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Genome‑wide identification 
of potential biomarkers in multiple 
myeloma using meta‑analysis 
of mRNA and miRNA expression 
data
Amit Katiyar1,2,3, Gurvinder Kaur4,5, Lata Rani4,5, Lingaraja Jena4, Harpreet Singh2, 
Lalit Kumar6, Atul Sharma6, Punit Kaur1,3* & Ritu Gupta4,5*

Multiple myeloma (MM) is a plasma cell malignancy with diverse clinical phenotypes and molecular 
heterogeneity not completely understood. Differentially expressed genes (DEGs) and miRNAs 
(DEMs) in MM may influence disease pathogenesis, clinical presentation / drug sensitivities. But these 
signatures overlap meagrely plausibly due to complexity of myeloma genome, diversity in primary 
cells studied, molecular technologies/ analytical tools utilized. This warrants further investigations 
since DEGs/DEMs can impact clinical outcomes and guide personalized therapy. We have conducted 
genome‑wide meta‑analysis of DEGs/DEMs in MM versus Normal Plasma Cells (NPCs) and derived 
unified putative signatures for MM. 100 DEMs and 1,362 DEGs were found deranged between MM 
and NPCs. Signatures of 37 DEMs (‘Union 37’) and 154 DEGs (‘Union 154’) were deduced that shared 
17 DEMs and 22 DEGs with published prognostic signatures, respectively. Two miRs (miR‑16–2‑3p, 
30d‑2‑3p) correlated with survival outcomes. PPI analysis identified 5 topmost functionally connected 
hub genes (UBC, ITGA4, HSP90AB1, VCAM1, VCP). Transcription factor regulatory networks were 
determined for five seed DEGs with ≥ 4 biomarker applications (CDKN1A, CDKN2A, MMP9, IGF1, 
MKI67) and three topmost up/ down regulated DEMs (miR‑23b, 195, let7b/ miR‑20a, 155, 92a). Further 
studies are warranted to establish and translate prognostic potential of these signatures for MM.
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Multiple myeloma (MM) is a neoplasm of plasma cells with heterogeneous clinical symptoms, complex cytoge-
netic aberrations, multiple copy number variations (CNVs), single nucleotide variations (SNVs), alternate splic-
ing events and epigenetic modifications. Nearly 50% of the MM patients have hyperdiploid  karyotypes1 with 
trisomy of chromosomes 3, 5, 7, 9, 11, 15, 19 or 21 while most of the nonhyperdiploid patients develop recur-
rent translocations between IgH locus and multiple partner genes (such as t(4;14) involving MMSET/FGFR3, 
t(6;14) CCND3, t(11;14) CCND1, t(14;16) MAF and t(14;20) MAFB). The frequently encountered CNVs in 
MM include gains (1q22, 2p14, 3p24.3, 3q26.2, 5q35.2, 6p24.3, 7q22.1, 8q24.2, 9q34.13, 11q13.2, 12q34.21, 
15q24.2, 17q23.2, 19p13.2, 20q11.22, 22q13.1) and losses (1p21.3, 4p15.31, 4q13.1, 6q25.3, 7q11.22, 8p22, 9p24.1, 
10q24.33, 12p13.1, 12q21.33, 13q21.33, 14q32.32, 16p13.3)1,2. In addition, a number of driver mutations occur 
in genes such as KRAS, NRAS, FAM46C, BRAF, TP53, MYC and others that drive disease progression from 
premalignant Monoclonal Gammaopathy of Undetermined Significance (MGUS) / Smouldering MM (SMM) 
to active  MM3–5. Single base substitution based mutation signatures have also been identified in the myeloma 
genomic landscape that are useful in understanding evolutionary clonal trajectories and other disease aspects 
in  precedence6.

Expression profiles of differentially expressed genes (DEGs) are of paramount importance and have provided 
critical prognostic insights in MM. Recent transcriptome based studies have reported gene expression prognos-
tic (GEP) signatures associated with tumor classification, survival risk  prediction7,8, progression of  MM7,9–12, 
response to  drugs13, chromosome  instbility14 and others. The DEGs included in GEP signatures are diverse but 
closely connected to similar pathways. These genes may relate to  kinome15,  autophagy16, cell  cycle10,17,  stemness18, 
cytogenetic  abnormalities9,19, chromosome  120, homozygous deletions, cell  death21 and  immune7 subnetworks. At 
least 8 to 10 molecular subgroups of MM based on the genomic and transcriptomic patterns have been reported 
that tend to correlate with different clinical  outcomes8. Computational and functional analysis of hub genes, 
nodes, networks and pathways in MM have led to the development of risk scoring systems, relating to the seven 
genetic  subgroups22, 70 genes UAMS70 risk  signatures20, IFM15 risk  stratification17, 5 gene stemness  score18, 
UAMS  1723, CINGLEC  21414, HOVON-65/GMMG-HD4 EMC  929, HZD  9721,  M3CN10 and others.

However, the prognostic scores derived from GEP signatures have low prediction accuracy and limited 
power to predict risk or  response23 perhaps due to MM heterogeneity and complex interactions between malig-
nant plasma cells and bone marrow environment. A landmark study reported GEP prognostication could be 
improved when a combination of EMC92 +  HZDCD24 was used. A similar integrative M3CN network  study10 
on MMRF-CoMMpass cohort unified eight prognostic gene signatures and demonstrated significantly improved 
prognostic performance.

Alterations in expression profiles of genes and small non-coding RNAs, especially, the miRNA, are frequently 
encountered in MM. Global miRNA expression  studies25–28 have elucidated a multitude of DEMs in MM. DEMs 
have been associated with pathogenesis of MM, drug resistance, clinical presentation of disease and clinical 
 outcomes29–34. For instance, IL6 inducible miR-21 has been observed at higher expression levels in MM than 
normal PCs (NPCs)33. Similarly, miR-106b, miR-181a, miR-181b, miR-1, miR-133a are upregulated in MGUS 
while miR-17, miR-32 are upregulated exclusively in  MM33. Another  study30 reported decreased levels of let-7a, 
let-7b, miR-15a, miR-16, miR-20a, and miR-106b both in bone marrow and blood plasma of MM as compared 
to controls. Aberrant levels of let-7i, miR-15a, miR-16 and miR-106b were found in serum of MGUS while miR-
21, miR-223 and miR-361 were deranged exclusively in MM, indicating their roles in early and later events in 
progression  respectively30. Correlations of miRs with drug resistance such as miR-29b, miR-202, miR-451 with 
Bortezomib, miR-125b, miR-137 with Dexamethasone and; miR-140, miR-451 and miR- 152 with Melphalan 
have been  reported35,36. Some of the DEMs occur in association with specific cytogenetic subgroups of  MM37. For 
example, 1q gain has been correlated with overexpression of miR-1231, 205, 215, 488; 19q gain with upregulation 
of miR-520a-5p, miR-518d-5p, miR-498, miR-520 g; del13q with downregulated miR15a/16 cluster, miR-17–92 
family (miR-17, miR-19a, miR-20a); and 17pdel with reduced expression of miR-22. Similarly, deregulation 
of miR-133b, miR-135b, miR-155,miR-193a, miR-203, miR-146a, miR-215, miR-342, miR-375, miR-650 have 
been correlated with t(4;14), miR-95, miR-125a, miR-184, miR-199a, miR-215, miR-375, miR-650, miR-99 with 
t(11;14), and miR-1, miR-99b, miR-125a, miR-133a, miR-135b, miR-196b, miR-214, miR-375, miR-642 with 
t(14;16)32–34,38,39. In addition, aberrant miRs have been associated with inferior (miR-19a, miR-16, miR-19b) 
or superior survival (miR-194, miR-153, miR-455) outcomes in  MM35. Recent studies have established the 
prognostic, predictive and diagnostic potential of not only cellular but also circulating miRNAs in plasma and 
other body fluids in  MM40.

Even though a series of MM associated potential DEM/DEG signatures have been identified across several 
studies over the years, these remain mostly heterogeneous and challenging to interpret in clinics. There are still 
unresolved questions such as their mutual interdependencies, interactions with microenvironment and their 
combinatorial synergistic prognostic and therapeutic potentials. There are still lacunae in our knowledge and 
more studies are needed to understand the signatures that are best valued in clinics for fast and early prognos-
tication of newly diagnosed MM patients. It is thus postulated that a comprehensive analysis of individual GEP 
identifiers in MM PCs as compared to normal PCs across multiple studies will help unfold common signatures 
with potential prognostic significance. In this regard, we have performed a meta-analysis of available multiple 
datasets of DEGs and DEMs in MM patients to derive a unified set of core GEP signatures. We have identified 
a combination of ‘Union 154’ DEGs and ‘Union 37’ DEMs that may aid in achieving improved prognosis and 
clinical applicability.
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Methods
Inclusion and exclusion criteria for published datasets. The keyword “multiple myeloma” with 
“homo sapiens” was used to mine the publicly available datasets from the Gene Expression Omnibus (GEO) 
 database41,42 of NCBI (http:// www. ncbi. nlm. nih. gov/ geo/) for miRNA and mRNA expression profiles found in 
Multiple Myeloma (MM) patients and healthy controls. Datasets obtained from Monoclonal Gammopathy of 
Undetermined Significance (MGUS), Smoldering Multiple Myeloma (SMM) and Plasma Cell Leukemia (PCL) 
patients were excluded since the data size was limited. Data emerging from cells or cell lines that were cultured 
in vitro and/or treated with drugs too were omitted in this study.

miRNA and mRNA expression datasets. Expression profiles from nine publicly available datasets of 
mRNAs (GEO accession: GSE125361, GSE13591, GSE16558 and GSE39754), and miRNAs (GEO accession: 
GSE125363, GSE16558, GSE17306, GSE17498, GSE24371 and GSE49261) associated with MM were retrieved 
from publicly available GEO repository (Table  S1 in Supplementary File 1) as per the inclusion and exclu-
sion criteria. Among these, two datasets of miRNA and mRNA expression profiles (44 newly diagnosed MM 
patients and 4 controls) were generated in-house by Agilent arrays. These miRNA and mRNA datasets have 
been submitted to GEO and assigned with accession numbers GSE125363 and GSE125361, respectively. In this 
study, miRNA expression profiles corresponding to 247 MM and 31 healthy control plasma cell samples in 
total, whereas mRNA expression profiles representing 407 MM and 20 healthy plasma cell samples in total were 
collated and analyzed (Table S1 in Supplementary File 1). Datasets obtained from GEO repository were not 
subjected to any additional normalization, as all the data obtained had already been processed/ normalized and 
were cross-comparable.

Preprocessing and mining of DEMs/DEGs from GEO repository. GEO2R42 (http:// www. ncbi. nlm. 
nih. gov/ geo/ geo2r/) web tool was used to identify DEGs and DEMs among MM and control plasma cell samples. 
GEO2R compared two or more groups of samples in a GEO profile using the GEOquery and Limma (Linear 
Models for Microarray Analysis) R  package43. Limma used linear model statistics to find genes that were differ-
entially expressed between the patient and control groups. The t-test and the Benjamini and Hochberg method 
were used to calculate the p-values and false discovery rate (FDR),  respectively44. The adjusted (adj.) p ≤ 0.05 and 
|logFC|≥ 1.5 were set as the cut-off criterion for identifying DEGs and DEMs.

Genome‑wide miRNA and mRNA expression profiling. Total RNA was isolated from CD138 + plasma 
cells enriched with MACS beads (Miltenyi Biotech, Germany), collected from 44 newly diagnosed treatment 
naïve MM patients diagnosed as per IMWG  guidelines45 (Table  S2 in Supplementary File 1) and 4 controls 
(pooled from 10 Hodgkin’s disease bone marrow samples). Total RNA was extracted using the miRVana miRNA 
isolation kit (Thermofisher Scientific, MA, USA).

For the genome wide miRNA expression profiling, RNA was labeled and hybridized to an unrestricted human 
microRNA v19 Microarray slide (Agilent 046,064, GPL18044) (Agilent Technologies, Santa Clara, CA, USA) 
according to the manufacturer’s protocol. Briefly, 100 ng of total RNA was labeled with Cyanine3 (Cy3) using 
miRNA Complete Labeling and Hybridization Kit (Agilent Technologies, Santa Clara, CA, USA). The Cy3-
labeled samples were resuspended in hybridization buffer and hybridized onto Human miRNA 8X60K format 
microarrays (Agilent Technologies, Santa Clara, CA, USA) at 55 °C for 20 h. After hybridization, microarrays 
were washed with gene expression wash buffer and the fluorescent signals were scanned using SureScan micro-
array scanner D (Agilent Technologies, Santa Clara, CA, USA) using one colour scan settings (Scan resolution 
3 μm, Dye channel set to Green, Green PMT = 100%). The data generated on miRNA expression in MM using 
microarrays has been submitted to GEO database with accession no GSE125363.

To correlate whether the miRNA alteration affects gene expression, mRNA expression array analysis was also 
performed on 44 MM patient samples and 4 controls (pooled from 10 Hodgkin’s disease bone marrow samples). 
Double-stranded cDNA was generated from 200 ng total RNA (isolated with miRVana kit) using the low input 
quick amp labelling kit (Agilent Technologies, Agilent Technologies, Santa Clara, CA, USA) using T7 primer, 
dNTPs and affinity script RNase block. Next, cDNA was transcribed to cRNA using T7 RNA polymerase and 
NTP mix and labeled with Cyanine3 using Cy3-CTP. The labeled cRNA was purified according to manufacturer’s 
protocol using RNAeasy extraction kit (Qiagen, Hilden, Germany). The concentration of Cyanine3 and cRNA 
was measured using NanoDrop ND1000 spectrophotometer. Samples with specific activity ≥ 6 pmol Cy3/µg 
cRNA were hybridized onto a SurePrint G3 human GE v3 8 × 60 K microarray slide (Agilent 072,363, GPL20844) 
(Agilent technologies, Santa Clara, CA, USA), and incubated for 17 h at 65 °C in a hybridization oven. The slides 
were washed and scanned in SureScan microarray scanner D (Agilent technologies, Santa Clara, CA, USA) with 
scan settings (Scan resolution 3 μm, Dye channel set to Green, Green PMT = 100%). The data generated on mRNA 
expression in MM has been submitted to GEO database with accession no. GSE125361.

Preprocessing and mining of DEMs/DEGs from Agilent array. Microarray images (*.tiff) obtained 
from SureScan scanner were quantified using Agilent Feature Extraction Software (version 11.5.1.1) (Agilent 
Technologies, Santa Clara, CA, USA). The raw data obtained (tab-delimited text file per hybridisation) was 
subsequently processed with the Limma R package available in the Bioconductor repository (http:// www. bioco 
nduct or. org). Limma used linear model statistics to find genes that were differentially expressed between the 
patients and controls. The raw intensity data were background corrected using normexp method and subse-
quently normalized using quantile method for one-color. Expression level variations between replicates were 
analyzed by pairwise comparisons using the lmFit function. The fitted model object was further processed by 
the eBayes function to produce empirical Bayes test statistics for each gene, including moderated t-statistics, 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.bioconductor.org
http://www.bioconductor.org
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p-values and log-odds of differential expression. The t test and Benjamini and Hochberg method were used to 
calculate the p-values and false discovery rate (FDR)44. The adjusted p ≤ 0.05 and |logFC|≥ 1.5 were set as the 
cut-off criterion for identifying DEGs and DEMs.

Meta‑analysis of DEGs/DEMs datasets. A widely used meta-analysis  approach46–48 was applied to 
integrate the gene/miRNA expression profiles obtained independently from GEO repository as well as datasets 
generated at our centre following microarray hybridization (Table S1 in Supplementary File 1). The gene and 
miRNA probes were assigned as per HGNC (HUGO Gene Nomenclature Committee) and miRBase-22.1 identi-
fiers, respectively using the g:Profiler49 (https:// biit. cs. ut. ee/ gprofi ler/). The differentially expressed genes/miR-
NAs obtained through R/Bioconductor limma  package43 from these individual studies were merged by taking 
the union across them. When multiple probes referred to the same gene/miRNA, the expression values obtained 
from these probes were minimized to a single value by averaging the expression value (when in the same direc-
tion of expression) or were discarded (when had diverse directions of expression). The probes with unknown 
gene or unknown miRNA identifiers or annotated as antisense RNA, chromosomes, hypothetical loci, non-cod-
ing RNAs, non-functional proteins, non-protein coding genes, pseudo-genes and uncharacterized genes were 
discarded. The DEGs identified were mapped in  DisGeNET50 to determine their known disease associations.

miRNA‑mRNA target interactions. The target genes of potential DEMs were predicted using miR-
Net-2.0 (https:// www. mirnet. ca/) according to eleven different miRNA databases (TarBase, miRTarBase, 
miRecords, miRanda, miR2Disease, HMDD, PhenomiR, SM2miR, PharmacomiR, EpimiR and starBase). The 
miRNA-mRNA pairs with inverse correlation expression trends were filtered for downstream analysis.

Core analysis using IPA. Ingenuity Pathway Analysis (IPA, Ingenuity Systems, USA; www. qiagen. com/ 
ingen uity) was used to identify the biological functions, diseases, canonical pathways, and regulatory net-
works of the functional miRNA-mRNA target interactions. Tab-delimited text files containing gene/miRNA 
IDs, expression data (fold change), and p-values were uploaded into IPA for their core analysis. The statistical 
significance of the enrichment was calculated using hypergeometric test and adjusted by FDR method (adj. 
p-value ≤ 0.05). The top functions (molecular, cellular and biological), diseases, toxicology, and gene signaling 
networks were calculated using IPA-generated negative logarithm p-values i.e., -log10(p-value) and associated 
Z- and network scores.

Construction of protein–protein interaction (PPI) network. To examine the interactive associations 
among the DEGs at the protein level, MM related genes were mapped on protein–protein interaction (PPI) data 
using  NetworkAnalyst51 (version 3.0; http:// www. netwo rkana lyst. ca). The network was built based on the origi-
nal seed proteins through executing the minimum interaction network by trimming the first-order network to 
keep only those nodes that are necessary to connect the seed nodes. Literature-curated comprehensive PPI data 
was used to predict interaction  network52. Network modules containing densely connected group of proteins 
were predicted using the random walk approach. The significant p-value of a given module was calculated with 
Wilcoxon rank-sum  test53. The enriched pathways of DEGs in significant modules (≥ 10 DEGs) were analysed 
with a threshold of p ≤ 0.05 using DAVID (database for annotation, visualization and integrated discovery) func-
tional annotation tool.

Biomarker candidates and TF regulatory network. The candidate gene biomarkers were predicted using Inge-
nuity Pathway Analysis (IPA-biomarkers analysis; http:// www. ingen uity. com). The adjusted (adj.) p ≤ 0.05 and 
|logFC|≥ 1.5 were set as the cut-off criterion. Upstream regulators (TFs) of biomarker candidates were predicted 
using NetworkAnalyst (http:// www. netwo rkana lyst. ca). TF-gene interaction analysis was performed using the 
ENCODE database. The miRNA-disease association was predicted by HMDD v3.2 (Human microRNA Disease 
Database; http:// www. cuilab. cn/ hmdd) and miRNet 2.0 (https:// www. mirnet. ca/). The regulatory associations 
between TFs and miRNAs were predicted using TransmiR v2.0 (http:// www. cuilab. cn/ trans mir). Functional and 
pathway enrichment analyses of upstream regulators were investigated using DAVID (https:// david. ncifc rf. gov/) 
with adjusted (adj.) p ≤ 0.05 and |logFC|≥ 1.5 cut-off criteria.

Survival analysis. Sigmaplot 14.0 was used to estimate Kaplan–Meier plots for overall survival (OS) and pro-
gression free survival (PFS). The survival analysis was carried out on 35 patients in whom clinical data was 
available. Comparisons between DEMs were analyzed using means of log-rank test and p ≤ 0.05 as cut-off for 
statistical significance.

Ethical clearance. The study on 44 MM patients collected from the outpatient department of the All India 
Institute of Medical Sciences (AIIMS), New Delhi was conducted in compliance with ethical guidelines of the 
AIIMS and after obtaining approval from the AIIMS ethics committee. Study individuals were enrolled follow-
ing their voluntary written informed consent.

Results
Identification of DEGs/DEMs in MM compared with NPCs. Following consolidation of data and 
its meta-analysis, a total of 100 DEMs and 1,362 DEGs were identified between multiple myeloma (MM) and 
normal plasma cells (NPC) with FDR ≤ 0.05 and logFC ≥ 1.5 threshold values (Supplementary Tables  S3-S4). 
Among these DEMs, 43 miRNAs were upregulated, and 57 miRNAs were downregulated, whereas 708 DEGs 

https://biit.cs.ut.ee/gprofiler/
https://www.mirnet.ca/
http://www.qiagen.com/ingenuity
http://www.qiagen.com/ingenuity
http://www.networkanalyst.ca
http://www.ingenuity.com
http://www.networkanalyst.ca
http://www.cuilab.cn/hmdd
https://www.mirnet.ca/
http://www.cuilab.cn/transmir
https://david.ncifcrf.gov/
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were upregulated and 654 genes were downregulated in MM (Tables S3-S4 in Supplementary File 1). The DEGs 
identified from this study were mapped across the available data of MM present in DisGeNET which established 
their known associations with MM (Table S5 in Supplementary File 1).

MicroRNA–mRNA regulatory network analysis. To verify the targets of differentially expressed miR-
NAs in MM datasets, miRNA–mRNA regulatory network was constructed using the 100 DEMs and 1,362 DEGs. 
The analysis showed an association of 85 DEMs, including 40 upregulated and 45 downregulated miRNAs, 
with 1,240 target genes, including 592 downregulated and 648 upregulated DEGs in MM (Fig. 1). The observed 
targets were statistically significant with p-value ≤ 0.05 and fold change ≥ 1.5. The most significantly upregu-
lated and downregulated miRNAs in MM were observed to be hsa-miR-191-5p (4.80 logFC) and hsa-miR-
155-5p (− 4.69 logFC), respectively, whereas the most significantly upregulated and downregulated DEGs were 
TNFRSF17 (4.91 logFC) and DEFB1 (− 4.56 logFC), respectively (Table 1; Table S6 and S7 in Supplementary File 
1). hsa-miR-155-5p (-4.69 logFC) was predicted to target maximum number of genes (315 upregulated DEGs), 
whereas hsa-miR-602 (2.20 logFC) was predicted to target the least number of genes (2 downregulated DEGs) 
(Table S8 in Supplementary File 1). Conversely, several genes were predicted to be the common targets of differ-
ent miRNAs (Table S9 in Supplementary File 1).

Correlation between canonical pathways, diseases and functions. To gain further insights into 
the pathogenesis of MM, all significant MM-correlated genes/miRNAs were investigated by IPA core analysis 
that revealed 555 human canonical pathways significantly enriched for 698 overlapping genes associated with 
MM (Table S10 in Supplementary File 1).The top five significant enriched pathways based on their significance 
(lowest BH-adjusted p-value ≤ 0.05) were EIF2 signaling (9.90E-34), regulation of eIF4 and p70S6K signaling 
(5.62E-16), coronavirus pathogenesis pathway (2.31E-15), mTOR signaling (2.49E-09), and caveolar-mediated 
endocytosis signaling (5.46E-09) (Fig. 2).

DEGs and DEMs were further investigated for their involvement in most enriched diseases and for their func-
tions in multiple myeloma. On annotation, most of the DEGs were found to be involved in cancer, organismal 
injury and abnormalities, immunological disease, connective tissue disorder, inflammatory disease (Figure S1a in 
Supplementary File 2), whereas DEMs were found to be enriched in cancer, organismal injury and abnormalities, 
reproductive system disease, inflammatory disease, and inflammatory response (Figure S1b in Supplementary 
File 2). The topmost significant diseases and biofunctions identified for DEMs and DEGs are shown in Table 2. 
Besides the leading pathways and cellular functions, gene networks were constructed to connect key genes and 
enriched categories of diseases and functions based on the correlation between DEGs. Core analysis-based net-
work revealed 25 significant networks and each individual network had a maximum of 35 focus genes. Top ranked 

1362
DEG

Under 
Expression

Over 
Expression

Regulatory 
Network

Regulatory 
Network

Candidate  
Biomarker

Candidate 
Biomarker

708

648

58

654

592

96

60

590

102

496

mRNA 
FDR ≤ 0.05, logFC ≥ 1.5

100
DEM

Under 
Expression

Over 
Expression

Regulatory 
Network

Regulatory 
Network

Candidate  
Biomarker

Candidate 
Biomarker

43

40

18

57

45

19

3

22

12

26

miRNA 
FDR ≤ 0.05, logFC ≥ 1.5

a

b

Figure 1.  Analysis flow of (a) DEGs and (b) DEMs in MM showing number of genes/ miRNAs with 
upregulated expression on left hand side and downregulated expression on the right side. (a) Out of 1,362 DEGs, 
708 were over-expressed, out of which 648 were found to be involved in regulatory network with miRNA and 58 
DEGs ultimately showed up as possible candidate biomarker in MM. Similarly, 96 of downregulated DEGs were 
found to have the possible potential to be investigated further as candidate biomarkers. (b) Expression of 45 and 
40 out of 100 DEMs was downregulated or upregulated respectively, and ultimately 19 and 18 subsets of these 
turned up to be possible candidate biomarkers for MM.
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network (network 1) with an IPA score of 49 contained 35 focus molecules. Top functions of genes associated 
with network 1 were mainly connected to cellular assembly and organization, energy production, nucleic acid 
metabolism. Likewise, miR-network consisted of 8 major networks with a maximum of 24 focus genes. Most 
of the genes in miRNA network 1 were mainly connected to cancer, organismal injury and abnormalities and 
reproductive system disease. Gene/miRNA networks and their related top diseases and functions are listed in 
Table 3 and Table S11 in Supplementary File 1.

Identification of functional modules in PPI network. Protein–protein interactions (PPI) network 
was constructed using aberrantly expressed genes identified in MM to predict biologically significant modules 
containing a group of proteins that execute similar functions. The minimum interaction network scattered in 
1–3 sub-networks including one big network with highest nodes and edges. The network analysis disclosed 1,136 
seeds (91.61% of DEGs) associated with 1,937 nodes in the network. The modules containing a group of proteins 
with identical functions were detected using the random walk approach. A total of 22 significant independent 
functional modules were observed, whereas 13 modules (module no: 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, and 16) 
were highly connected with more than 10 nodes and p ≤ 0.05 (Table 4; Table S12 in Supplementary File 1). Out 
of 1,136 seed nodes, a total of 34.68% (n = 394) nodes were observed with ≥ 10 degrees or connections with other 
nodes (Table S12 in Supplementary File 1). The betweenness centrality of nodes ranged between of 13.37 to 
741,529.3 in the constructed network. All 394 nodes were observed to be targeted by at least one MM-associated 
DEMs (Table S13 in Supplementary File 1).

The top five highly connected hub nodes included UBC, ITGA4, HSP90AB1, VCAM1 and VCP (Table S12 in 
Supplementary File 1). Module-wise distribution of top three highly connected hub nodes encompassed BRCA1, 
CDKN1A and PCNA in module 0 (Figure S2a), UBC, ITGA4 and VCAM1 in module 1 (Figure S2b) and JUN, 
STAT1 and EGR1 in module 2 (Figure S2c in Supplementary File 2).

Identification of biomarker candidates for multiple myeloma. The common molecular biomarker 
candidates among DEGs and DEMs for diagnosis, disease progression, efficacy, prognosis, response to therapy 
and safety were identified using the IPA software and HMDD/miRNet database, respectively (Table  5). The 
analysis revealed 154 (12.42%) potential biomarkers out of 1,240 observed DEGs that could bear clinical value 
for MM and were designated as ‘Union 154’ signature (Fig. 3a). These included common biomarker candidates 
predominantly with diagnosis (n = 82; 63.25%), efficacy (n = 90; 58.44%), prognosis (n = 56; 36.36%), disease 
progression (n = 21; 13.64%), response to therapy (n = 23; 14.94%), and safety (n = 9; 5.84%) (Tables S14 and 
S15 in Supplementary File 1). Among the target gene candidate biomarkers, 42.21% (n = 65) of targets qualified 
for more than one role (Supplementary Tables S14 and S15). For example, gene CDKN2A was observed to be 
implicated in six biomarker applications including diagnosis, disease progression, efficacy, prognosis, response 
to therapy and safety.

In addition, miRNA disease databases such as HMDD and miRNet revealed 37 aberrantly expressed miRNAs 
as potential biomarkers with clinical utility for MM (Table S16 in Supplementary File 1) and were designated 

Table 1.  List of top 5 up- and down-regulated miRNAs and genes in multiple myeloma.

Accession no miRNA name (miRBase-22.1) adj.P.Val logFC Regulation

MIMAT0000440 hsa-miR-191-5p 1.72E-03 4.80 Up

MIMAT0000420 hsa-miR-30b-5p 1.27E-02 4.78 Up

MIMAT0003326 hsa-miR-663a 3.07E-04 4.58 Up

MIMAT0000243 hsa-miR-148a-3p 5.66E-13 4.38 Up

MIMAT0000433 hsa-miR-142-5p 3.07E-04 4.20 Up

MIMAT0000646 hsa-miR-155-5p 2.97E-03 -4.69 Down

MIMAT0000753 hsa-miR-342-3p 1.57E-05 -3.74 Down

MIMAT0000085 hsa-miR-28-5p 4.57E-09 -3.13 Down

MIMAT0003320 hsa-miR-650 2.97E-02 -3.10 Down

MIMAT0000266 hsa-miR-205-5p 3.29E-09 -3.07 Down

Accession no Gene name adj.P.Val logFC Regulation

HGNC:11,913 TNFRSF17 0.00E + 00 4.91 Up

HGNC:13,310 GPRC5D 0.00E + 00 4.49 Up

HGNC:2318 CPNE5 0.00E + 00 4.29 Up

HGNC:21,063 MOXD1 2.00E-02 4.02 Up

HGNC: 17,825 PLA2G16 0.00E + 00 3.99 Up

HGNC:2766 DEFB1 2.00E-02 -4.56 Down

HGNC:1990 CKAP2 0.00E + 00 -4.00 Down

HGNC:11,763 TFRC 2.00E-02 -3.95 Down

HGNC:26,260 TMEM156 7.65E-04 -3.93 Down

HGNC:1036 BEX1 1.00E-02 -3.75 Down
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as ‘Union 37’ signature (Fig. 3b). A systematic literature review of ‘Union 37’ signatures disclosed that 29.73% 
(n = 11) miRNAs were known circulating biomarkers for diagnostics and prognostics in MM. Some of these 
miRNAs were identified as epigenetically regulated miRNAs (n = 4), as therapeutic targets (n = 7) and dysregu-
lated miRNAs that resulted in MM disease phenotype (n = 7) and are given in Table 6.

Effect of DEGs/DEMs on clinical outcomes. A significant correlation of differential expression of miR-
30d-3p with PFS (p = 0.05) and of miR-16–2-3p with OS (p = 0.03) and PFS (p < 0.001) was observed (Fig. 4a–c). 
The miR-16–2-3p interacted with two predominant transcription factors (P53, E2F1) (Fig. 4d) while miR-30d-3p 
interacted with multiple transcription factors (EPAS1, EZH2, FOXO3, GATA6, HDAC3, HIF1A, MYC, NCOR1, 
SMAD2, SMAD3) (Fig. 4e) (Table S17 in Supplementary file 1).

TF‑gene/miRNA coregulatory networks. We further investigated the TF-miRNA-target gene regu-
latory network for meta-signature gene/miRNAs identified in this study. The gene-TF regulatory network of 
5 gene (≥ 4 biomarkers applications) revealed 164 interaction pairs among 5 seed genes (CDKN1A, MMP9, 
CDKN2A, MKI67, and IGF1) and 139 transcription factors (TFs) (Table S18 in Supplementary File 1). Among 
them, upregulated gene CDKN1A was found to be regulated by 87 TFs, CDKN2A was regulated by 12 TFs and 
IGF1 was regulated by 10 TFs (Fig. 5). Similarly, the downregulated gene MMP9 interacts with 20 TFs, and 
MKI67 interacts with 10 TFs (Fig. 5). TF-gene interactions are shown in Table S17 in Supplementary File 1.

TF-miRNA regulatory analysis of top 3 up- and downregulated miRNA biomarkers based on the number 
of targets showed an association with 339 TFs (Table S19 in Supplementary File 1). From the data of TransmiR, 
downregulated DEMs such as hsa-miR-20a, hsa-mir-155, and hsa-mir-92a were found to be regulated by 143, 
114 and 11 TFs, respectively (Figure S3a-c). Likewise upregulated DEMs including hsa-mir-23b, hsa-mir-195 
and hsa-let-7b were found to be regulated by 140, 63 and 58 TFs, respectively (Figure S3d-f in Supplementary 
File 2; Table S17 in Supplementary File 1).

The top 5 enriched biological functions of TFs were investigated and subsequently compared for up-and 
downregulated meta-signature gene/ miRNAs (Table S20 in Supplementary File 1). TFs of upregulated genes were 
enriched in pathway namely “transcriptional misregulation in cancer”, whereas TFs of downregulated genes were 

Figure 2.  Overlapping canonical pathways generated by IPA (QIAGEN IPA; http:// www. ingen uity. com). The 
figure shows overlapping canonical pathways associated with differential proteins. The nodes represent pathways 
and edges are labeled with the number of common proteins connecting each node. Top 5 significant pathways 
are marked with * followed by % overlap across pathways.

http://www.ingenuity.com
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Table 2.  Top five diseases and bio functions identified by IPA analysis of miRNA and mRNA in MM.

Name (miRNA) p-value range Focus molecules

Diseases and Disorders

Cancer 4.96E-02—3.57E-30 52

Organismal Injury and Abnormalities 4.96E-02—3.57E-30 60

Reproductive System Disease 1.62E-02—3.57E-30 42

Inflammatory Disease 4.00E-02—2.49E-25 39

Inflammatory Response 4.00E-02—2.49E-25 33

Molecular and Cellular Functions

Cellular Development 4.96E-02—3.34E-14 42

Cellular Growth and Proliferation 4.96E-02—3.34E-14 39

Cellular Movement 4.52E-02—3.96E-08 24

Cell Cycle 4.52E-02—3.48E-07 10

Cell Death and Survival 4.11E-02—6.36E-06 24

Physiological System Development and Function

Organismal Development 4.96E-02—3.06E-11 19

Digestive System Development and Function 1.02E-08—1.02E-0 6

Hepatic System Development and Function 1.02E-08—1.02E-0 6

Organ Development 1.02E-08—1.02E-0 6

Cardiovascular System Development and Function 4.96E-02—2.94E-07 14

Name (genes) p-value range Focus molecules

Diseases and Disorders

Cancer 1.70E-09—1.90E-62 1324

Organismal Injury and Abnormalities 1.70E-09—1.90E-62 1339

Immunological Disease 1.04E-09—1.45E-39 630

Connective Tissue Disorders 1.03E-10—2.35E-35 258

Inflammatory Disease 1.42E-09—2.35E-35 337

Molecular and Cellular Functions

Cell Death and Survival 1.70E-09—1.24E-47 594

Protein Synthesis 6.71E-13—6.21E-41 257

RNA Damage and Repair 9.02E-35—2.44E-35 54

Cellular Compromise 3.75E-18—2.72E-33 189

Cellular Development 8.50E-10—3.16E-27 490

Physiological System Development and Function

Organismal Survival 3.14E-22—6.61E-28 411

Immune Cell Trafficking 1.54E-09—1.81E-26 259

Lymphoid Tissue Structure and Development 1.24E-09—3.59E-26 273

Hematological System Development and Function 1.54E-09—1.10E-25 403

Tissue Morphology 1.03E-09—1.37E-22 315

Table 3.  Top five associated network functions predicted by an IPA analysis of miRNA and mRNA in MM.

ID Associated Network Functions (miRNAs) Score Focus Molecules

1 Cancer, Organismal Injury and Abnormalities, Reproductive System Disease 58 24

2 Glomerular Injury, Inflammatory Disease, Inflammatory Response 43 19

3 Neurological Disease, Organismal Injury and Abnormalities, Psychological Disorders 32 15

4 Digestive System Development and Function, Gastrointestinal Disease, Hepatic System Development 
and Function 19 10

5 Glomerular Injury, Inflammatory Disease, Inflammatory Response 2 1

ID Associated Network Functions (genes)

1 Cellular Assembly and Organization, Energy Production, Nucleic Acid Metabolism 49 35

2 RNA Post-Transcriptional Modification, Nucleic Acid Metabolism, Small Molecule Biochemistry 46 34

3 Cell Cycle, Cellular Assembly and Organization, DNA Replication, Recombination, and Repair 43 33

4 Drug Metabolism, Small Molecule Biochemistry, Cellular Compromise 41 32

5 Infectious Diseases, Post-Translational Modification, Developmental Disorder 38 31
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not observed to be significantly enriched in any pathways. Moreover, we found that the TFs of up- and downregu-
lated miRNAs were commonly enriched in 39 pathways, including MAPK signaling pathway (hsa04010), HIF-1 
signaling pathway (hsa04066), cell cycle (hsa04110), wnt signaling pathway (hsa04310), osteoclast differentiation 
(hsa04380), toll-like receptor signaling pathway (hsa04620), B cell receptor signaling pathway (hsa04662), path-
ways in cancer (hsa05200), Transcriptional misregulation in cancer (hsa05202), Viral carcinogenesis (hsa05203), 
microRNAs in cancer (hsa05206), chronic myeloid leukemia (hsa05220), acute myeloid leukemia (hsa05221), 
small cell lung cancer (hsa05222) and others (Table S20 in Supplementary File 1).

Discussion
In this study, a meta-analysis of mRNA and miRNA expression profiles has been carried out on more than 600 
MM patients including 44 Indian myeloma patients (represented in 9 GSE-GEO datasets) in order to com-
pute altered mRNA and miRNA patterns and potential biomarkers of prognostic clinical relevance in multiple 

Table 4.  Top five significant functional modules and associated hub genes. # Top 5 modules based on size *Top 
10 hub genes based on degree.

#Module Size P-value Gene Id Gene Symbol *Degree Betweenness

0 402 3.64E-11 672 BRCA1 51 12,309.77

1026 CDKN1A 41 9837.73

5111 PCNA 37 5809.36

983 CDK1 30 4144.93

5347 PLK1 26 5018.87

4176 MCM7 24 2771.13

991 CDC20 23 1982.08

472 ATM 22 2491.62

890 CCNA2 21 1781.56

1029 CDKN2A 20 3589.92

1 373 4.57E-08 7316 UBC 358 46,319.96

3676 ITGA4 97 1251.95

7412 VCAM1 95 1200.74

7415 VCP 90 1340.9

3312 HSPA8 88 987.02

3326 HSP90AB1 83 1125.47

3309 HSPA5 81 795.28

8452 CUL3 67 541.42

3303 HSPA1A 66 565.57

203,068 TUBB 66 528.71

2 238 1.99E-02 3725 JUN 52 4409.1

6772 STAT1 47 4410.76

1958 EGR1 44 4338.56

5925 RB1 39 3345.44

3659 IRF1 34 1100.71

7421 VDR 29 2058.43

5966 REL 26 1825.76

6667 SP1 25 2321.16

7157 TP53 23 1708.21

2033 EP300 23 929.11

3 58 3.34E-02 6194 RPS6 51 42.61

6191 RPS4X 51 37.5

6210 RPS15A 51 33.01

6207 RPS13 50 38.73

6189 RPS3A 49 52.8

6228 RPS23 49 32.17

6188 RPS3 48 26.02

6202 RPS8 48 20.13

6217 RPS16 48 18.54

6129 RPL7 47 16.68

4 45 3.26E-02 1994 ELAVL1 33 870

351 APP 11 250
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Table 5.  Common molecular biomarker candidates for diagnosis, disease progression, efficacy, prognosis, 
response to therapy and safety in multiple myeloma. ★  Gene candidates with ≥ 4 biomarker applications.

*Gene Biomarker Description Regulation Biomarker application(s)

CDKN2A Cyclin dependent kinase inhibitor 2A Up Diagnosis,disease progression,efficacy,prognosis,re
sponse to therapy,safety

HGF Hepatocyte growth factor Up Diagnosis,disease progression,efficacy,prognosis

IGF1 Insulin like growth factor 1 Up Diagnosis,efficacy,prognosis,safety

CDKN1A Cyclin dependent kinase inhibitor 1A Up Diagnosis,efficacy,prognosis,response to therapy

STAT1 Signal transducer and activator of transcription 1 Up Diagnosis,efficacy,prognosis,response to therapy

MKI67 Marker of proliferation Ki-67 Down Diagnosis,disease progression,efficacy,prognosis,re
sponse to therapy

PTK2 Protein tyrosine kinase 2 Down Diagnosis,disease progression,efficacy,prognosis

MMP9 Matrix metallopeptidase 9 Down Diagnosis,disease progression,efficacy,prognosis

TOP2A DNA topoisomerase II alpha Down Diagnosis,efficacy,prognosis,response to therapy

VCAM1 Vascular cell adhesion molecule 1 Down Diagnosis,disease progression,efficacy,prognosis

UNION 37
hsa-mir-130a Cor 32
hsa-mir-106bKas 13 Xiang 13 Cor 32
hsa-mir-19a Kas 13 Xiang 13
hsa-mir-20a Kas 13 Xiang 13
hsa-mir-18a Kas 13
hsa-mir-15b Kas 24 Kas 13 Xiang 13
hsa-let-7b Kas 24 Kas 13
hsa-mir-155 Kas 24 Kas 13
hsa-mir-28 Kas 24
hsa-mir-148a Kas 24
hsa-mir-29b Kas 24
hsa-mir-30b Kas 24
hsa-mir-30d Kas 24
hsa-mir-191 Xiang 13
hsa-let-7e Xu 7
hsa-mir-19b Xu 7
hsa-mir-92a Xu 7
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Figure 3.  A comparison of commonality between (a) Union 154 DEG and (b) Union 37 DEM signatures 
found in this study with analogous published signatures showing an overlap of 22 DEGs and 17 DEMs, 
 respectively9,10,14,16,17,21,25,26,28,54.
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Table 6.  List of miRNAs that could result in disease phenotypes (multiple myeloma) when permutated.

miRNA biomarker Regulation Evidence Description Causality

hsa-mir-148a Up Target gene MiR-148a participates in the growth of RPMI8226 multiple myeloma cells by regulating 
CDKN1B YES

hsa-mir-23b Up Transcription factor target miR-23b/SP1/c-myc forms a feed-forward loop supporting multiple myeloma cell growth YES

hsa-mir-29a Up Genetics_overexpression_suppress In addition, ectopic expression of miRNA-29a or exposure to PRIMA-1Met reduced cell 
proliferation and induced apoptosis in MM cells YES

hsa-mir-29b Up Therapeutic target miR-29b-based epi-therapeutic approaches in the treatment of this malignancy YES

hsa-mir-29b-1 Up Target gene Overexpression of microRNA-29b induces apoptosis of multiple myeloma cells through 
down regulating Mcl-1 YES

hsa-mir-16–1 Down Genetics_knock down_promote

The common loss of miR-15a and miR-16–1 in CLL, as well as the loss of 13q14 in mantle 
cell lymphoma (50 percent of cases), multiple myeloma (16 to 40 percent) and prostate can-
cer (60 percent), strongly suggests that these two miRNAs act as tumor suppressor genes. 
While their full target complement is unknown, they appear to mediate their effects largely 
by down-regulating the anti-apoptotic protein BCL2. This protein is often found expressed 
at high levels in CLL and is thought to be important for the survival of the malignant cells

YES

hsa-mir-16–1 Down Target gene miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF YES

hsa-mir-19a Down Genetics_overexpression_promote miR-19a is overexpressed significantly in Lp-1 and U266 multiple myeloma cells, and pro-
mots the proliferation and invasion of the myeloma cells, but inhibits their apoptosis YES

hsa-mir-20a Down Target gene Effects of microRNA-20a on the proliferation, migration and apoptosis of multiple 
myeloma via the PTEN/PI3K/AKT signaling pathway YES
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Figure 4.  Kaplan Meier plots showing associations of (a) miR-16–2-p with OS, (b) miR-16–2-3p with PFS and 
(c) miR-30d-3p with OS. Regulatory transcription factor networks of miR-16–2 and of miR-30d are shown in 
(d) and (e) respectively.



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10957  | https://doi.org/10.1038/s41598-021-90424-y

www.nature.com/scientificreports/

myeloma. Overall, this study has imputed two core signatures, ‘Union 154’ for DEGs and ‘Union 37’ for DEMs 
in MM that appear to have a unified representation of several other analogous signatures reported in the 
 literature9,10,14,16,17,21,25,26,28,54 (Fig. 3a and b).

The present study has revealed that 85% (85/100) of DEMs and 91.04% (1,240/1,362) of DEGs were signifi-
cantly altered, are inversely correlated and involved in regulatory networking in multiple myeloma. The most 
downregulated miR observed in MM malignant plasma cells as compared to NPCs in our study is miR-155. A 
reduced expression of this miR in MM PCs vs NPCs suggests a tumor suppressor role as has also been reported 
 previously55. A similar study has reported an epigenetic repression of miR-375 in MGUS and MM primary cells 
as compared to  NPCs56, which is also concurrent to our findings. Another tumor suppressor miR-144 that can 
be sponged by lncSOX2OT57 has been reported to be downregulated in MM plasma cells and cell lines earlier 
and was found downregulated in plasma cells in our study. Similarly, upregulation of miR-29b in MM PCs in this 
study is in sync with previous studies, where it has been reported that the overexpression of miR-29b induces 
apoptosis of multiple myeloma cells by down regulating MCL-158.

Some of the DEMs observed in MM in our study can be extrapolated and categorized on the basis of their 
previously reported roles relating to pathogenesis, clinical presentation, drug resistance and clinical outcomes. 
While the deregulated miRs-30d and 181b have been associated with p53  expression33, miRs-106/ 181b and 
miR-181b/ miR-193b are specifically dysregulated in early and late stages of pathogenesis in MGUS and MM 
 respectively30. Some of the DEMs have been associated with sensitivities to Bortezomib (e.g., miRs-17-5p, miR-
29b-3p, miR-20a-5p) while others with poor survival outcomes (miR-92a, miR-16, let-7e, miR-19b, miR-19a)25. 
Although sample size of inhouse MM subset (n = 44) in our study is small, we observed all the Union37 DEMs 
in this patient population. Moreover, a significant association of low expression of miR-30d-3p with poor OS 
and of high expression of miR-16–2-3p with poor OS and PFS (Fig. 4) was also noted. The miR-30d-3p is a 

Figure 5.  TF-gene biomarker regulatory network generated by NetworkAnalyst (version 3.0; http:// www. netwo 
rkana lyst. ca). The network revealed 164 interaction pairs among 5 seed genes and 139 transcription factors 
(TFs). Blue circle stands for the seed gene and blue diamond stands for the transcription factor.

http://www.networkanalyst.ca
http://www.networkanalyst.ca
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known prognostic biomarker for MM reported to have lower serum expression levels and tumor suppressor 
functions mediated through direct targeting of TP53 and MTDH/PI3K/Akt signaling  pathway59. A recent study 
has reported high expression of miR-16–2-3p in serum of Bortezomib refractory MM  patients60 but its role in 
MM has not been investigated thoroughly. Since miR-16–2 can target WNT5A, impair ability of MSCs to dif-
ferentiate into  osteoblasts61 its deregulation may be of prognostic significance in MM and needs to be explored 
further. Coincidentally, IPA analysis has also highlighted importance of WNT pathway in this study.

Another integrative  study27 mined two miRNA and two mRNA microarray GEO datasets and identified 
39 DEMs and 32 hub genes. Among these DEMs, miR-155 and miR-148 were found to be deregulated in their 
 study27 as well as in Union 37 profile in the present work. Likewise, another meta-analysis of 7 datasets includ-
ing MM  patients26 highlighted 13 DEMs, of which hsa-miR-106b, miR-15b, miR-191, miR-19a and miR-20a are 
also represented in Union 37 profile. A recent meta-analysis by Xu et al25 reported 7 DEMs of poor prognostic 
significance among which deregulated miR-92a, miR-16, let-7e and 19b are common to the Union 37 signature.

The IPA core analysis disclosed 12.42% (n = 154) of DEGs as putative biomarkers that could be useful in 
diagnosis, disease progression, efficacy, prognosis, response to therapy and safety. Further investigation revealed 
that 42.21% (n = 65) of targets were involved in more than one functional role. It is known that proteins with the 
highest degree have the highest betweenness in the network. As hub proteins are accountable for holding net-
works  together62,63, they are more likely to be master regulators of signaling and transcription and can be used as 
therapeutic targets or  biomarkers64. The target genes identified in this study were subjected to PPI network which 
disclosed a total of 394 nodes with ≥ 10 connections with other nodes and were designated as ‘hub’ genes. All hub 
genes were observed to be targeted by MM associated DEMs and could act as possible biomarkers for this disease.

It is noteworthy that IPA based data mining of DEGs and DEMs in this study has revealed five top hub genes 
lying in the centre of functional networks. These include UBC, ITGA4, HSP90AB1, VCAM1 and VCP. Two 
genes (UBC and HSP90B1) have been earlier reported to be upregulated and involved in myelomagenesis in 
malignant plasma cells in other  studies65 as well and may be critically involved in ubiqutin-proteosomal pathway. 
The HSP90A family members are known to promote anti tumor immunity via their exposure on dying myeloma 
 cells66 and their interaction with lncRNA MALAT1 is associated with poor  prognosis67. Gene ITGA4 along with 
ITGB1 codes for integrin VLA4 that mediates homing of myeloma cells into bone marrow and augment IL6 in 
the microenvironment.68. Similarly, MM cells establish contact with bone marrow stromal cells via adhesion 
molecules such as VCAM1 and enhance osteoclast stimulating activity that can be reduced by Bortezomib and 
 Lenalidomide69,70. The gene VCP is a potential therapeutic target that mediates delivery of ubiquinated misfolded 
protein aggregates to  proteasome71 and was found to be upregulated in MM plasma cells in this study.

Conclusions
The regulatory crosstalk between DEGs and DEMs in MM is highly complex. This study has identified core 
putative signatures of DEMs (‘Union 37’) and DEGs (‘Union 154’) in MM as compared to normal PCs that may 
impact clinical outcomes (for instance, miR-16–2 and miR-30d). Further studies on functionally connected hub 
genes (such as UBC, ITGA4, HSP90AB1, VCAM1, VCP), other potential seed genes (e.g., CDKN1A, CDKN2A, 
MMP9, IGF1, MKI67), DEMs and their multidimensional networking with regulatory transcription factors 
are needed for better understanding of their oncogenic/ anti tumor properties and to explore their synergistic 
prognostic value.

Data availability
Gene expression (GSE125361) and miRNA expression (GSE125363) signatures in multiple myeloma have been 
submitted to the National Center for Biotechnology Information (NCBI; https:// www. ncbi. nlm. nih. gov/ geo) 
under BioProject accession number PRJNA515992.
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