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Improving Gene Regulatory 
Network Inference by Incorporating 
Rates of Transcriptional Changes
Jigar S. Desai1, Ryan C. Sartor2, Lovely Mae Lawas3,4, S. V. Krishna Jagadish5 &  
Colleen J. Doherty   1

Organisms respond to changes in their environment through transcriptional regulatory networks 
(TRNs). The regulatory hierarchy of these networks can be inferred from expression data. 
Computational approaches to identify TRNs can be applied in any species where quality RNA can be 
acquired, However, ChIP-Seq and similar validation methods are challenging to employ in non-model 
species. Improving the accuracy of computational inference methods can significantly reduce the 
cost and time of subsequent validation experiments. We have developed ExRANGES, an approach 
that improves the ability to computationally infer TRN from time series expression data. ExRANGES 
utilizes both the rate of change in expression and the absolute expression level to identify TRN 
connections. We evaluated ExRANGES in five data sets from different model systems. ExRANGES 
improved the identification of experimentally validated transcription factor targets for all species 
tested, even in unevenly spaced and sparse data sets. This improved ability to predict known regulator-
target relationships enhances the utility of network inference approaches in non-model species 
where experimental validation is challenging. We integrated ExRANGES with two different network 
construction approaches and it has been implemented as an R package available here: http://github.
com/DohertyLab/ExRANGES. To install the package type: devtools::install_github(“DohertyLab/
ExRANGES”).

Transcriptional regulatory networks (TRN) provide a framework for understanding how signals propagate 
through a molecular network and result in transcriptomic changes. These regulatory networks are biological 
computational modules that carry out decision-making processes and, in many cases, determine the ultimate 
response of an organism to a stimulus1. Understanding these regulatory networks provides access points to mod-
ulate these responses through breeding or genetic modifications. The first step in constructing such networks is 
to identify the primary relationships between regulators such as transcription factors (TFs) and the target genes 
they control.

Experimental approaches such as Chromatin Immunoprecipitation followed by sequencing (ChIP-Seq) can 
identify direct targets of transcriptional regulators. However, ChIP-Seq must be optimized to each specific TF 
and antibodies must be developed that recognize either the native TF or a tagged version of the protein. This can 
present a technical challenge particularly for TFs where the tag interferes with function, for species that are not 
easily transformable, or for tissues that are limited in availability2. Since global transcript levels are comparatively 
easy to measure in most species and tissues, several approaches have been developed to identify connections 
between regulators and their targets by examining the changes in transcription levels across many samples3–6. 
These inferred approaches can provide a first approximation of regulatory interactions that can be used to guide 
experimental approaches. The assumption of these approaches is that the regulatory relationship between a regu-
lator TF and its targets can be discerned from a correspondence between the RNA levels of the regulator gene and 
its targets. If this is true, then given sufficient variation in expression, the targets of a given factor can be predicted 
based on associated changes in expression. Initial approaches designed to do this focused on the correlation 
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between regulators and targets, assuming that activators are positively correlated and repressors are negatively 
correlated with their target expression levels7. For almost two decades, these approaches successfully identified 
relationships between regulators and targets. Updates to this simple idea have included pre-clustering of tran-
script data, modifying regression analysis, incorporating training classifier models, and incorporating prior bio-
logical knowledge or additional experimental data. Each of these has improved the ability to identify connections 
between regulators and targets, even in sparse and noisy data sets4–6,8–11. For microorganisms, substantial experi-
mental data identifying TF binding locations and the transcriptional response to TF deletions is available and has 
been organized into efficient databases12–14. This approach has enabled the prediction of TRN from expression 
data not only in unique conditions in the model species where the data was generated, but has also been extended 
to predict TF-target gene relationships in homologous species15–19. In 2010, the DREAM5 challenge evaluated 
the ability of different methods to identify TRN from gene expression data sets10. One of the top performing 
methods was GENIE38. This method uses the machine learning capabilities of random forest to identify targets 
for selected regulators20,21. Other successfully implemented approaches include SVM22, CLR6, CSI23,24, ARACNE5, 
Inferelator4, and DELDBN9. Common to these methods is the use of transcript abundance levels to evaluate the 
relationship between a regulator and its putative targets. Experiments performed in time series can provide addi-
tional kinetic information useful for associating regulators and targets. Many approaches have been developed 
that take advantage of the additional information available from time series data as reviewed in25,26. However, the 
steady-state transcript level as measured by most high-throughput transcriptional assays such as RNA-Seq is a 
measure of both transcriptional activity and mRNA stability. Therefore, the correlation between expression levels 
alone may not provide a direct assessment of transcriptional regulation as it can be confounded by the RNA sta-
bility of the target. Further complicating the identification of regulator relationships is the fact that a single gene 
can be regulated by different transcription factors in response to different stimuli.

Here we present an approach that extends current approaches to TRN construction by emphasizing the rela-
tionship between regulator and targets at the time points where there is a significant change in the rate of expres-
sion. We demonstrate that: 1) Focusing on the rate of change captured previously unrecognized characteristics in 
the data, identifying experimentally validated regulatory relationships not detected by the standard approaches. 
2) Combining expression level and the rate of change results in an improved identification of experimentally 
validated regulatory relationships.

We first evaluate the significance of the rate changes at each consecutive time point on a per-gene basis: 
RANGES (RAte Normalized in a GEne Specific manner). We then combined the expression level and significance 
of this rate change in ExRANGES (Expression by RANGES) to prioritize the correlation between regulators and 
targets at time points where there is a significant change in gene expression. ExRANGES improved the ability to 
identify experimentally validated TF targets in microarray and RNA-Seq data sets across multiple experimental 
designs, and in several different species. We demonstrate that this approach improves the identification of exper-
imentally validated TF targets using GENIE38, and anticipate that it will offer a similar benefit when combined 
with other network inference algorithms.

Results
ExRANGES Improves Identification of Circadian TF Targets in a Circadian Data Set.  The assump-
tion behind using correlation in gene expression to identify relationships between TFs and their targets is that 
there is a predictable relationship between the expression of the TF regulator and its corresponding targets. For 
transcriptional activators, the target will accumulate as the TF regulator accumulates. Conversely, targets of 
repressors will decrease in expression as the repressor TF increases. Current approaches evaluate the correspond-
ence in expression between the regulator TF and targets across all time points equally (hereinafter referred to as 
EXPRESSION). We developed ExRANGES, a method that adjusts the expression level based on how much that 
gene changes in expression in the following time step. Briefly, for each gene, we calculate the significance of each 
time step. The expression level is adjusted by this significance factor so that the expression level preceding a major 
change in expression is emphasized (Supplemental Fig. 1). We tested whether incorporating the rate of change via 
ExRANGES improves the overall ability to identify experimentally validated regulatory relationships. To evaluate 
the ability of the ExRANGES or standard EXPRESSION approaches to correctly identify targets of the TFs, we 
applied both approaches to the CircaDB data27 (for description, see Supplemental Materials and Methods) using 
GENIE3. We compared the results of each approach to the targets identified experimentally using ChIP-Seq for 
five TFs involved in circadian regulation: PER1, CLOCK, NPAS2, NR1d2, and ARNTL28,29. Targets identified by 
each computational approach that were also considered significant targets in these published ChIP-Seq experi-
ments were scored as true positive results. We calculated the ROC AUC for the five circadian TFs to compare the 
identification of true targets attained with GENIE3 using EXPRESSION values to the combination of expression 
and p-values using ExRANGES. We observed that for all five TFs, ExRANGES improved the identification of 
ChIP-Seq validated targets (Fig. 1A). Incorporation of a delay between regulator expression and target expression 
has previously been shown to improve the ability to identify regulatory networks30. A modification of GENIE3 
incorporates this approach to identify transcriptional changes in the regulator that precedes the effects on the tar-
get by a defined time step. We compared ExRANGES to this modified implementation of GENIE3 that includes 
the time delay step (Supplemental Fig. 2A). As previously reported, we observe that the time step delay improved 
target identification for some TFs, compared to EXPRESSION alone, although in this data set, target identifica-
tion for CLOCK, PER1, and NR1D2 TFs did not improve. However, for all five TFs, ExRANGES outperformed 
both the EXPRESSION and time-delay approaches in identifying the true positive targets of each TF; although 
for CLOCK, this improvement was minimal.

ExRANGES Improves Target Identification for TFs That Are Not Components of the Circadian 
Clock.  To evaluate the performance of ExRANGES on TFs that are not core components of the circadian clock, 
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we compared the ability to identify targets of additional TFs validated by ChIP-Seq. We selected seven TFs in 
our regulator list with ChIP-Seq data available from at least two experimental replicates performed in epithelial 
cells, a tissue not included in the CircaDB data set. The seven TFs are: ESR1, STAT5A, STAT5B, POL2A, FOXA1, 
TFAP2A, and CHD431. Combining expression and rate change information using ExRANGES improved the AUC 
curve for five of the seven TFs (Fig. 1B, Supplemental Fig. 2B). As we observed above for CLOCK, STAT5A and 
STAT5B performed equally well but did not show significant improvement. STAT5A and STAT5B are known to 
be activated post-transcriptionally perhaps indicating why evaluating the change in expression of these TFs did 
not lead to improved target identification32–38.

ExRANGES Identified Targets have Less Variation Across the Time Series.  The targets identified 
by ExRANGES or EXPRESSION approaches show moderate overlap in the ranked score of predicted targets 
(r2 = 0.53); however, each network identifies different targets (Fig. 1 and Supplemental Fig. 3). To understand the 
difference in targets identified by EXPRESSION and ExRANGES we examined the variance in the expression 
levels for the top 1000 predicted targets of the 12 TFs identified by EXPRESSION or by ExRANGES across all 
288 samples in the CircaDB data set. The targets identified by ExRANGES showed an overall lower coefficient of 
variation (CV) across all samples compared to targets identified by EXPRESSION (Fig. 2). The experimentally 
identified targets from ChIP-Seq showed low CV. The ability of ExRANGES to identify targets with lower CV 
than EXPRESSION may account for some of the improved identification of such true positive targets.

ExRANGES combines rate change and expression. To evaluate the contribution of the rate change component 
in the target identification, we generated a rate-based network using only the p-values of the rate change at each 
time step as our network feature. Using only rate change did not improve the overall identification of true pos-
itive targets (Supplemental Fig. 4). However, the targets identified in the rate-based network had lower overall 
variation in expression compared to the EXPRESSION identified targets. The CircaDB data consists of individual 
time series experiments from different tissues. Using rate change alone may enhance the identification of targets 
that have within tissue variation driven by changes across time compared to the larger overall variation between 
tissues observed in this data set. In contrast, EXPRESSION identified targets may favor those with large changes 
in expression between tissues. To evaluate how EXPRESSION and rate identified targets compared in variation 
within each time series in a single tissue versus between tissues, we compared the between tissue and within 
tissue standard deviation for the top 1000 targets identified by using EXPRESSION or rate change. The targets 
identified by EXPRESSION showed more variation between tissue types (Supplemental Fig. 5A). In contrast, the 
targets identified by rate change alone showed increased variation within each tissue time series compared to the 
EXPRESSION identified targets (Supplemental Fig. 5B).

We also compared the mean intensity level of the top 1000 predicted targets of the rate change and 
EXPRESSION approaches. We observed that the top 1000 targets of PER1 identified by EXPRESSION had higher 
intensity levels compared to the distribution of expression of all transcripts on the microarray (Supplemental 
Fig. 6A). In contrast, the top 1000 predicted targets of PER1 identified by rate change resembled the background 
distribution of intensity for all the transcripts on the array (Supplemental Fig. S6B). Likewise, the hybridization 
intensity of the genes identified as the top 1000 targets identified by EXPRESSION of all 1690 TFs considered 
as regulators was shifted higher compared to the background distribution levels (Supplemental Fig. 6C). The 
top 1000 targets of all 1690 TFs identified by rate change reflected the background distribution of hybridization 

Figure 1.  ExRANGES Outperforms EXPRESSION in Identifying Targets for Select TFs. (A) ROC AUC 
for targets identified with GENIE3 using EXPRESSION or ExRANGES on five circadian TFs. The targets 
identified computationally were validated against ChIP-Seq identified targets28,29. (B) ROC AUC for targets 
computationally identified by GENIE3 analysis using EXPRESSION or ExRANGES for seven TFs not known to 
be components of the circadian clock. Experimentally validated targets for these TFs were identified by ChIP-
Seq in epithelial cells, a tissue not included in the expression data set31.
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intensity (Supplemental Fig. 6D). While hybridization intensity cannot directly be translated into expression lev-
els, these observations suggest that there are features of the targets identified by rate change that are distinct from 
those identified by EXPRESSION.

ExRANGES Improves Identification of TF Targets in Unevenly Spaced Time Series Data.  
Circadian and diel time series experiments are a rich resource providing temporal variance, which can be used 
to identify regulatory relationships. However, most available experimental data is not collected with this design. 
Often sample collection cannot be controlled precisely to attain evenly spaced time points. To evaluate the ability 
of ExRANGES to identify true targets of TFs across unevenly spaced and heterogeneous genotypes, we analyzed 
expression studies of viral infections in various individuals (“Respiratory Viral DREAM Challenge - Synapse 
ID syn5647810”; Liu et al. 2016) using both ExRANGES and EXPRESSION approaches. This data set consists 
of seven studies of blood samples from human patients. Multiple samples from an individual were taken over a 
seven to nine day period, depending on the specific study. Sampling was not evenly spaced between time points. 
In total 2372 samples were used, providing a background of 2231 consecutive time steps. Overall, the variance 
between samples was lower for this study than the circadian study examined above (Supplemental Fig. 7). The 
significance of a change in expression for each gene at each time step was compared to a background distribu-
tion of change in expression across all patients and time steps (2231 total slope changes). The targets identified 
using either EXPRESSION or ExRANGES were compared to ChIP-Seq identified targets of 83 TFs with available 
ChIP-Seq data from blood tissue31,39. We observed an overall improvement in the detection of ChIP-Seq identi-
fied targets for the 83 TFs with ExRANGES (Fig. 3A and B).

ExRANGES Improves Functional Cohesion of Identified Targets.  The true targets of a TF are likely 
to be involved in the same functional pathways, therefore functional enrichment can also be used to validate 
computationally identified TF targets40. We compared the functional enrichment of the top 1000 targets predicted 
by either EXPRESSION or ExRANGES of the 930 TFs on the HGU133 microarray41. The targets identified by 
ExRANGES for the majority of the TFs (590) showed improved functional enrichment compared to the targets 
identified by EXPRESSION (Fig. 4A and B). Likewise, when focusing on the 83 TFs with available ChIP-Seq data 
from blood, the majority of TF targets predicted by ExRANGES were more functionally cohesive compared to 
EXPRESSION targets as evaluated by GO slim (Fig. 4C). We observed that the improvement in the ranking of 
ExRANGES over EXPRESSION varies between the two validation approaches. For example, targets of the TF 
JUND identified by ExRANGES show no improvement over EXPRESSION when validated by ChIP-Seq identi-
fied targets, yet showed improved functional cohesion (Table ST1).

ExRANGES Improves TF Target Identification from RNA-Seq Data and Validated by 
Experimental Methods Other Than ChIP-Seq.  To evaluate the performance of ExRANGES compared 
to EXPRESSION for RNA-Seq data we applied each approach to an RNA-Seq data set from Saccharomyces cere-
visiae42. This data set consisted of samples from six genotypes collected every fifteen minutes for six hours after 
transfer to media lacking phosphate. The slope background was calculated from 144 time steps. To evaluate the 
performance of ExRANGES compared to EXPRESSION approaches we calculated the AUC for the identified 
targets using GENIE3 for each of the 52 TFs using the TF targets identified by protein binding microarray analysis 
as the gold standard43. For most TFs, the AUC was improved using ExRANGES (Fig. 5A).

Figure 2.  Targets Identified by ExRANGES and EXPRESSION have Different Variation across the CircaDB Data 
Set. Box plot showing the coefficient of variation (CV) for the expression levels of the top 1000 targets of each TF 
(ARNTL, CLOCK, NPAS2, NR1D2, PER1, ESR1, POL2A, FOXA1, TFAP2A, CHD4) predicted by GENIE3 using 
EXPRESSION or ExRANGES and the experimentally identified targets from ChIP-Seq. Targets identified using 
EXPRESSION show a greater expression CV across all samples compared to targets predicted with ExRANGES 
values. Experimentally determined targets showed the lowest CV (*p-value < 2.5e−8, **p-value < 2e−16).
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We next evaluated the performance of EXPRESSION and ExRANGES on a set of data from Arabidopsis con-
sisting of 144 samples collected every four hours for two days in 12 different growth conditions44–48. Even though 
fewer ChIP-Seq data sets are available to validate the predicted targets in Arabidopsis, we were able to evaluate the 
performance of the algorithms for five TFs with available ChIP-Seq or ChIP-Chip identified targets performed in 
at least two replicates41,49–52. We observed that for all five TFs, ExRANGES showed improved identification of the 
ChIP-based true positive TF targets (Fig. 5B). To evaluate a larger range of targets we compared our predicted tar-
gets by EXPRESSION or ExRANGES to 307 TFs targets identified by DAP-Seq53. We observed that ExRANGES 
also showed an improved ability to identify targets as validated by DAP-Seq compared to EXPRESSION (Fig. 5C).

To evaluate the performance of ExRANGES compared to EXPRESSION, we constructed two networks of 
the Arabidopsis circadian clock; a TF-TF network of only the core clock components (Supplemental Fig. 8) 
and a TRN of the output from the Evening Complex (Fig. 5D and E) using GENIE3 with either ExRANGES or 

Figure 3.  ExRANGES Improves Identification of Targets for most TFs from Unevenly Spaced Time Series Data. 
(A) Box plot of ROC AUC for the GENIE3 analysis for all 83 TFs using either EXPRESSION or ExRANGES 
compared to ChIP-Seq identified targets. (B) The difference between the ROC AUC of ExRANGES and 
EXPRESSION predicted targets is plotted individually for each of the 83 TFs tested, in ascending order. TFs are 
colored by TF family.

Figure 4.  ExRANGES improves Functional Cohesion of Identified Targets. Gene Ontology term enrichment 
was calculated for the top 1000 predicted targets of 930 TFs using GENIE3 with either ExRANGES or 
EXPRESSION. Enrichment score is the sum of the −log10 of the p-value of each GO category. (A) Summary of 
the enrichment scores for the top 1000 targets of all TFs on the microarray. (B) The distribution of enrichments 
scores from EXPRESSION identified targets (red) and ExRANGES identified targets (blue). (C) The difference 
in the enrichment score for the 83 TFs with available ChIP-Seq data (Fig. 3). Positive values indicate TF targets 
with a higher enrichment score in ExRANGES compared to EXPRESSION.
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EXPRESSION as input. We limited our network of the core circadian clock to only genes previously established as 
associated with the circadian clock. The cyclic nature of circadian regulation makes modeling these interactions a 
challenge. ExRANGES correctly identifies more of the complex interactions within the morning loop that are sup-
ported by experimental data as reviewed in Greenham and McClung54 compared to EXPRESSION (Supplemental 
Fig. 8). For example, ExRANGES correctly identifies interactions between CCA1/LHY and PRR9,7,5 that are 
not detected using EXPRESSION alone. The Evening Complex of the circadian clock controls the transcrip-
tional regulation of many genes related to growth and light signaling responses55. To evaluate the output of the 
circadian clock, we compared the targets of the Evening Complex proteins, ELF3, ELF4, and LUX, as identified 
by ChIP-Seq56. The TRN constructed using ExRANGES identifies more of the evening complex targets than the 
TRN constructed using EXPRESSION as the input. In the top 10% of predicted interactions, more than 50% of 
the EC targets were called by ExRANGES and less than 40% was called by EXPRESSION (Fig. 5E). Indicating that 
the output of the Evening Complex is more reliably predicted using ExRANGES as an input to GENIE3.

Application of ExRANGES to Smaller Data Sets with Limited Validation Resources.  Time 
series data offers several advantages; however, it also increases the experimental costs. We have shown that using 
ExRANGES improves the performance of GENIE3 on large data sets as validated by ChIP-Seq (228 samples in 
mouse, 2372 in human, and 144 in arabidopsis) (Fig. 6). Since our interest is to develop a tool that can assist with 
the identification of regulatory networks in non-model species, we wanted to determine if ExRANGES could also 
improve identification of TF targets in sparsely sampled data sets where there is limited validation data available.

To determine the effectiveness of the ExRANGES approach for experiments with limited time steps, we evaluated 
the targets identified by ExRANGES and EXPRESSION for a single time series consisting of 32 samples from eight 
unevenly sampled time points of field-grown rice panicles. ChIP-Seq with replicates has only been performed for one 
transcription factor in rice, OsMADS157. Therefore, we compared the ability of ExRANGES and EXPRESSION to 
identify the OsMADS1 targets identified by L. Khanday et al. Of the 3112 OsMADS1 targets identified by ChIP-Seq, 
ExRANGES showed an improved ability to identify these targets (Fig. 7) compared to EXPRESSION alone.

Figure 5.  ExRANGES improves identification of TF targets validated by different methods. (A) Box plots 
of the ROC AUC for targets identified for 52 yeast TFs by EXPRESSION or ExRANGES validated against 
experimentally identified targets from protein binding microarray data43. (B) ROC AUC for targets identified 
using GENIE3 with either EXPRESSION or ExRANGES for five Arabidopsis TFs validated against ChIP-Seq 
data. (C) Box plot of AUC for targets identified for 307 Arabidopsis TFs by EXPRESSION and ExRANGES 
validated against DAP-Seq identified targets53. (D) Network of Arabidopsis Evening Complex Component 
(dark blue) regulated targets predicted with GENIE3 using either EXPRESSION or ExRANGES. Dashed edges 
are predicted targets that exist in both EXPRESSION and ExRANGES networks; solid edges are unique to the 
either EXPRESSION (left network) or ExRANGES (right network). The evening complex targets are colored 
by function: growth (green), photosynthesis (yellow), circadian (light blue), temperature-responsive genes 
(red), and light signaling (orange). *Indicates the probeset corresponding to this gene can bind transcripts from 
more than one unique locus. (E) Table of the prediction rate of evening complex targets of ExRANGES and 
EXPRESSION compared to those identified by ChIP-Seq56.
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Discussion
Computational approaches that identify TRN can advance research. Most current approaches to elucidate TRN 
from transcriptional data use expression levels alone. We demonstrate that combining the expression levels and 
rate of change improves the ability to predict true targets of TFs across a range of species and experimental 
designs. The improvement is observed across many different collections of time series data including experiments 
with replicates and without, evenly and unevenly sampled time points, and even for time series with a limited 
number of samples. ExRANGES improves TF target identification over EXPRESSION values alone for time series 
performed with both microarray and RNA-Seq measurements of expression.

In many species the majority of transcripts show variation in expression levels throughout the day27,48,58, there-
fore circadian and diel data sets provide a snapshot of the potential ranges in expression that a regulator can 
attain. Mining this daily variation can identify regulatory relationships, including those that are enhanced in 
response to environmental perturbations such as stress. However, one challenge with analysis of daily expression 
changes is that when combining multiple data sets, the daily variation in expression may be dwarfed by the large 
variation in expression between tissues. TRN inference approaches, such as ExRANGES that can detect the small 
changes in daily expression amidst the large variations between tissues are needed to fully mine this data. Here, 
we show that using ExRANGES, data sets that combine circadian time series in multiple tissues can be a pow-
erful resource for identifying regulatory relationships between TFs and their targets not just for circadian regu-
lators, but also for regulators that are not components of the circadian clock. Using EXPRESSION as the feature 
focused on identifying TF targets with a large variance between tissues, while targets identified using rate change 
showed larger variance within each time series (Fig. 2, and Supplemental Fig. 5). ExRANGES takes advantage of 
both sources of variation and improves the identification of TF targets for most regulators tested, including for 
TF-target relationships in tissues not included in the transcriptional analysis.

As implemented, ExRANGES improves the ability to identify regulator targets, however, there are many 
aspects that could be further optimized. For example, we tested ExRANGES with the network inference algo-
rithm GENIE3 and observed improved performance with this algorithm. ExRANGES can be applied to most 
other network inference algorithms. For example, we also compared the performance of Inferelator4. We observe 
an improvement when using ExRANGES as an input with Inferelator over using EXPRESSION values alone for 
the viral, arabidopsis, and rice data sets (Supplemental Fig. 9 and Fig. 7B). We anticipate that ExRANGES can be 
integrated into other machine learning applications such as Bayesian networks, mutual information networks, or 
even supervised machine learning tools. Conceptually, our method increases the value of the time point before a 
major change in expression level. ExRANGES could be further modified to adjust where that weight is placed, a 
step or more in advance, depending on the time series data. Such incorporation of a time delay optimization into 
the ExRANGES approach could lead to further improvement for identification of some TF targets, although it 
would increase the computational cost.

We compared ExRANGES based features to EXPRESSION based features by validating against TF targets 
identified by ChIP-Seq and ChIP-Chip. While these experimental approaches identify potential TF targets in 
a genome-wide manner, systemic bias in ChIP could bias the comparisons59. For example, we observed that 
ChIP-seq identified targets in the CircaDB data set showed lower variation in expression than computationally 

Figure 6.  Summary of ExRANGES Improvement across Three Data Sets from Different Species. ROC and 
Precision-Recall (PR) curves for targets of all ChIP-Seq validated TFs as identified using GENIE3 with either 
EXPRESSION (solid) or ExRANGES (dotted) for. (A) CircaDB data set from mouse tissues. (B) Human viral 
data set. (C) Arabidopsis circadian data set across different environmental variables.
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identified targets (Fig. 2). The use of ExRANGES as a network input also outperformed the use of EXPRESSION 
alone when validated against DAP-Seq, and protein binding microarray. Even though ChIP-Seq is the 
gold-standard for benchmarking computational approaches to identifying TF targets, high-quality ChIP-Seq data 
is not available in most organisms for more than a handful of TFs. This lack of experimentally identified targets 
is a severe hindrance to advancing research in these species. New experimental approaches such as DAP-Seq 
may provide alternatives for TF target identification in species recalcitrant to ChIP-Seq analysis53. Additionally, 
O’Malley et al. improved their recall of ChIP-Seq identified targets by selecting targets that were also supported 
by DNase-Seq sensitivity assays60,61. Likewise, distinguishing between direct and indirect targets predicted com-
putationally could be enhanced by incorporation of DNase-Seq or motif occurrence information for the targets. 
Incorporation of such a priori information on regions of open chromatin and occurrence of cis-regulatory ele-
ments leads to improved network reconstruction11,62. Combining these integrated approaches with ExRANGES 
could lead to further improvements in TRN identification. Although approaches such as DAP-Seq are more global 
in analyses than individual ChIP-Seq assays, these genome-wide approaches require a significant investment from 
the community in the development of an expressed TF library collection. Integrating community-acquired exper-
imental data with network inference approaches has been successfully applied to the Corynebacterium genus and 
pathogenic Escherichia coli12–14. In these microorganisms, a database of community provided regulatory con-
tent has enabled genome-wide predictions of regulatory interactions in novel conditions. Tools to apply these 
resources to closely related non-model species have been effective at extending the impact of the research in 
these model organisms15–19. For non-model systems, without such resources, computational identification of TF 
targets can provide an economical first pass that can be followed up by experimental analysis of predicted targets, 
accepting the fact that there will be false positives in the validation pipeline. In this strategy, a small improvement 
in the ability to identify true targets of a given TF can translate into a reduced number of candidates to test and 
fewer experiments that must be performed. While experimental detection of the direct targets of a given TF 
provides the best evidence for a TRN, we hope that the improvements provided by the ExRANGES approach 
can facilitate research in species where experimental identification of TF targets is experimentally challenging. 
ExRANGES demonstrates that consideration of how expression data is incorporated can contribute to the success 
of TRN reconstruction. We hope that this analysis will stimulate evaluation of new approaches that use alternative 
methods to incorporate time signals into regulatory network analysis. We anticipate that further optimization 
and methods for integrating expression information will lead to improvements in TRN reconstruction that will 
ultimately accelerate biological discovery.

Methods
Identifying consecutive time points with significant changes in expression.  Overview: We first 
determine the significance of the change in expression between two consecutive time points on a per gene basis. 
For each genei, the background variance is derived from the change in expression of genei at all consecutive time 

Figure 7.  ExRANGES Retains Performance Improvement over EXPRESSION on Small Data Sets. (A) ROC 
AUC for the top 1000 targets of OsMADS1 identified by GENIE3 using EXPRESSION or ExRANGES and 
validated against the OsMADS1 ChIP-Seq data57. (B) Comparison of targets identified by EXPRESSION 
and ExRANGES using INFERELATOR. ExRANGES scores higher in the ratio of True Positive (TP) to False 
Positives (FP). (C) Interactions predicted by ExRANGES of OsMADS1 (center, green) with other MADS TFs. 
Orange arrows indicate ExRANGES predicted targets of OsMADS1. ExRANGES predicts that OsMADS15 
(red) regulates OsMADS1 (green arrow). Interactions between other MADS TFs predicted by ExRANGES are 
indicated by black arrows.
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steps in all samples across from a given data set. The change in expression between two consecutive time points 
is evaluated against this background and the significance is calculated (Supplemental Fig. 1). For example, the 
mammalian circadian data set available from CircaDB27 consists of time series experiments from 12 different tis-
sues, sampled every 2 h for 48 h (288 samples). The change in expression levels for genei between time t and time 
t + 1 was determined for each consecutive time point. Since this data is cyclical, the interval between the last time 
point and the first time point is also included. For the CircaDB data set, the background of each consecutive time 
interval across the entire time series consists of 288 slopes (12 tissues × 2 h for 48). At each time step, t the slope 
between t and t + 1 was compared to a bootstrapped version of this background generated by sampling 10,000 
times with replacement. For each gene, the resulting p-value was calculated by using an empirical cumulative 
distribution function from the R stats package. This p-value was transformed to the −log10 and the sign of the 
change in slope was preserved (R script provided). This significance of the change at each time interval is the rate 
change or “RANGES” value.

Combining EXPRESSION and Rate Change using ExRANGES.  ExRANGES adjusts the expression 
level at each time point by multiplying the Expression level at time t with the significance of the change in expres-
sion, or RANGES value, from time t to t + 1 (Supplemental Fig. 1B). This ExRANGES value was used in lieu of the 
expression level to generate a TRN using GENIE3 or INFERELATOR as described below4,8.

LS is a (gene × time) matrix representing a time series experiment with genes g and time points T(t=1...N):

= …X X XLS { , , }, (1)G1 2

where
X g G t N, 1, , , 1, ,g

Tt∈ = … = …
Xg is a vector of real numbers representing the expression of gene g from time points T1 to TN:

X X X X{ , , } (2)g g
T

g
T

g
TN1 2= …

Therefore Xg
Tt represents the expression of gene g at time point T1. To calculate the rate of change for RANGES 

values, we start with Cg, which represents the changes between all consecutive time points for gene g:

= ∀ ∈ … − .
−

−−

−

C t N
X X
T T

{1, , ( 1)}
{ }
{ } (3)

g
T g

T
g
T

t t( 1)

t
t t( 1)

If the data are cyclical, we assume time point 1 can be used as time point N + 1:

=
−

−
C

X X
T T

{ }
{ } (4)g

T g
T

g
T

N1

N
N1

Else, disregard Cg
TN

The sign of each change is recorded for use in the final RANGES value:

= ( )S sign C (5)g
T

g
Tt t

A bootstrapped version of Cg is calculated for each gene by sampling 10,000 times with replacement. We call this 
.⁎Cg  A cumulative distribution function is found for each ⁎Cg :

⁎
⁎ ( )CF cdf() (6)C gg

=

P-values are determined for each Cg
Tt using the corresponding cumulative distribution function for each gene:

=  ∗P C F C( ) ( ) [left tail] (7)Cg
T

g
Tt

g
t

If P C then P C P C( ( ) 0 5) ( ) 1 ( ) [right tail]g
T

g
T

g
Tt t t< . = −  

The RANGES value is calculated by taking the −log10 of the p-value and multiplying by the sign of the corre-
sponding change:

( )( )R P C Slog (8)g
T

g
T

g
T

10
t t t= − ⋅

Finally, the ExRANGES value for each data point is calculated by multiplying the RANGES value by the original 
expression value:

= ⋅E R X (9)g
T

g
T

g
Tt t t

Network Inference using GENIE3.  To predict regulatory interaction between the transcription factor 
and the target gene, GENIE3 source code was downloaded from http://www.montefiore.ulg.ac.be/~huynh-thu/
software.html on June 14, 20168 and was modified for use with parLapply from the R parallel package63. The 

http://www.montefiore.ulg.ac.be/~huynh-thu/software.html
http://www.montefiore.ulg.ac.be/~huynh-thu/software.html
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EXPRESSION network was built by providing the expression values across all samples for both TFs and targets. 
The ExRANGES network used the ExRANGES value for both TFs and targets. For example, for the CircaDB data, 
we considered 1690 murine TFs as the regulators64. For both approaches, all TFs were also included in the target 
list to identify regulatory connections between TFs. To implement GENIE3, we used 2000 trees for random forest 
for all data sets except the viral data set. Due to the size of the data set, we limited the viral data set to 100 trees. 
The importance measure from the random forest was calculated using the mean decrease in accuracy upon ran-
dom permutation of individual features. This measure is used as the prediction score for TF-target relationships.

Network Inference using INFERELATOR.  For INFERELATOR the TF and targets labels are identical to 
those used in GENIE3. Time information in the form of the time step between each sample was added to satisfy 
time course conditions as a parameter, default values were used for all other parameters. Only confidence scores 
of TF-target interactions greater than 0 were evaluated against ChIP-Seq standards. The confidence scores were 
used as the prediction score for TF-target relationships.

ROC Calculation.  ROC values were determined by the ROCR package in R65. The computationally deter-
mined prediction score and the targets from the respective experimental validation (ChIP-Seq, protein binding 
array, or DAP-Seq) were used as the metric to evaluate the performance function. The area under the ROC curve 
(AUC) is presented to summarize the accuracy.

All data and scripts are either taken from existing public data or are available (Accession number: GSE92302, 
sources of existing data are provided in supplemental materials and methods).

References
	 1.	 Balázsi, G., Van Oudenaarden, A. & Collins, J. J. Cellular decision making and biological noise: From microbes to mammals. Cell 

144, 910–925 (2011).
	 2.	 Park, P. J. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10, 669–80 (2009).
	 3.	 Qian, X. et al. Novel zinc finger motif in the basal transcription machinery: Three-dimensional NMR studies of the nucleic acid 

binding domain of transcription elongation factor TFIIS. Biochemistry 32, 9944–9959 (1993).
	 4.	 Bonneau, R. et al. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de 

novo. Genome Biol. 7, R36 (2006).
	 5.	 Margolin, A. A. et al. ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular 

Context. BMC Bioinformatics 7, 1–15 (2006).
	 6.	 Faith, J. J. et al. Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of 

Expression Profiles. PLOS Biol 5, e8 (2007).
	 7.	 Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. 

Acad. Sci. 95, 14863–14868 (1998).
	 8.	 Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring Regulatory Networks from Expression Data Using Tree-Based 

Methods. PLoS One 5, e12776 (2010).
	 9.	 Li, Z., Li, P., Krishnan, A. & Liu, J. Large-scale dynamic gene regulatory network inference combining differential equation models 

with local dynamic Bayesian network analysis. Bioinformatics 27, 2686–2691 (2011).
	10.	 Marbach, D. et al. Wisdom of crowds for robust gene network inference. Nat. Methods 9, 796–804 (2012).
	11.	 Wilkins, O. et al. EGRINs (Environmental Gene Regulatory Influence Networks) in Rice That Function in the Response to Water 

Deficit, High Temperature, and Agricultural Environments. Plant Cell tpc.00158.2016, https://doi.org/10.1105/tpc.16.00158 (2016).
	12.	 Pauling, J. et al. On the trail of EHEC/EAEC—unraveling the gene regulatory networks of human pathogenic Escherichia coli 

bacteria. Integr. Biol. 4, 728 (2012).
	13.	 Pauling, J., Röttger, R., Tauch, A., Azevedo, V. & Baumbach, J. CoryneRegNet 6.0 - Updated database content, new analysis methods 

and novel features focusing on community demands. Nucleic Acids Res. 40, 610–614 (2012).
	14.	 Gama-Castro, S. et al. RegulonDB version 9.0: High-level integration of gene regulation, coexpression, motif clustering and beyond. 

Nucleic Acids Res. 44, D133–D143 (2016).
	15.	 Beckstette, M., Homann, R., Giegerich, R. & Kurtz, S. Fast index based algorithms and software for matching position specific 

scoring matrices. BMC Bioinformatics 7, 389 (2006).
	16.	 Baumbach, J., Wittkop, T., Weile, J., Kohl, T. & Rahmann, S. MoRAine–a web server for fast computational transcription factor 

binding motif re-annotation. J. Integr. Bioinform. 5, 1–14 (2008).
	17.	 Baumbach, J., Rahmann, S. & Tauch, A. Reliable transfer of transcriptional gene regulatory networks between taxonomically related 

organisms. BMC Syst. Biol. 3, 8 (2009).
	18.	 Wittkop, T. et al. Partitioning biological data with transitivity clustering. Nat. Methods 7, 419–420 (2010).
	19.	 Baumbach, J. On the power and limits of evolutionary conservation - Unraveling bacterial gene regulatory networks. Nucleic Acids 

Res. 38, 7877–7884 (2010).
	20.	 Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
	21.	 Liaw, A. & Wiener, M. Classification and regression by randomForest. R news 2, 18–22 (2002).
	22.	 Qian, J., Lin, J., Luscombe, N. M., Yu, H. & Gerstein, M. Prediction of regulatory networks: genome-wide identification of 

transcription factor targets from gene expression data. Bioinformatics 19, 1917–1926 (2003).
	23.	 Penfold, C. A., Buchanan-Wollaston, V., Denby, K. J. & Wild, D. L. Nonparametric Bayesian inference for perturbed and orthologous 

gene regulatory networks. Bioinformatics 28, 233–241 (2012).
	24.	 Penfold, C. A., Shifaz, A., Brown, P. E., Nicholson, A. & Wild, D. L. CSI: A nonparametric Bayesian approach to network inference 

from multiple perturbed time series gene expression data. Stat. Appl. Genet. Mol. Biol. 14, 307–310 (2015).
	25.	 Bar-Joseph, Z., Gitter, A. & Simon, I. Studying and modelling dynamic biological processes using time-series gene expression data. 

Nat Rev Genet 13, 552–564 (2012).
	26.	 Thompson, D., Regev, A. & Roy, S. Comparative Analysis of Gene Regulatory Networks: From Network Reconstruction to Evolution. 

Annual Review of Cell and Developmental Biology 31 (2015).
	27.	 Pizarro, A., Hayer, K., Lahens, N. F. & Hogenesch, J. B. CircaDB: a database of mammalian circadian gene expression profiles. Nucleic 

Acids Res. 41, D1009–D1013 (2013).
	28.	 Koike, N. et al. Transcriptional Architecture and Chromatin Landscape of the Core Circadian Clock in Mammals. Science (80-.) 

(2012).
	29.	 Takahashi, J. S. et al. ChIP-seq and RNA-seq methods to study circadian control of transcription in mammals. Methods Enzymol. 

551, 285–321 (2015).

http://dx.doi.org/10.1105/tpc.16.00158


www.nature.com/scientificreports/

1 1SCientifiC REPOrTS | 7: 17244  | DOI:10.1038/s41598-017-17143-1

	30.	 Huynh-Thu, V. A. Machine learning-based feature ranking: Statistical interpretation and gene network inference. (Université de 
Liège, Liège, Belgium, 2012).

	31.	 Qin, B. et al. CistromeMap: a knowledgebase and web server for ChIP-Seq and DNase-Seq studies in mouse and human. 
Bioinformatics 28, 1411–1412 (2012).

	32.	 Darnell, J. E., Kerr, I. M. & Stark, G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular 
signaling proteins. Science (80-.). 264, 1415 LP–1421 (1994).

	33.	 Liu, K. D., Gaffen, S. L. & Goldsmith, M. A. JAK/STAT signaling by cytokine receptors. Curr. Opin. Immunol. 10, 271–278 (1998).
	34.	 Horvath, C. M. STAT proteins and transcriptional responses to extracellular signals. Trends Biochem. Sci. 25, 496–502 (2000).
	35.	 Bromberg, J. & Chen, X. In Regulators and Effectors of Small GTPases, Part G (ed. Enzymology, B. T.-M. in) Volume 333, 138–151 

(Academic Press, 2001).
	36.	 Stark, G. R. & Darnell, J. E. The JAK-STAT Pathway at Twenty. Immunity 36, 503–514 (2012).
	37.	 Liu, T.-Y. et al. An individualized predictor of health and disease using paired reference and target samples. BMC Bioinformatics 17, 

47 (2016).
	38.	 Respiratory Viral DREAM Challenge -syn5647810. Available at: https://www.synapse.org/#!Synapse:syn5647810/wiki/399103. 

(Accessed: 8th December 2016).
	39.	 Liu, J. et al. Genome sequence of the biocontrol agent Microbacterium barkeri Strain 2011-R4. J. Bacteriol. 194, 6666–6667 (2012).
	40.	 Song, L., Langfelder, P. & Horvath, S. Comparison of co-expression measures: mutual information, correlation, and model based 

indices. BMC Bioinformatics 13, 328 (2012).
	41.	 Liu, T., Carlsson, J., Takeuchi, T., Newton, L. & Farré, E. M. Direct regulation of abiotic responses by the Arabidopsis circadian clock 

component PRR7. Plant J. n/a-n/a https://doi.org/10.1111/tpj.12276 (2013).
	42.	 Vardi, N. et al. Sequential Feedback Induction Stabilizes the Phosphate Starvation Response in Budding Yeast. Cell Rep. 9, 1122–1134 

(2014).
	43.	 Zhu, C. et al. High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res. 19, 556–566 (2009).
	44.	 Harmer, S. L. et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110–2113 (2000).
	45.	 Smith, S. M. et al. Diurnal Changes in the Transcriptome Encoding Enzymes of Starch Metabolism Provide Evidence for Both 

Transcriptional and Posttranscriptional Regulation of Starch Metabolism in Arabidopsis Leaves. Plant Physiol. 136, 2687–2699 
(2004).

	46.	 Bläsing, O. E. et al. Sugars and Circadian Regulation Make Major Contributions to the Global Regulation of Diurnal Gene 
Expression in Arabidopsis. Plant Cell Online 17, 3257–3281 (2005).

	47.	 Edwards, K. D. et al. FLOWERING LOCUS C Mediates Natural Variation in the High-Temperature Response of the Arabidopsis 
Circadian Clock. Plant Cell Online 18, 639–650 (2006).

	48.	 Michael, T. P. et al. Network Discovery Pipeline Elucidates Conserved Time-of-Day-Specific cis-Regulatory Modules. PLoS Genet. 
4 (2008).

	49.	 Lee, J. et al. Analysis of Transcription Factor HY5 Genomic Binding Sites Revealed Its Hierarchical Role in Light Regulation of 
Development. Plant Cell 19, 731–749 (2007).

	50.	 Yant, L. et al. Orchestration of the Floral Transition and Floral Development in Arabidopsis by the Bifunctional Transcription Factor 
APETALA2. Plant Cell Online 22, 2156–2170 (2010).

	51.	 Chang, K. N. et al. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. Elife 
2, e00675 (2013).

	52.	 Nagel, D. H. et al. Genome-wide identification of CCA1 targets uncovers an expanded clock network in Arabidopsis. Proc. Natl. 
Acad. Sci. 112, E4802–E4810 (2015).

	53.	 O’Malley, R. C. et al. Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape. Cell 165, 1280–1292 (2016).
	54.	 Greenham, K. & McClung, C. R. Integrating circadian dynamics with physiological processes in plants. Nat. Rev. Genet. 16, 598–610 

(2015).
	55.	 Nusinow, D. A. et al. The ELF4-ELF3-LUX Complex Links the Circadian Clock to Diurnal Control of Hypocotyl Growth. Nature 

475, 398–402 (2011).
	56.	 Ezer, D. et al. The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nat. Plants 3, 17087 (2017).
	57.	 Khanday, I. et al. Genome-wide targets regulated by the OsMADS1 transcription factor reveals its DNA recognition properties. 

Plant Physiol. https://doi.org/10.1104/pp.16.00789 (2016).
	58.	 Doherty, C. J. & Kay, S. A. Circadian Control of Global Gene Expression Patterns. Annu. Rev. Genet. 44, 419–444 (2010).
	59.	 Teytelman, L., Thurtle, D. M., Rine, J. & van Oudenaarden, A. Highly expressed loci are vulnerable to misleading ChIP localization 

of multiple unrelated proteins. Proc. Natl. Acad. Sci. 110, 18602–18607 (2013).
	60.	 Zhang, W., Zhang, T., Wu, Y. & Jiang, J. Genome-Wide Identification of Regulatory DNA Elements and Protein-Binding Footprints 

Using Signatures of Open Chromatin in Arabidopsis[C][W][OA]. Plant Cell 24, 2719–2731 (2012).
	61.	 Sullivan, A. M. et al. Mapping and Dynamics of Regulatory DNA and Transcription Factor Networks in A. thaliana. Cell Rep. 8, 

2015–2030 (2014).
	62.	 Greenfield, A., Hafemeister, C. & Bonneau, R. Robust data-driven incorporation of prior knowledge into the inference of dynamic 

regulatory networks. Bioinformatics 29, 1060–1067 (2013).
	63.	 R Core Team. R: A Language and Environment for Statistical Computing (2016).
	64.	 Zhang, H.-M. et al. Animal TFDB: a comprehensive animal transcription factor database. Nucleic Acids Res. 40, D144–D149 (2012).
	65.	 Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing classifier performance in R. Bioinformatics 21, 7881 (2005).

Acknowledgements
We would like to thank Dahlia Nielsen, Katie Greenham, and Erin Slabaugh for critical suggestions on the 
manuscript preparation. Additionally, we thank Steve Briggs for sharing the time, expertise, and helpful 
discussions of his research group. This is contribution no. 17-389-J of the Kansas Agricultural Experiment 
Station. This project was supported by the Agriculture and Food Research Initiative grant # 2015-67013-22814 of 
the USDA National Institute of Food and Agriculture and the USDA National Institute of Food and Agriculture 
project 1002035.

Author Contributions
All authors conceived the design of the approach and J.S.D., R.C.S., and C.J.D. analyzed results and evaluated 
validation approaches. Coding, public data acquisition, data processing and organization was done by J.S.D. 
J.S.D., L.M.L., and S.K.J. generated Oryza diel time course data. C.J.D. wrote manuscript. All authors edited and 
reviewed the manuscript.

https://www.synapse.org/#!Synapse:syn5647810/wiki/399103
http://dx.doi.org/10.1111/tpj.12276
http://dx.doi.org/10.1104/pp.16.00789


www.nature.com/scientificreports/

1 2SCientifiC REPOrTS | 7: 17244  | DOI:10.1038/s41598-017-17143-1

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-17143-1.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-17143-1
http://creativecommons.org/licenses/by/4.0/

	Improving Gene Regulatory Network Inference by Incorporating Rates of Transcriptional Changes

	Results

	ExRANGES Improves Identification of Circadian TF Targets in a Circadian Data Set. 
	ExRANGES Improves Target Identification for TFs That Are Not Components of the Circadian Clock. 
	ExRANGES Identified Targets have Less Variation Across the Time Series. 
	ExRANGES Improves Identification of TF Targets in Unevenly Spaced Time Series Data. 
	ExRANGES Improves Functional Cohesion of Identified Targets. 
	ExRANGES Improves TF Target Identification from RNA-Seq Data and Validated by Experimental Methods Other Than ChIP-Seq. 
	Application of ExRANGES to Smaller Data Sets with Limited Validation Resources. 

	Discussion

	Methods

	Identifying consecutive time points with significant changes in expression. 
	Combining EXPRESSION and Rate Change using ExRANGES. 
	Network Inference using GENIE3. 
	Network Inference using INFERELATOR. 
	ROC Calculation. 

	Acknowledgements

	Figure 1 ExRANGES Outperforms EXPRESSION in Identifying Targets for Select TFs.
	Figure 2 Targets Identified by ExRANGES and EXPRESSION have Different Variation across the CircaDB Data Set.
	Figure 3 ExRANGES Improves Identification of Targets for most TFs from Unevenly Spaced Time Series Data.
	Figure 4 ExRANGES improves Functional Cohesion of Identified Targets.
	Figure 5 ExRANGES improves identification of TF targets validated by different methods.
	Figure 6 Summary of ExRANGES Improvement across Three Data Sets from Different Species.
	Figure 7 ExRANGES Retains Performance Improvement over EXPRESSION on Small Data Sets.




