure was the same as that of other RHDV strains [31], composed of a
5′ noncoding region (nt 1–9), open reading frame ORF1 (nt 10–7044), open reading frame ORF2
(nt 7025–7378), and 3′ noncoding region (nt 7379–7437). To compare the genomewide differences
between GS/YZ and other RHDVs, we conducted a multiple sequence alignment with the sequence
of GS/YZ and sequences of 85 RHDV strains downloaded from GenBank. The results showed that
GS/YZ shared genome sequence identities of 78.7–98.7% with other RHDV strains, the highest of which
was with RHDV strain HB (KY437668.1) (Table 2). We also compared the nucleotide and amino acid
sequence identities of VP60 of GS/YZ with the reference RHDV strains. The alignment showed that the
nucleotide and amino acid sequence identities were 81.9–98.8% and 88.3–99.1%, respectively, with the
highest values observed between GS/YZ and the Chinese RHDV isolate WX/China/1984 (AF402614.1)
(Table 2), suggesting that GS/YZ is genetically almost identical to the rabbit strains and was probably a
“spillover” from rabbits to Alpine musk deer.

To analyze the phylogeny of GS/YZ, we constructed neighbor-joining trees based on the nucleotide
sequences of the whole genome and VP60 of GS/YZ and the reference RHDV strains (n = 85). In the whole
genome tree (Figure 5A), the new Alpine musk deer strain GS/YZ was clustered within the genogroup
G2, showing the closest evolutionary relationships with RHDV strains Chinese HB (KY437668.1),
Korea/2719 (KY235678.1), Mexico/2718 (KY235677.1), and Mexico89 (AF295785.1). This phylogeny of
the virus was strongly supported by the VP60 tree (Figure 5B), in which the new strain showed almost
the same phylogenetic topology as that of the genome tree, indicating that GS/YZ is a G2 RHDV virus,
showing close evolutionary relationships with the rabbit isolates.

Given the identity of the new virus isolated from Alpine musk deer, we compared the amino
acid differences in VP60, nonstructural proteins, and VP10 of GS/YZ and other G2 RHDV strains
(n = 19). As shown in Table 3, a total of 21 positions of GS/YZ showed amino acid substitutions
compared with those of the HB strain. Seven sites were located in the P2 domain of VP60. Although
the amino acids at these positions in GS/YZ were also observed in other strains, the combination
of 307Asn + 309Ser + 377Gln was only found in GS/YZ. VP60 is the major capsid protein and is
responsible for the attachment and entry of the virus into host cells and determines the host specificity
of the virus [32]. Three distinct amino acid residues (p29 150Tyr, RdRp 3Asp, and RdRp 18Asn) were
observed in the nonstructural proteins of GS/YZ. In the minor structural protein VP10, only two sites
showed variabilities, with the most strains having Val at site 18 in contrast to Ile at that site in GS/YZ.
Further studies should be performed to prove whether these specific amino acid substitutions were
responsible for the infection of GS/YZ in Alpine musk deer.
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Table 2. Identities of nucleotide and deduced amino acid sequences of RHDV GS/YZ with 18 selected reference RHDV strains.

RHDV Strain
GenBank

Accession No.
Country Genotype and

Genogroup

RHDV GS YZ

Nucleotides (%) Amino Acids (%)

Genome NSP * VP60 ORF2 NSP * VP60 VP10

RHDV-SD Z29514.1 China G1 95.0 94.6 96.1 96.6 98.0 98.1 96.6
Hartmannsdorf EF558586.1 Germany G1 90.9 89.3 95.2 96.3 96.1 96.6 97.5

CB137 Pt JX886002.1 Portugal G1 93.0 93.6 94.3 94.4 97.8 96.6 94.1
HB KY437668.1 China G2 98.7 98.8 98.5 98.6 99.3 98.6 98.3

WXChina 1984 AF402614.1 China G2 - - 98.8 - - 99.1 -
Korea/2719 KY235678.1 Korea G2 97.9 97.7 98.3 98.6 99.1 98.8 97.5

Mexico/2718 KY235677.1 Mexico G2 98.5 98.5 98.4 98.9 99.3 98.8 99.2
Lagovirus europaeus/GI.
1d/O cun/FR/2000/00-21 MH190418.1 France G5 94.0 93.4 95.7 95.0 97.6 97.8 93.9

Jena EF558576.1 Germany G5 94.9 94.4 96.4 97.2 97.8 97.6 94.9
Sch07 KY171748.1 China G6 89.7 88.4 92.1 95.5 96.2 95.2 96.6

CD/China AY523410.1 China G6 89.9 88.5 92.7 96.0 96.3 95.3 97.5
WHNRH DQ280493.1 China G6 89.9 88.5 92.6 94.4 95.9 95.9 96.6
NJ-2009 HM623309.1 China G6 90.3 88.9 93.2 95.5 96.7 95.9 97.5
NY-01 EU003581.1 USA G6 89.8 88.3 93.3 96.0 95.9 96.2 97.5

STR2012 KF677011.2 Poland G6 89.9 88.6 92.9 95.2 96.4 96.0 98.3
RHDV2-NL2016 MN061492.1 China RHDV2 85.1 86.7 82.2 86.2 95.8 88.4 83.1

CBMad17-1 MF407655.1 Portugal RHDV2 78.7 77.3 82.5 84.5 88.2 88.4 83.3
AUS/NSW/BRO-2/2015 MF421648.1 Australia RHDV2 87.9 90.2 81.9 85.7 97.2 88.3 83.3

*: Nonstructural protein. -: no sequence.
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Table 3. The amino acid differences of VP60, nonstructural proteins, and VP10 of the RHDV GS/YZ with the G2 strains.

Viruses

Amino Acid Sites

VP60 p16 p23 p29 Pro RdRp VP10

299 307 309 377 386 412 426 51 138 57 51 138 150 8 3 18 148 478 491 18 84

HB K G A E N T V I S N R K A Y N H S H D V T
GS/YZ R N S Q G A I N P S K R T H D N A Q A I A
Mexico/2718 R S A E G A I N P N R R A H N H A Q A V A
Mexico89 R S A E G A I N P N R R A H N H A Q A V A
Korea/2719 R S A E G T I N P N R K A H N H A Q A V A
PD_1989 R S A E G A I N P N R K A H N H A Q A V A
KGM_1988 R S A E G A I N P S R K A H N H A Q A V A
MAL R S A E G A I N P N R K A H N H A Q A V A
FRG R S A E G A I N P N R K A H N H A Q A V A
Italy-90 R S A E G A I N P N R K A H N H A Q A V A
RHDV-V351 K S A E G A I N P N R K A H N H A Q A V A
NZ54 R S A E G A I N P N R K A H N H A Q A V A
NZ61 R S A E G A I N P N R K A H N H A Q A V A
AUS/ACT/AIN-1/2009 R S A E S N I N P S K K A H N H A Q A V A
AUS/ACT/GUN1-52/2009 R G A E S N I N P S K K A H N H A Q A V A
AUS/ACT/MtPt-4/2010 R S A E S N I N P S K K A H N H A Q A V A
AUS/ACT/PI-1/2009 R S A E S N I N P S K K A H N H A Q A V A
AUS/NSW/M9/2007 R S A E S N I N P S K K A H N H A Q A V A
AUS/SA/ORA383/2008 K N A E G N I N P N R K A H N H A Q A I A
AUS/WA/B.Hill/2013 K N A Q G N I N P S R K A H N H A Q A I A
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Figure 5. Evolutionary relationships of the new RHDV isolate and reference strains based on the
nucleotide sequences of the full-length genome (A) and VP60 (B). The evolutionary history was inferred
using the Neighbor-Joining method implemented in MEGA7 and tested using 1000 bootstrap replicates.
Only bootstrap values equal to or greater than 70 are shown. Each sequence is labeled with its GenBank
accession number and name beside the branch, with an additional black dot for the new and black
triangles for the Chinese strains.

3.5. Pathogenicity of RHDV GS/YZ in Rabbits

To evaluate the pathogenicity of RHDV GS/YZ in rabbits, we inoculated six New Zealand
white rabbits subcutaneously or intraperitoneally with RHDV GS/YZ-containing tissue homogenates
collected from Alpine musk deer. All rabbits died within 72 h postinfection and showed typical
clinical signs of RHDV infection in rabbits, including an acute decrease in appetite and activity,
depression, opisthotonos, and occlusion of the nares with foam and bloody secretions. Necropsy of the
diseased rabbits showed congestion of the tracheal mucosa, pulmonary hyperemia, and carnification
(Figure 6A); friable, fatty, and discolored liver (Figure 6C); congestion and enlargement of the spleen,
and necrotic foci on the kidney (Figure 6E). No visible changes were observed in the lung (Figure 6B),
liver (Figure 6D) and kidney (Figure 6F) of the control rabbits.

Histopathologically, rabbits of both inoculated groups showed similar lesions. In the lungs,
extensive and diffuse alveolar edema and moderate congestion of small blood vessels were observed
(Figure 7A). The livers were manifested with severe, multifocal necrosis, indicated by mild to
moderate inflammatory infiltrate and consisted of lymphocytes in portal spaces, scattered intralobular
hemorrhagic foci, and single or groups of hepatocytes showed acidophilic shrinkage (Figure 7B).
Similar to those of RHDV-infected Alpine musk deer, the spleens of the rabbits showed disorganization
of the splenic architecture and extensive necrosis and atrophy of the white pulp with severe
lymphocyte depletion (Figure 7C). In the kidneys, microthrombosis presented in the glomerular
capillaries, numerous tubular epithelial cells showed degeneration and karyopyknosis, the tubular
lumen was dilated and filled with casts, and focal hemorrhages were also observed (Figure 7D).
The immunohistochemistry results showed that very strong VP60-positive signals with diffuse and
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intense dark brown staining were distributed broadly in the cytoplasm of the hepatic cells and sinusoids
of the rabbits (Figure 8A), while no signal was observed in the controls (Figure 8B).
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deposition, and dilation of bronchioles. Liver (B): vacuolar degeneration of hepatocytes in the central
zone of the lobule, karyopyknosis and karyolysis in some hepatocytes, and mild sinusoidal dilation
and congestion. Spleen (C): disorganization of the splenic architecture, extensive necrosis and atrophy
of the white pulp with severe lymphocyte depletion, and moderate hemorrhage in the parenchyma.
Kidney (D): congestion of interstitial blood vessels, microthrombosis in the glomerular capillaries, and
degeneration and karyopyknosis in numerous tubular epithelial cells [33,34].
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Figure 8. Detection of RHDV VP60 signals in the livers of the rabbits inoculated with the tissue
homogenates of the dead Alpine musk deer by immunohistochemistry. Incubation with the primary
antibodies against VP60 (A); incubation without the primary antibody as the control (B).

In addition, RHDV genes were detected in all liver samples of the infected rabbits by using RT-PCR
methods. These results indicate that GS/YZ caused typical macro- and microscopic lesions in rabbits
similar to that of other RHDVs.

4. Discussion

The Alpine musk deer has been listed as an endangered animal species. Protecting them from
fatal diseases has priority over other protective actions in China. The fatal disease that occurred in
Xinglongshan National Natural Reserve has posed a severe threat to the Alpine musk deer population.
The identification of potential causative agents of the disease is of great importance for their protection.
During the causative agent investigation process, we identified, for the first time, an RHDV strain from
the diseased Alpine musk deer. Although the causative agent of this disease has not been determined
yet, the isolation of the RHDV from the diseased deer provided an important clue and direction for
further studies.

The clinical manifestations presented in the diseased Alpine musk deer indicated that it was an
acute, hemorrhagic disease. In peracute cases, the animals died very quickly without visible clinical
signs, while in acute cases, infected animals showed anorexia, apathy, and opisthotonos. Hemorrhages,
congestions, and necrosis could be observed in several organs, particularly in the lungs, livers, spleens,
and kidneys (Figures 1 and 2). All of these macroscopic and microscopic lesions in the Alpine musk deer
were similar to that presented in RHDV-infected rabbits (Figures 7 and 8). The immunohistochemical
results showed that the RHDV antigen could be detected in the livers of dead Alpine musk deer using
the RHDV VP60 specific antibodies (Figure 3), which indicated that the dead Alpine musk deer were
indeed infected by RHDV. However, because Alpine musk deer are protected by the wildlife protection
laws of China, we could not conduct the RHDV infection experiment in Alpine musk deer and have
not obtained the direct evidence to support that the fatal disease in the Alpine musk deer had been
caused by RHDV infections. Therefore, the causative agent of this disease in the deer population is still
to be determined.

During the investigation, we obtained epidemiological data on the outbreak, and a total of
105 animals had died by the time we collected the data. However, there were only three deer available
for us to conduct the clinical examination and collect samples. Therefore, we conducted the following
experiments based on the specimens collected from the three deer. This limited our efforts to obtain
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sufficient evidence to show that the disease was caused by RHDV. After obtaining the results for
RHDV infection in the Alpine musk deer, we tried to conduct a serological investigation in the deer
population. However, the deer are timid and easily frightened, and they were difficult to capture.
Therefore, we have not yet obtained serological evidence. However, we will continue our efforts to
obtain more knowledge about this disease.

The identification of a causative agent in an emergent infection is a great challenge, especially in
one that is caused by a novel pathogen. EM is suitable for detecting pathogens in such situations [35,36].
In this study, we identified calicivirus-like particles in the liver homogenates of the dead Alpine
musk deer by EM, which provided an important clue for ultimately identifying RHDV GS/YZ.
Regrettably, we could not perform direct EM examination on the liver cells of the deer. We did not
collect specimens for preparing ultrathin sections. Another technique especially suitable for detecting
novel viruses is SISPA [26]. Based on the SISPA results, all 20 clones selected for sequencing were
RHDV-positive, and no other viral or bacterial genes were detected, which strongly supported the EM
findings. These consistent results indicated that we identified an RHDV stain from the diseased Alpine
musk deer.

The genome characteristics and phylogeny of Alpine musk deer RHDV GS/YZ indicated that this
virus is a G2 RHDV, showing close genetic and evolutionary relationships with previously reported G2
RHDV isolates (Figure 5). To date, all other RHDV strains in the G2 group were isolated from rabbits,
and no spillover of these viruses to other animal populations was found [37–39]. To understand the
potential reasons for this spillover, we compared the amino acid differences of RHDV GS/YZ and
19 other G2 RHDV strains. We found a total of 21 variable sites that were located in VP60 (n = 7),
nonstructural proteins (n = 12), and VP10 (n = 2), respectively (Table 3). The unique substitutions
(S307N + A309S + E377Q) were found in the VP60 of GS/YZ. The P2 domain of VP60 is responsible for
receptor binding and determines the host specificity of RHDV [40–42]. A previous study showed that a
specific integrin recognition motif was produced by changing two amino acids (S305R and N307D) in
VP60 [41]. Therefore, the substitutions in the VP60 of GS/YZ might affect the receptor binding property
of the virus. RdRp is responsible for replicating the viral genome and may also be responsible for
differences in virulence [43,44]. We found two distinct amino acids in the RdRp of GS/YZ, and these
changes may influence the performance of the virus in terms of viral genome replication and virulence.
RHDVs are believed to replicate strictly only in lagomorphs [23]. In addition to our findings, there were
also other reports showing that both RHDV-specific antibodies and viral RNA have been found in
other animals [24–26], suggesting that spillover of RHDV in other animal species probably happened,
but the underline molecular basis for this spillover needs to be explored in the future.

As we mentioned above, RHDV experimental infection cannot be performed in Alpine musk deer,
this limited us to replicate the disease in the Alpine musk deer. Given the nonculturable nature of
RHDV, we verified the isolation of RHDV strain GS/YZ by inoculating rabbits with liver homogenate
collected from the diseased Alpine musk deer. Typical clinical signs, pathological and histopathological
alterations, and mortality rates of RHD were reproduced in the rabbits, suggesting that the livers of the
dead deer contained large amounts of the virus, and this virus was similar in virulence to that of other
rabbit-origin RHDV strains in rabbits. This was further supported by the immunohistochemistry and
RT-PCR assays, which showed that both antigens and genes from RHDV were present in the liver cells
of the rabbits.

In the present study, we used liver homogenate instead of purified viral particles in the inoculation
experiments in rabbits, which was based partially on the evidence that showed that no other virus or
bacteria was detected in the homogenate as well as protocols from previous studies. In the previous
studies, rabbits inoculated with liver homogenate typically developed the clinical and histopathological
characteristics of RHDV infection, which was consistent with our results. The immunohistochemistry
and RT-PCR results of our study also proved that RHDV was the only pathogen present in the livers
of the infected rabbits, suggesting that the animal infection experiment was successful. In order to
provide more convincing evidence, further challenging experiments with liver homogenate collected
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from the diseased Alpine musk deer in immunized rabbits with the RHDV vaccine can be performed
in the future. If the rabbits do not develop clinical syndromes, this will indirectly confirm that the
RHDV is the dominating pathogen that caused the outbreak in Alpine musk deer.

In conclusion, we successfully isolated an RHDV strain from dead Alpine musk deer with acute
hemorrhagic disease. This virus belongs to the genogroup G2 of RHDV and is highly pathogenic in
rabbits. Our findings extended the epidemiology and probably the host range of RHDV.
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