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Abstract

Background Ageing induces functional and structural alterations in organs, and age-dependent parameters
have been identified in various medical data sources. However, there is currently no specific clinical test to
quantitatively evaluate age-related changes in bronchi. This study aimed to identify age-dependent
bronchial features using explainable artificial intelligence for bronchoscopy images.

Methods The present study included 11 374 bronchoscopy images, divided into training and test datasets
based on the time axis. We constructed convolutional neural network (CNN) models and evaluated these
models using the correlation coefficient between the chronological age and the “bronchial age” calculated
from bronchoscopy images. We employed gradient-weighted class activation mapping (Grad-CAM) to
identify age-dependent bronchial features that the model focuses on. We assessed the universality of our
model by comparing the distribution of bronchial age for each respiratory disease or smoking history.
Results We constructed deep-learning models using four representative CNN architectures to calculate
bronchial age. Although the bronchial age showed a significant correlation with chronological age in each
CNN architecture, EfficientNetB3 achieved the highest Pearson’s correlation coefficient (0.9617). The
application of Grad-CAM to the EfficientNetB3-based model revealed that the model predominantly
attended to bronchial bifurcation sites, regardless of whether the model accurately predicted chronological
age or exhibited discrepancies. There were no significant differences in the discrepancy between the
bronchial age and chronological age among different respiratory diseases or according to smoking history.
Conclusion Bronchial bifurcation sites are universally important age-dependent features in bronchi,
regardless of the type of respiratory disease or smoking history.

Introduction

Ageing is a natural process that causes changes in the function and structure of organs. Various medical
data sources have identified age-dependent parameters in different organs [1, 2]. For example, in terms of
lung function, the forced expiratory volume in 1s (FEV;), a parameter obtained by spirometry, shows
age-dependent changes [3], and bone mineral density also exhibits age-dependent changes in terms of the
bone function [4]. Recently, machine-learning techniques have been used to identify age-dependent
features from various medical images, including head magnetic resonance images [5] and chest
radiography images [6]. The structure of the trachea and bronchi also shows age-dependent changes,
including increases in the bronchial diameter and anatomical dead space [7, 8]. However, there is currently
no specific test to detect and quantitatively evaluate these age-dependent changes in the trachea and
bronchi in clinical practice.

Recent advances have made it possible to apply machine learning to medical data for diagnostics,
treatment strategy decision-making and prognostic prediction [9]. However, machine-learning models with
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a large number of parameters (e.g. deep-learning models) often suffer from a black-box problem, where it
is difficult for humans to understand the decision-making process of the model’s output. To address this
issue, explainable artificial intelligence (XAI) research has been advancing rapidly [10]. XAI enables the
prediction reasoning of machine-learning models to be explained, making it possible to describe important
features that may not have been identified by humans in a way that humans can understand.

In this study, we aimed to identify age-dependent features of the trachea and bronchi that can be
quantitatively observed through bronchoscopy. We developed a convolutional neural network (CNN)
model to estimate patient age from bronchial images obtained by bronchoscopy. To identify age-dependent
features, we then applied XAI methods to the model and evaluated the elements on which the model
was focused.

Materials and methods

Data acquisition and preparation

A total of 11 374 bronchoscopy images of 336 consecutive patients who underwent video bronchoscopy at
our hospital between January 2020 and February 2023 were obtained from our registry. Bronchoscopes
used include Olympus BF type 260, 17260, UC260FW, XP290, P290, Q290 and 1TH1200. The study
protocol was approved by the institutional review board of the NTT Medical Center Tokyo with a waiver
for the requirement of opt-in consent from patients (number 000200000816-01). We manually excluded
images taken with methods other than white light, images taken outside the body, images obtained with
dye and images with airway stents. The remaining images were converted into 400x400-pixel JPEG
format, and the extra black margins were removed. The images were divided into a training dataset and a
test dataset along the time axis (training dataset: January 2020 to January 2022, test dataset: February 2022
to February 2023). Patients who underwent bronchoscopy in both the training and test periods were
excluded from the test cohort to eliminate any potential for information leakage.

Development, training, evaluation and explanation of deep-learning models

We used PyTorch (version 2.0.0) as a library in the Python (version 3.9.16) programming language to
develop our deep-learning models. We evaluated four CNN architectures (DenseNet 121, MobileNet V3,
EfficientNet B1 and EfficientNet B3 [11-13]). For transfer learning, these models with pre-trained weights
on ImageNet were downloaded from the torchvision.models subpackage. The output layer containing 1000
fully connected nodes was replaced with a single final neuron so that the model outputs a single numerical
value for the predicted age as a regression model (figure 1). We used the mean squared error as our loss
function and trained the models using the AdamW optimiser [14]. We adopted a group k-fold
cross-validation method during model training, wherein the training dataset was divided into five groups
ensuring that images of each patient were not split across multiple groups. We applied image augmentation
during training to improve the generalisability of our model and avoid overfitting. The images used for the
training were augmented with a random rotation (up to 10 degrees) and a random perspective
transformation (distortion scale=0.1). The trained CNN models were applied to the test dataset to measure
the “bronchial age” of each image. We used gradient-weighted class activation mapping (Grad-CAM) to
visualise the areas of interest of our models [15].

Statistical analysis

For the statistical analysis, we used the SciPy library (version 1.10.1). We used Pearson’s correlation
coefficient to analyse correlations and t-test or ANOVA to test for differences in measured bronchial age.
We considered p-values <0.05 to indicate statistical significance.

Results

Patient characteristics and image information

A total of 11374 bronchoscopy images were taken in our hospital between January 2020 and February
2023 (figure 2). Images taken with methods other than white light (endobronchial ultrasonography or
narrow band imaging: 121 images), images taken outside the body (28 images), images with dye
(virtual-assisted lung mapping: 25 images) and images with airway stents (five images) were excluded.
Thus, 11 195 images were included in the analyses. To prevent information leakage, the images were
divided into a training dataset (January 2020 to January 2022) and a test dataset (February 2022 to
February 2023) along the time axis. Two patients who underwent bronchoscopy in both the training and
test periods were excluded from the test cohort. The patient characteristics are shown in table 1. The
training dataset and test dataset contained 6413 and 4669 images, respectively. The training cohort and test
cohort contained 212 and 122 patients, respectively. ~70% of the patients in each cohort had a smoking
history of >1 pack-year.
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FIGURE 1 Overall study framework. The weights of the models were initialised with pre-trained weights on
ImageNet data, followed by transfer learning for further training. The output layer, comprising 1000 fully
connected nodes, was replaced with a single final neuron. Our bronchoscopy images were partitioned into
training and test datasets along the time axis. Various models with distinct architectures were trained
independently. The trained deep-learning models were applied to the test dataset to evaluate these models.

Model training and evaluation

CNNs are a type of deep-learning algorithm that is primarily used for image classification and object
recognition tasks. First, we tried to construct a CNN that could estimate patient age from bronchial images
obtained by bronchoscopy. We adopted four representative CNN architectures as candidates: DenseNet
121, MobileNet V3, EfficientNet B1 and EfficientNet B3. We applied transfer learning to train these
CNNs. After training the models using the training dataset, we next estimated patient age from images in
the test dataset (figure 3). In each neural network architecture, the age estimated from bronchoscopy
images (bronchial age) showed a significant correlation with chronological age. Among the four
architectures, EfficientNet B3 yielded the highest Pearson’s correlation coefficient (0.9617, 95% CI
0.9595-0.9638). Therefore, the EfficientNet B3-based model was used for the subsequent analyses.

Interpretation of the deep-learning model and identification of age-dependent features

Next, we applied an XAI method to our trained model to identify age-dependent features of the trachea
and bronchi, using Grad-CAM to evaluate the elements on which the model focuses for measuring
bronchial age. We visualised the results using a heatmap, which revealed that the model predominantly
attended to bronchial bifurcation sites, both in images where it accurately predicted chronological age and
in those in which it exhibited discrepancies (figure 4). Furthermore, the model focused attention on
bronchial bifurcation sites, regardless of whether its output was higher or lower than the chronological age.
These findings indicate that bronchial bifurcation sites are crucial landmarks for the quantification of
age-related changes in the trachea and bronchi.

Relationship between bronchial age and lung age

FEV,, which is measured by spirometry, is typically used as an indicator of age-related changes in lung
function. Conversely, the measured FEV; value can be used to calculate the corresponding age, which is
referred to as the lung age. Thus, we next investigated the relationship between the bronchial age, which is
measured from bronchoscopy images using the deep-learning model that we constructed, and the lung age,
which is measured by spirometry. Among 122 patients in the test cohort, we analysed 101 patients who
underwent spirometry before bronchoscopy. We defined the median bronchial age measured from each
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Total patients underwent bronchoscopy
(January 2020 to February 2023)
Images: 11374
Patients: 336 (gross)

Excluded images
« Images taken with methods other than white light (EBUS,
NBI): 121 images
« Images taken outside a body (BALF): 28 images
« Images with a dye (VAL-MAP): 25 images
« Images with airway stents: 5 images

11195 images

Overlap with training
dataset: 2 patients

A A
Training cohort Test cohort
(January 2020 to January 2022) (February 2022 to February 2023)
Images: 6413 Images: 4669
Patients: 212 Patients: 122

FIGURE 2 Flow diagram of the bronchoscopy images. Bronchoscopy images of patients who received the
procedure at our hospital during the period of January 2020 to February 2023 were obtained from our registry.
These images were divided into training and test datasets along the time axis (training dataset: January 2020
to January 2022, test dataset: February 2022 to February 2023). Patients who underwent bronchoscopy in both
the training and test periods were excluded from the test cohort to eliminate any potential for information
leakage. EBUS: endobronchial ultrasound; NBI: narrow-band imaging; BALF: bronchoalveolar lavage fluid;
VAL-MAP: virtual-assisted lung mapping.

patient’s bronchoscopy images as the patient’s bronchial age. A scatter diagram showed a positive
correlation between lung age and bronchial age (supplementary figure S1), although the correlation
coefficient was lower than that between chronological age and bronchial age. These findings suggest that

TABLE 1 Clinical characteristics of the patients in the training and test cohorts

Training cohort Test cohort

Images 6413 4669
Patients 212 122
Chronological age, years 69 (23-93) 72 (21-95)
Male 137 (64.6) 75 (61.5)
Smoking history

<1 pack-year 62 (29.2) 39 (32.0)

>1 pack-year 150 (70.8) 83 (68.0)
Disease

Lung cancer 125 (59.0) 64 (52.5)

Interstitial pneumonia 15 (7.1) 25 (20.5)

Infection 31 (14.6) 20 (16.4)

Allergy 2 (0.9) 2 (1.6)

Other 39 (18.4) 11 (9.0)
Location of disease

Right 95 (44.8) 56 (45.9)

Left 72 (34.0) 30 (24.6)

Both lungs 45 (21.2) 36 (29.5)

Data are presented as n, median (range) or n (%).
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FIGURE 3 Accuracy of the trained deep-learning models. The actual chronological age and the predicted
bronchial age of each image in the test dataset were plotted on scatter plots. The bronchial ages were calculated
utilising four trained models. Pearson’s correlation coefficient, along with the 95% confidence interval, were
indicated for each model. Red lines signify that the bronchial age is equal to the chronological age.

while there was a certain relationship between the age-related changes in the ventilation function, as
represented by FEV, and the age-related changes in the bronchial structure, as represented by bronchial
bifurcation sites, many other factors are involved in a complex manner.

Universal measurement of bronchial age regardless of respiratory disease or smoking history

Next, we compared the distribution of bronchial age measured by our deep-learning model for each
respiratory disease. We classified 122 cases in the test cohort into five groups based on their definitive
diagnoses: lung cancer, interstitial pneumonia, infection, allergy and others (table 1). While we observed
slight differences in the measured bronchial age between groups (p=0.0357), we did not find significant
differences in the discrepancy between bronchial age and chronological age (p=0.1258; figure 5a). These
results suggest that our constructed deep-learning model can measure bronchial age accurately across a
wide range of respiratory diseases and is not limited to a specific disease.

We also investigated whether smoking history affects the calculation of bronchial age by our deep-learning
model. We classified 122 cases in the test cohort into two groups based on whether they had a smoking
history of >1 pack-year (table 1) and compared the bronchial age between the two groups (figure 5b).
There was no significant difference in bronchial age between the two groups (p=0.3017), and we did not
observe a significant difference in the discrepancies between bronchial age and chronological age
(p=0.9540). These findings suggest that our constructed model can accurately measure bronchial age
regardless of smoking history.
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FIGURE 4 Visualisation of age-dependent features of the trachea and bronchi identified by our model.
Examples of the original bronchoscopy images and their corresponding heatmap visualisation using
gradient-weighted class activation mapping (Grad-CAM). The actual chronological age (C) and predicted
bronchial age (B) of each image are also indicated. The examples include images with both a) lower and b)
higher bronchial age than chronological age. They also include images where the model accurately predicted
the chronological age (upper four cases) and those where it exhibited discrepancies (lower two cases).

Our analyses demonstrated that the constructed deep-learning model can estimate bronchial age from
bronchoscopy images regardless of respiratory disease type or smoking history, suggesting the universal
importance of bronchial bifurcation sites as age-dependent features.

Discussion

In this study, we constructed a deep-learning model to estimate the chronological age from bronchial
images obtained by bronchoscopy, and the model uncovered the importance of bifurcation sites as
age-dependent features in the trachea and bronchi. Although changes in the tracheal bifurcation angle
during the growth period in children have been reported [16], to the best of our knowledge, there have
been no reports on the quantitative relationship between bronchial bifurcation sites and ageing in adults.

Bronchoscopy has become increasingly important in the field of precision medicine (e.g. for lung cancer
and interstitial pneumonia). Although this practice has led to the increased generation and curation of huge
bronchoscopy imaging data, at the present time the analysis and interpretation of these data is largely
immature. One possible answer for this problem is the introduction of artificial intelligence for the analysis
of bronchoscopy data. Recent research on the analysis of images by artificial intelligence has progressed in
the areas such as radiographs [17], pathological slides [18] and ophthalmic images [19]. Although some
studies have developed anatomical interpretation models or bronchoscopic navigation systems that are
aided by artificial intelligence [20, 21], the analysis of bronchoscopic findings by artificial intelligence is
still immature. As a next step, our study expands the possibility of deep learning in the analysis of
bronchoscopy images by providing strong evidence that it can be used to extract age-dependent features
from bronchoscopy images.

Numerous studies have reported on the relationship between ageing and the function or structure of
organs [2]. Furthermore, through these studies, feature extraction has been performed to capture the
age-dependent changes in the function and structure of each organ. For example, the balance between bone
resorption and formation changes with ageing, resulting in age-related changes in the bone function and
structure. Bone mineral density has been utilised as an age-dependent feature to capture these
changes [22]. With the development of machine learning, some studies have used machine learning to
extract age-dependent features. A deep-learning model that can estimate the age of adults from chest
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FIGURE 5 Differences in the distribution of bronchial age according to type of respiratory disease or smoking
history. a) Violin plots show the distribution of bronchial age or discrepancies between bronchial age and
chronological age in patients with lung cancer, interstitial pneumonia (IP), infection, allergy or other
conditions. ANOVA was used to test for differences between the different respiratory diseases. b) The test
cohort was divided into two groups based on their smoking history of >1 pack-year, and the bronchial age or
difference between bronchial age and chronological age were compared between the two groups. The t-test
was used to test for differences between the two groups.

radiography images has been reported [6]. In this study, the model mainly focused on the top of the
mediastinum, irrespective of the pathology present in the chest radiography images, suggesting that
tortuosity and calcification of the aorta are important age-dependent features in chest radiographs. Similar
studies have been performed for magnetic resonance imaging of the brain and 12-lead electrocardiography
[5, 23]. This is the first deep-learning model to calculate bronchial age, and the application of an XAI
method to our model identified bronchial bifurcation sites as age-dependent features of the trachea and
bronchi. Machine-learning models without human specification of features sometimes extract features that
humans have not anticipated. Bifurcation sites may be one such feature in the ageing of the trachea and
bronchi. The significance of bronchial bifurcation sites was demonstrated, irrespective of their position or
imaging direction. Thus, it is assumed that our model captures features of the mucosal surface of bronchial
bifurcation sites rather than structural characteristics (e.g. the angle of bifurcation sites). One plausible
biological interpretation is that atrophy of the mucosa at bronchial bifurcation sites reflects age-dependent
alterations in the trachea and bronchi. During the development of the respiratory system, repeated budding
starting from the lung bud creates an intricate network of bronchi [24]. In addition, bifurcation sites are
subjected to various stresses, including mechanical stress [25]. Given these facts, it is reasonable that
bronchial bifurcation sites are susceptible to age-related deterioration and are age-dependent features.
Further studies are needed to definitely identify which parameters of bronchial bifurcation sites are
quantitatively captured. For example, synthetic histology generated by a conditional generative adversarial
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network identified histological parameters associated with molecular state of tumours [26]. Such
algorithms can be applied to bronchoscopy images.

The discrepancy between bronchial age and chronological age showed no significant difference among
different respiratory diseases or according to smoking history, suggesting the universal importance of
bronchial bifurcation sites as age-dependent features. Our training dataset includes patients with a wide
variety of respiratory diseases, and it can therefore be considered that age-dependent features that are not
specific to particular lung diseases were extracted in the training. Conversely, our training dataset did not
include bronchial images of “normal” humans. Therefore, our analysis does not cover comparisons of
normal and abnormal bronchi, and our model does not reflect the normal status of the trachea and bronchi.

CNNs are commonly used for image recognition tasks in deep learning. In addition, recently, Transformer,
which has demonstrated high performance in natural language processing, has been applied to image
recognition [27]. Transformer-based models have achieved state-of-the-art results in various tasks, such as
image classification [28]. In our study, we also attempted to construct Transformer-based models such as
Vision Transformer and Swin Transformer [29], as well as CNNs. However, these Transformer-based
models did not yield a higher correlation coefficient than EfficientNet.

The present study was associated with several limitations. First, the study was performed using data from a
single institution, and our model did not reflect differences in bronchoscopes or operators. However, we
applied image augmentation during training to improve the generalisability of our model and avoid
overfitting. Second, we collected image data retrospectively. Although a prospective validation study might
be needed to examine the generality of our model, our images were divided into training and test datasets
along the time axis. Finally, as mentioned earlier, the training dataset consisted of images of patients with
some respiratory disease. In previous studies of other age-related markers, such as lung age (FEV;), bone
age (bone mineral density) and vascular age (pulse wave velocity), datasets from healthy volunteers were
used to create reference values. In a clinical setting, bronchoscopy is only performed for individuals with
suspected respiratory disease. Collecting bronchoscopy images from healthy volunteers to create a dataset
of healthy individuals is ethically challenging due to the invasiveness of bronchoscopy. Furthermore, to the
best of our knowledge, there is no public dataset of bronchoscopy images, unlike chest radiographs.
Therefore, we divided our images into training and test datasets as an alternative method.

In conclusion, we constructed a deep-learning model that can estimate the chronological age from images
obtained by bronchoscopy, and the application of an XAI method to our model revealed the importance of
bifurcation sites as age-dependent features in the human adult trachea and bronchi. Although deep-learning
methodology has been applied to bronchoscopy for location guidance [20, 21], our results suggest that an
analysis based on deep-learning models can also be applied to biological evaluation of bronchoscopy
images in the era of digital medicine. Further studies with various conditional datasets will be required to
analyse the pathological significance of bronchial bifurcation sites.
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