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Respiratory Syncytial Virus (RSV) causes serious respiratory tract illness and substantial

morbidity and some mortality in populations at the extremes of age, i.e., infants, young

children, and the elderly. To date, RSV vaccine development has been unsuccessful, a

feature linked to the lack of biomarkers available to assess the safety and efficacy of

RSV vaccine candidates. We examined microRNAs (miR) as potential biomarkers for

different types of RSV vaccine candidates. In this study, mice were vaccinated with a

live attenuated RSV candidate that lacks the small hydrophobic (SH) and attachment (G)

proteins (CP52), an RSVG protein microparticle (GA2-MP) vaccine, a formalin-inactivated

RSV (FI-RSV) vaccine or were mock-treated. Several immunological endpoints and miR

expression profiles were determined in mouse serum and bronchoalveolar lavage (BAL)

following vaccine priming, boost, and RSV challenge. We identified miRs that were

linked with immunological parameters of disease and protection. We show that miRs

are potential biomarkers providing valuable insights for vaccine development.
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INTRODUCTION

Respiratory Syncytial Virus (RSV) is a cause of lower respiratory tract infection (LRTI) worldwide
and is responsible for>30 million new LRTI episodes and up to 199,000 deaths in children under 5
years old resulting in more than 3.4 million hospital admission associated with severe RSV disease
(1, 2). The elderly population is also markedly affected by RSV (3). Currently, the only approved
RSV prophylactic is palivizumabwhich is used for high-risk patients, but such treatment has limited
applicability due to cost and treatment logistics (4–9). Unfortunately, all efforts to develop a safe
and effective RSV vaccine have been unsuccessful (10–16). Attempts in the 1960s to develop a
formalin-inactivated RSV (FI-RSV) vaccine candidate were hampered by several factors, including
lack of protection against RSV infection in infants and young children, and an association with
vaccine enhanced disease that resulted in two deaths upon natural RSV infection of vaccinees
(10, 17–19). Efforts to develop live attenuated RSV vaccine candidates using cold-passaging,
chemical mutagenesis, or reverse genetics have also been unsuccessful largely due to over- or under-
attenuation, which currently cannot be precisely predicted (20–30), and natural RSV infection
does not provide long-term protective immunity. Several other RSV vaccine platforms have
been developed including subunit (31–38), vectored (39–46), particle-based (47–57), or nucleic
acid-based (58–63), but none are FDA-approved a feature linked to our incomplete understanding
of the host immune response to RSV (10). There are several target populations for RSV vaccines:
infants, young children, pregnant women, and the elderly (10). Due to the differences in these target
populations, vaccine safety, efficacy, and platform strategies will need to be different (10, 11, 18, 33).
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By establishing measures of vaccine protection and disease, a
wide range of promising vaccine candidates can be evaluated
early in development.

The host immune response is important in the outcome of
RSV infections (14, 60, 64, 65), and an imbalance between Th1-
and Th2-type cytokines is understood to be responsible for a
variety of inflammatory disorders (66, 67). Biomarkers can be
surrogates for clinical endpoints and are needed to improve
vaccine design and efficacy. Small regulatory microRNAs (miRs)
have fundamental roles in regulating the expression and function
of key immunological mediators such as cytokines (68–70).
miR expression profiles have been identified and shown to be
useful predictors for several allergic inflammatory diseases (71–
74). In addition, specific miRs have been shown to function
in regulating key pathogenic mechanisms in asthma and
airway hyperresponsiveness, including polarization of adaptive
immune responses, activation of T cells (75–78), regulation of
eosinophil development (79–84) and modulation of cytokine-
driven responses (68–70). miRs are stable, in a variety of
tissues, bodily fluids, and sera allowing for sensitive and accurate
measurements regarding the physiological state of the individual
(72–74). miRs govern host gene expression by inducing mRNA
degradation or translation inhibition and have a prominent
role in determining the level of protein expression of host
gene targets (85–90). Several miRs can also upregulate target
gene expression via regulation of promoter function (91, 92).
It has been shown that miR patterns of expression vary
for numerous physiological processes that have been deemed
useful for diagnosis of neurodegenerative disorders, autoimmune
diseases, cardiovascular disease, and cancers; likewise miRs have
also been implicated in infectious diseases (42, 93–98). Assessing
circulating miRs in the sera of patients has supported miR
profiling as a powerful non-invasive biomarker tool.

Previously, it was shown that RSV infection of normal
tracheal epithelial cells (NTECs) with GFP-expressing RSV
(rgRSV) downregulated the expression of multiple miRNAs
(99). Of the 24 miRNAs, miR-221 was shown to regulate
nerve growth factor (NGF), a key neurokinin that prevents
apoptosis in respiratory cells (99). Later, RSV infection of type
II respiratory epithelial cells was shown to induce expression
of five and down-regulation of three microRNAs via an RSV G
protein regulated mechanism (100). RSV deregulated miRNAs
were demonstrated to regulate several key immunological
pathways. In a follow-up study, RSV infection of normal human
bronchoepithelial (NHBE) cells, miRNA deregulation was tied
to mechanisms involving IFN beta and the transcription factor
NF-κβ (101). We showed that RSV G and NS1/NS2 proteins
can modulate miRNA expression (102, 103). Several studies have
investigated differential expression of miRNAs in clinical RSV
infections and shown deregulated patterns that can be used as
potential biomarkers of infections (104–109). While these data
show miRNA deregulation during infection, miRNA expression
following vaccination with different RSV vaccine candidates
under investigation is not well-understood and has the potential
to identify safe vs. unsafe vaccine candidates.

As miRs regulate host gene responses, it is important to
determine if miR profiles serve to predict safe, efficacious,

or diseased vaccine outcomes, particularly since RSV lacks a
licensed vaccine. To determine if patterns of miR expression may
serve as a surrogate of RSV immunity or disease requires proof
of biological relevance. Therefore, we identified miR biomarkers
and immune correlates associated with RSV vaccination to
establish baselines for biomarker expression across different
vaccination types and strategies. Since serum miR profiles
provide indications of how miRs may regulate the immune
response induced by RSV vaccination or infection (50), serum
miR profiles may also suggest vaccine disease outcomes. We
hypothesized that RSV infection or vaccination would alter the
pattern and tempo of miR expression and that this would be
reflected in changes by the host immune or disease response.
In the present study, we examined serum miRs in BALB/c mice
at various time-points post-RSV vaccination or RSV challenge
using several RSV vaccine types. A miR PCR array was used
to identify miRs post-vaccination, post-boost, or post-RSV
challenge, and correlated with immune parameters and markers
of disease.

MATERIALS AND METHODS

Mice
Specific-pathogen-free, 6-to-8 weeks old female BALB/c mice
(The Jackson Laboratory) were used. Mice were maintained in
microisolator cages with sterilized water and food ad libitum. All
experiments were approved by and performed in accordance with
the guidelines of the University of Georgia Institutional Animal
Care and Use Committee (IACUC).

Viruses and Cell Culture
CP52 was a gift from Stephen Whitehead and Brian Murphy
at LID, National Institute of Allergy and Infectious Diseases,
Bethesda, MD. CP52 is a cold-passaged live attenuated vaccine
strain that lacks the RSVG and SH genes and is derived fromRSV
B1. RSV A2 and CP52 were propagated in mycoplasma-free Vero
E6 cells (ATCC CRL-1586) using DMEM (Gibco) containing 5%
FBS (Hyclone) at 37◦C/5% CO2 and 32◦C/5% CO2, respectively
(110). Viral titers were determined by plaque assay on Vero
E6 cells, and plaques were enumerated by an anti-F protein
(clone 131-2A) immunostaining assay (111, 112). Infections were
performed in serum-free DMEM (SF-DMEM).

FI-RSV Preparation
The preparation of formalin-inactivated RSV (FI-RSV) vaccine
was adapted from the FI-RSV Lot 100 method (113). Briefly,
strain A2 was used to infect Vero E6 cells (MOI = 0.1), and
at day 4 pi, the cells were lysed following scraping, sonicated,
and clarified by centrifugation at 600 x g for 15min at 4

◦
C.

The supernatant was transferred to a tube and filter sterilized
using a 2µm filter; the final protein concentration (determined
by BCA) was adjusted to 1 mg/ml. Viral stocks were inactivated
by the addition of 37% formalin (final dilution 1:4,000) and
incubated at 37◦C for 3 days in agitation. FI-RSV was pelleted
by ultracentrifugation for 2 h at 25,000 rpm, re-suspended in SF-
DMEM at 1/25th of the original volume and adsorbed overnight
at room temperature in 4 mg/mL aluminum hydroxide. The
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compound material was pelleted by centrifugation and the pellet
was suspended in SF-DMEM and total virus inactivation was
confirmed via plaque assay on Vero cells. This procedure resulted
in an FI-RSV vaccine that is concentrated 100-fold and contains
16 mg/ml alum. The vaccine was aliquoted in 1ml volumes and
stored at 4◦C.

RSV GA2 Microparticle-Based Vaccine
Amicroparticle-based RSV G protein vaccine consisting of 3µm
CaCO3 cores was prepared using alternating poly-I-glutamic
acid (PGA, negative charge) and poly-I-lysine (PLL, positive
charge) layering to build up to seven layers with an RSV G
peptide CX3C motif linked to a cationic sequence added as the
outermost layer (4). The composition of the seven-layer film
was determined using amino acid analysis, which showed that
a comparable amount of the peptide component was present
in each vaccine batch. Endotoxin levels by limulus amebocyte
lysate (LAL) assay were <0.1 EU/µg. The dispersity of the
particle vaccines was monitored by dynamic light scattering
(DLS). DLS is used to determine the size distribution profile
of small particles in suspension or polymers in solution. This
layer-by-layer microparticle vaccine has an apparent diameter of
∼150 nm for uncoated particles to about 400–500 nm for fully
coated particles. Some particle aggregation was detected in each
batch with a second population of particles in the 1,500–2,000
nm range.

Vaccine Delivery
We examined three vaccine types: (1) live-attenuated (CP52), (2)
inactivated (FI-RSV), and (3) an RSV G peptide microparticle-
based (GA2-MP). The GA2-MP vaccines were suspended in
PBS and dispersed by water bath sonication immediately
prior to immunization. Doses were adjusted to deliver 50 µg
designed peptide (DP)/100 µl/mouse. Mice were subcutaneously
(s.c.) immunized with GA2-MP without adjuvant between the
shoulder blades. 106 PFU equivalents of FI-RSV was used to
intramuscularly (i.m.) vaccinate mice. Mice received a 1:25
dilution of FI-RSV in PBS by i.m. injection in a final volume of 50
µL/mouse. FI-RSV was a positive control for vaccine enhanced
disease. 106 PFU of live CP52 diluted in PBSwas used to vaccinate
mice by intranasal (i.n.) instillation in a final volume of 50
µL/mouse. CP52 was a positive control for vaccine protection.
PBS vaccinated mice received 50 µL of PBS (vehicle control) by
s.c. injection. Mice were anesthetized by i.p. administration of
2,2,2- tribromoethanol (Avertin; 200 µg/kg Sigma) and a portion
of vaccinated mice were i.n. challenged with 106 PFU A2 diluted
in PBS.

Lung Virus Titers and Disease Endpoints
Lung virus titers were determined in treatment and control
mice by plaque assay on Vero E6 cells (111). Briefly, lungs
were aseptically removed from mice at day 5 post-RSV
(106 PFU/mouse) challenge, and individual lung specimens
were homogenized at 4◦C in 1mL of SF-DMEM using a
gentleMACSTM Dissociator (Miltenyi Biotec). Samples were
clarified by centrifugation for 10min at 200× g and supernatants
were transferred and stored at −80◦C. For the plaque assay,

10-fold serial dilutions of the lung homogenates were adsorbed
to 90% confluent Vero E6 cell monolayers for 2 h, at 37◦C,
overlaid with 1%methylcellulose medium and incubated at 37◦C
for 5 days. RSV plaques were enumerated by immunostaining
with monoclonal antibodies against RSV F protein (clone 131-
2A) as previously described (112). Lungs from vaccinated and
challenged mice were examined for disease pathogenesis, and as
anticipated (54, 114, 115), only the lungs from FI-RSV vaccinated
mice challenged with RSV showed substantially enhanced disease
(data not shown).

Microneutralization Assay
Two-fold serial dilutions (1:50-1:1,600) of mouse serum in SF-
DMEM were incubated with 105 PFU of A2 for 1 h at 37◦C, 5%
CO2. Palivizumab (MedImmune) was used as positive control
for neutralizing activity, and positive control wells of virus
without sera and negative control wells without virus or sera
were included in triplicate on each plate. The antibody-virus
mixtures were transferred to 80–90% confluent monolayers of
Vero E6 cells in 96-well-plates and incubated for 2 h at 37◦C,
5% CO2. The virus overlay was aspirated, and 150 µl/well of
DMEM-10% FBS was added and plates were incubated for 3–4
days at 37◦C, 5% CO2, and the plates were fixed with cold 80%
acetone in PBS for 10min, rinsed twice with PBS followed by
three washes with 150µl/well of wash buffer (PBS+ 0.1%Tween-
20). A monoclonal antibody to the RSV F protein (clone 131-2A)
was diluted in PBS with 0.5% gelatin + 0.15% Tween 20 and
incubated for 1 h at 37◦C, 5%CO2. RSV plaques were enumerated
using horseradish peroxidase (HRP) conjugated goat anti-mouse
IgG (Southern Biotech), developed using TMB substrate (Sigma),
and absorbance measured at 450/650 nm dual-wavelength
(BioTek EpochTM microplate spectrophotometer) and Gen5
Data Analysis software. The percentage of neutralization was
calculated, and all samples were normalized to the average value
from the no serum control wells.

Indirect ELISA
RSV A2-specific and B1-specific IgG antibodies were detected
by ELISA using 96-well-high binding plates (Corning) coated
with 106 PFU/mL A2 or B1 in 0.05M carbonate-bicarbonate
buffer, pH 9.6. Sera were added to plates in serial dilutions.
RSV-specific antibodies were detected with HRP-conjugated
antibodies specific for mouse IgG (Southern Biotech) followed by
the addition of SureBlue TMB-peroxidase substrate (KPL, Inc.)
for 15min. Antibody titers were determined as the last sample
dilution that generated an OD450 reading of >0.2 (mean OD
value of background plus 2 standard deviations of the mean).

ELISPOT Analysis
MultiScreen filter 96-well-plates (Millipore) were coated with
the anti-mouse IL4 or anti-mouse IFNγ capture antibody
(R&D Systems) and incubated overnight at 4◦C. The plates
were then blocked with 200 µL of RPMI-10 medium (RPMI
1640 supplemented with 10% FBS, 100 U/mL penicillin,
100µg/mL streptomycin, 50µM 2-mercaptoethanol, and 2mM
L-glutamine) and incubated for 2 h at 37◦C. In parallel, spleens
were harvested from mice at day 5 post-A2 challenge and
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prepared to a single cell suspension. The cell suspensions were
collected by centrifugation for 10min at 200 × g and suspended
in RPMI-10 at 107 cells/mL. Spleen cell suspensions were added
to the wells, and cells were stimulated with either 10µg/mL RSV
M2 (82−90) peptide, 10µg/mL RSV F (51−66) peptide, 10µg/mL
RSV G (183−198) peptide, or 10µg/mL eGFP (200−208) (irrelevant
peptide control) for 24 h at 37◦C and 5%CO2. Plates were washed
4 times with wash buffer (0.05% Tween-20 in PBS), anti-mouse
IL4 or anti-mouse IFNγ detection antibody (R&D Systems) was
added, and plates were incubated overnight at 4◦C. Detection
antibody was removed, plates were washed, and cytokine spots
were developed using NBT/BCIP substrate (R&D Systems). Spots
were enumerated using an ELISPOT reader (AID, San Diego).

Quantification of Cytokines
At day 3 post-A2 challenge, a subset of mice from each
group was sacrificed and BAL and sera were collected. The
mouse lungs were flushed three times with 1ml of PBS and
the retained BAL was centrifuged at 400 × g for 5min at
4◦C. The recovered supernatants were collected and stored
at −80◦C until assessed for cytokine concentration, and the
cell pellet was suspended in 200 µL of FACS staining buffer
(PBS containing 1% BSA). Total cell numbers were counted
using a hemocytometer. The Luminex R© xMAP system using
a MILLIPLEX MAP mouse cytokine immunoassay (Millipore)
was used to quantitate cytokines in cell-free BAL supernatants
and sera according to the manufacturer protocol. Briefly, beads
coupled with anti-IFNγ, anti-IL1α, anti-IL2, anti-IL4, anti-
IL5, anti-IL6, anti-IL9, anti-IL10, anti-IL12p40, anti-IL13, anti-
IL15, anti-IL17A, anti-MCP1, anti-RANTES, anti-TNFα, and
anti-eotaxin monoclonal antibodies were sonicated, mixed, and
diluted 1:50 in assay buffer. For the assay, 25 µL of beads
were mixed with 25 µL of PBS (for BAL samples) or serum
matrix (for serum samples), 25 µL of assay buffer and 25 µL
of BAL supernatant or serum and incubated overnight at 4◦C.
After washing, beads were incubated with biotinylated detection
antibodies for 1 h and the reaction mixture was then incubated
with streptavidin-phycoerythrin (PE) conjugate for 30min at
room temperature, washed, and suspended in PBS. The assay was
analyzed on a Luminex 200 instrument (Luminex Corporation,
Austin, TX) using Luminex xPONENT 3.1 software.

RNA Isolation
Blood was collected from mice via axillary vessels in 1.5ml
microcentrifuge tubes (Fisher), allowed to clot for 30min at
room temperature, and centrifuged at 900 × g for 10min and
4◦C. Serum layer was transferred to a new microcentrifuge tube
and centrifuged for 10min at 16,000 × g and 4◦C, and the
cleared supernatant was transferred to a new microcentrifuge
tube without disturbing the pellet. One hundred microliter of
serum sample per mouse was processed for RNA isolation using
miRNeasy Serum/Plasma Kit (Qiagen) as per manufacturer’s
recommended protocol or stored at −80 till processing.
Serum/Plasma C. elegans miR-39 Spike-In Control (Qiagen)
was spiked into each sample prior to RNA purification as
an internal control for miR expression profiling in serum to
allow for monitoring of RNA recovery and purity, and reverse

transcription efficiency. The RNA concentration and purity were
determined by Qubit RNA assay broad range (Qubit RNA assay
BR, Invitrogen) fluorometry. This reagent specifically binds to
RNA only and does not detect DNA, protein or free nucleotides.
Additionally, spectrophotometric analysis of all samples using
Epoch Gen 5 spectrophotometer (Biotek) showed that all RNA
samples had A260/280 ratios ≥1.8.

miR PCR Arrays and Data Analysis
First-strand cDNA synthesis was performe4d with 200 ng/total
RNA from each sample using the miScript II RT kit with miScript
HiSpec Buffer (Qiagen) following manufacturer protocol. Briefly,
cDNA synthesis was performed at 37◦C for 60min followed by
inactivation at 95◦C for 5min. First-strand cDNA was diluted
1:10 in molecular grade water and expression of 84 miRs having a
role in T or B cell function was assessed using amiScriptmiR PCR
ArrayMouse T cell and B cell Activation (Qiagen) array following
the manufacturer’s protocol on a Stratagene Mx3000P/3005P
real-time instrument. Each array plate contains oligos specific
to 84 mature miRs validated to regulate T cell or B cell
development and function as well as oligos for spike in (C. elegans
miR-39), six housekeeping genes [small nucleolar/nuclear RNA
(snoRNAs) SNORD61, SNORD95, SNORD96A, SNORD68,
SNORD72, and RNU6B] and positive and negative controls for
reverse transcription and PCR. Data obtained were analyzed
with miScript miR PCR analysis template (Qiagen) using the
11CT method (116). miRs with fold change≥2 were considered
upregulated while miRs with fold change ≤0.5 were considered
downregulated. RT-qPCR using miR-specific primers was then
performed on differentially expressed miRs between treatment
groups using a PCR array. The specificity of amplification was
validated by dissociation curve analysis.

Statistical Analysis
All statistical analyses were performed using GraphPad Prism
(ver 5.0; GraphPad). Statistical significance was determined using
a one-way ANOVA or two-way ANOVA followed by Bonferroni’s
post-hoc comparisons tests; a p≤ 0.05 was considered significant.

Pathway Analysis
Analysis of pathways regulated by differentially expressed miRs
was carried out using DIANA miRPath ver 3.0 (117–119)
using the microT-CDS database. The significance of pathway
association was determined using a p-value threshold ≤0.05 and
microT threshold of 0.8 using Fisher’s exact test. When multiple
miRs were analyzed together, data were filtered to identify
pathway intersections instead of unions to identify common core
pathways regulated by the miRs. Pathway hits were corrected for
false discovery rate.

RESULTS

To assess the serum miR profiles in RSV-vaccinated or
challenged mice, the mice were vaccinated (primed) with a live
attenuated vaccine (CP52), an inactivated vaccine (FI-RSV), or a
microparticle peptide-based vaccine carrying the G CX3C motif
(GA2-MP) and boosted 3 weeks later. Three weeks post-boost
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vaccinated mice were i.n. challenged with 106 PFU A2, and the
sera and lung tissues were collected from vaccinated and mock-
treated mice at several time-points. Antibody responses to RSV
were assessed to confirm that antigens induced a recall response
upon vaccination and challenge. RSV A2 or B1-specific serum
IgG was determined at 2 weeks post-boost and 5 days post-RSV
challenge, and the levels of neutralizing antibody determined
at day 5 pi. Lung viral titers were determined at 5 days post-
challenge. Broadly, vaccination with CP52 or FI-RSV elicited
a cross-reactive humoral response to either A2 or B1 relative
to mock (Figures 1A,C, respectively). CP52 (but not FI-RSV)
vaccination followed by A2 challenge elicited a strong antibody
response (Figures 1B,D, respectively), which was neutralizing
(Figure 1E) and correlated with a statistically significant (p ≤

0.05) reduction in lung viral titers (Figure 1F). Despite the G
protein CX3C motif having intra-strain conservation (120), it
was less immunogenic as indicated by the lower anti-A2 and B1
IgG serum levels. These data show the prototypical responses
associated with CP52, GA2-MP, and FI-RSV vaccination in
mice (121, 122).

RSV Vaccine Types and the Th1- and
Th2-Type Response
Th1- or Th2-type responses were assessed by ELISPOT assays,
and levels of IFNγ or IL4 expression (representing Th1- or
Th2-type responses, respectively) were evaluated at day 14 post-
boost vaccination by re-stimulated splenocytes with RSV M2,

F or G peptides. As expected, CP52 vaccinated mice had the

highest frequency of IFNγ expressing cells compared to IL4

expressing cells (Figure 2A), while splenocytes from FI-RSV
vaccinated mice had the highest frequency of IL4 expressing
cells compared to IFNγ expressing cells (Figure 2B). GA2-
MP vaccinated mice had higher levels of G protein-specific
IL4 secreting cells than IFNγ expressing cells, however this
difference was not statically significant (p > 0.005). MCP1 and
RANTES are chemokines involved in leukocyte recruitment to
the airway, and to sites of inflammation in response to RSV
infection (123–125). Given the role of these immune cell types in
disease pathogenesis, levels of MCP1 (Figure 2C) and RANTES
(Figure 2D) in sera and BAL were determined by multiplex
cytokine/chemokine assays. MCP1 was localized to the lungs,
with the highest level in the BAL from FI-RSV vaccinated mice
although the level of expression was not substantially different
between CP52 and GA2-MP vaccinated mice. In contrast,
RANTES was expressed systemically, as evident by a higher
level in the sera compared to BAL, with higher levels for FI-
RSV and CP52 immune mice compared to GA2-MP vaccinated
mice at day 3 post-RSV challenge. As anticipated, no detectable
cytokine expression occurred following mock (PBS) treatment
(data not shown). These data indicate that CP52 or FI-RSV
vaccinated mice have an overall higher level of inflammation
than mice vaccinated with GA2-MP upon RSV challenge. Other
Th2-specific cytokines (IL4, IL5, IL6, IL10, and IL3) were higher
in the sera (data not shown) and BAL of FI-RSV vaccinated

FIGURE 1 | RSV vaccines types, serum IgG, and virus clearance. Sera at day 14 (A) and 5 (B) post-RSV A or B challenge of prime-boosted mice (C,D); IgG reactivity

was determined against A2 (A,C) and B1 (B,D). Three weeks after the boost-vaccination mice were i.n. challenged with 106 PFU of A2. (E) RSV neutralizing antibody

levels were measured by microneutralization assay at day 5 post-RSV challenge. (F) Lung virus titers were determined 5 days post-challenge by plaque assay. PBS

only-treated groups treated had no detectable effect and are not included. All samples were assayed in duplicate and n = 4 mice/group. Error bars represent the SEM

and results were considered significant with a *p ≤ 0.05 and ****p ≤ 0.0001 as determined by one-way ANOVA and Bonferroni’s test.
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FIGURE 2 | Vaccine types and Th1/ Th2 memory responses. The number of M282−90, F51−66, G183−198, and eGFP200−208-specific (irrelevant peptide control) IL4-

and IFNγ- producing splenocytes were determined by ELISPOT harvested at 14 days post-boost vaccination. (A) IFNγ- producing splenocytes and (B) IL4-producing

splenocytes. The data are presented as ELISPOTS/106 splenocytes. Three weeks after the boost mice were i.n. challenged with 106 PFU of A2. The level of (C)

MCP1 and (D) RANTES were measured in sera and BAL supernatant by multiplex cytokine/chemokine assay and the data are presented as pg/mL of cytokine in BAL

supernatant at day 3 post-challenge (n = 4–6 mice/group). The dashed line indicates the limit of detection (LOD) = 3.2 pg/ml. Error bars represent the SEM from n =

4 mice/group and results were considered significant with a *p ≤ 0.05, **p ≤ 0.01, and ****p ≤ 0.0001 as determined by two-way ANOVA and Bonferroni’s test using

GraphPad Prism ver. 8.0.

mice compared to all other vaccinated groups which further
confirm the biased Th2-type cytokine response associated with
FI-RSV vaccination.

The Type of Vaccination Is Linked With
Different miR Expression Patterns
Evaluating the Th1- or Th2-type cytokine response using
accompanying assays is not efficient for testing of multiple
vaccine candidates; however, the examination of miR biomarkers
as correlates of the host immune response may aid vetting of
safe or disease vaccine types, and considerably accelerate RSV
vaccine research. The pattern of miRs can be readily evaluated
using PCR (126) in a variety of fluids and tissues (127–133), there
is sequence conservation across species (134), and miRs regulate
key immunological processes (135). These features can be used to
determine baseline data that may differentiate safe from disease
risk vaccine types to aid the development of vaccine candidates.
Since the memory T cell response is pivotal to development
of immunity and disease, we analyzed 84 key miRs connected
with T cell function in the sera from vaccinated mice, pre- and
post-RSV A2 challenge, at several time-points, e.g., 1-week post-
prime/boost or 3d post-challenge. Total RNA was isolated from
sera, used for cDNA synthesis, and miR expression was assayed
using optimized primer-probes. Fold-changes in miR expression
was plotted after normalization.

Analysis of the 84 miRs across all treatments identified

miR expression signatures unique to prime-boost vaccination

and RSV challenged mice, and those miR signatures conserved
among all treatments (Figure 3). In general, each vaccine
type, i.e., CP52, FI-RSV, or GA2-MP induced temporal and
vaccine-specific miR expression patterns (Figure 3) where
miR expression levels were heightened post-boost relative
to prime and challenge. Given the differences in vaccine
type and vaccination routes, differences were expected and
emphasize miR patterns for their utility as potential vaccination
biomarkers. Analogously, miR responses following A2 challenge
of CP52 vaccinated mice compared to FI-RSV vaccinated mice
correlated with safe vs. disease phenotypes of Th1- vs. Th2-type
cytokines. Intergroup comparisons identified 58, 70 and 65 miRs
differentially expressed in sera from CP52, FI-RSV, and GA2-MP
vaccinated mice, respectively. Within groups, 8, 18, and 11 miRs
were conserved between prime, boost and 3 days post-challenge
for CP52, FI-RSV, and GA2-MP vaccinated mice, respectively. Of
the miRs examined, let-7a-5p expression was upregulated >2SD
in all vaccinated mice, thus this is likely not a biomarker for
distinguishing vaccine-specific responses, but instead a general
inflammatory biomarker (Table 1).

CP52 vaccination resulted in lower expression of miR-466f-3p
and miR-467b-3p and did not induce any miRs. FI-RSV
vaccination repressed miR-365-3p and miR-762 expression post-
priming, but led to >2.0-fold induction of multiple miRs e.g.,
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FIGURE 3 | The number of differentially expressed miRNAs during vaccination and post-RSV challenge. Sera miRNA profiles of vaccinated mice (n = 4/group) were

evaluated at day 7 post-prime, day 14 post-prime, day 7 post-boost, day 14 post-boost, day 3 post-challenge, and day 5 post-challenge using a miRNA PCR array.

The y-axis indicates the number of differentially expressed miRNAs. Significance was determined using a fold-change threshold of >2, the result was reported as a

fold-upregulation. If the fold change was <0.5, the result was reported as a fold-downregulation.

TABLE 1 | Differentially expressed miRs expressed by the various vaccines.

Vaccine type Number of

miRs

Conserved miRs

GA2-MP 3 miR-26b-5p, miR-346-5p, miR-142a-5p

FI-RSV 9 miR-31-5p, miR-30c-5p, let-7d-5p,

miR-326-3p, miR-93-5p, miR-30e-5p,

miR-483-5p, let-7g-5p, miR-106b-5p

FI-RSV and GA2-MP 4 miR-20b-5p, let-7f-5p, miR-103-3p,

miR-15a-5p

FI-RSV and CP52 4 miR-20a-5p, miR-195a-5p, miR-17-5p,

miR-106a-5p

GA2-MP and CP52 3 miR-467f, miR-182-5p, let-7e-5p

GA2-MP, FI-RSV,

and CP52

1 let-7a-5p

Common and unique differentially expressed miRs for GA2-MP, FI-RSV, and CP52

vaccinated mice conserved amongst post-prime (7 and 14 days), post-boost (7 and 14

days), and post-RSV challenge (3 and 5 days) are shown. miRNA expression levels are

normalized by SN1/2/3/4/5/6 expression and n = 4 mice/group.

let-7d-5p, miR-326-3p, miR-331-3p, miR-16-5p, miR-103-3p,
miR-30a-5p, miR-93-5p, miR-181a-5p, miR-101a-3p, miR-15b-
5p, miR-15a-3p, miR-106b-5p, miR-142a-3p, miR-19a-3p, miR-
30c-5p, miR-101b-3p, miR-25-3p, miR-31-5p, let-7i-5p, let-7g-5p
post-prime (Table 2), and miR-326-3p, miR-145a-3p, miR-466f-
3p, miR-24-3p, miR-181a-5p, miR-27a-3p, miR-125b-5p, miR-
31-5p, miR-214-3p, miR-466f-5p, miR-365-3p, miR-146b-5p,
miR-30c-5p, miR-466h-5p, miR-126a-3p post-boost (Table 3).
In contrast, GA2-MP vaccination induced only miRs let-7e-
5p and miR-26b-5p post-prime and miR-669f-3p, miR-142a-
3p post-boost (Table 3). miR-466f-3p had divergent expression
between CP52 and FI-RSV vaccinated mice, while miR-142a-
3p showed early induction post-FI-RSV but was induced in
GA2-MP vaccinated mice post-boost (Table 3).

miR profiling for each vaccine type post-challenge showed
unique patterns and tempos of expression. For example, CP52
vaccinated mice had higher expression of let-7f-5p, miR-103-
3p, miR-15b-5p, miR-101a-3p, miR-16-5p, miR-20a-5p, miR-
106a-5p, miR-98-5p, miR-30a-5p, miR-17-5p, miR-195a-5p,
miR-142a-5p, miR-181a-5p, miR-714, miR-31-5p, miR-101b-3p,
miR-25-3p, let-7i-5p, miR-130b-3p, and reduced miR-182-5p
post-challenge (Table 4). In contrast, FI-RSV vaccinated mice
showed repression of miR-483-5p post-challenge, while GA2-
MP vaccinated mice had induction of miR-145a-5p, miR-346-
5p, miR-146b-5p, and repression of miR-669e-5p post-challenge.
Thus, comparing between vaccine groups at 7 days post-prime,
7 days post-boost, or 3 days post-RSV challenge showed miRs
profiles as related to safe or disease responses (Table 5).

miR Patterns Specific to the Vaccine Type
To determine if serummiR profiles were specific to a vaccine type
e.g., live (CP52) i.n. delivered, or killed (FI-RSV) i.m. delivered,
or subunit (GA2-MP) s.c. delivered, the miRs were evaluated
from vaccinated mice at day 7 post-vaccination. Interestingly,
we observed nearly twice as many miRs expressed in the sera
at day 7 post-vaccination compared to 14 days post-vaccination
(Supplementary Table 1). The sera miR profiles showed that
CP52 vaccinated mice had decreased miR-466f-3p and miR-
467b-3p expression at 7 days post-vaccination, whereas sera miR
expression from FI-RSV-vaccinatedmice had two downregulated
miRs (miR-365-3p and miR-62) while sera from GA2-MP
vaccinated mice expressed higher miRs, i.e., let-7e-5p and miR-
26b-5p at 7 days post-prime (Table 2). Interestingly, miR-467f
expression was downregulated for all vaccine types at day 7
post-vaccination. Additionally, several miRs were identified in
all vaccinated mice, e.g., let-7a-5p, miR-142a-5p, and miR-20b-
5p which were upregulated (Table 1). The results showed that
several miRs were expressed specifically to CP52 (miR-466f-3p,
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TABLE 2 | miRs induced by the vaccines at post-prime.

Time-point Vaccine types Upregulated miRs Downregulated miRs

Day 7

post-prime

GA2-MP, FI-RSV, and

CP52

let-7a-5p, miR-142a-5p, miR-20b-5p miR-467f

FI-RSV and

GA2-MP

let-7f-5p, miR-15a-5p, miR-98-5p None

FI-RSV and

CP52

miR-106a-5p, miR-195a-5p, miR-30e-5p, miR-20a-5p, miR-17-5p, miR-19b-3p miR-182-5p, miR-466j,

miR-483-5p

GA2-MP let-7e-5p, miR-26b-5p None

FI-RSV let-7d-5p, miR-326-3p, miR-331-3p, miR-16-5p, miR-103-3p, miR-30a-5p, miR-93-5p, miR-181a-5p,

miR-101a-3p, miR-15b-5p, miR-15a-3p, miR-106b-5p, miR-142a-3p, miR-19a-3p, miR-30c-5p,

miR-101b-3p, miR-25-3p, miR-31-5p, let-7i-5p, let-7g-5p

miR-365-3p, miR-762

RSV and CP52 None miR-466f-3p,

miR-467b-3p

Sera miR profiles of vaccinated mice (n = 4/group) were evaluated at day 7 post-prime using a miR PCR array. The relative expression levels of candidate miRs selected from the PCR

array analysis were validated by RT-qPCR. Values are represented as fold-change/mock (PBS vaccinated/RSV A2 challenge). miR levels were normalized by RNU6B gene expression

and all samples were run in duplicate. Fold-change was calculated using 2(−11CT) method. Differential expression was determined using the following criteria, if the fold change was

>2, the result was reported as a fold-upregulation. If the fold-change was <0.5, the result was reported as a fold-downregulation.

TABLE 3 | miRs induced by the vaccines at post-boost vaccination.

Time-point Vaccine type Upregulated-miRs Downregulated-miRs

Day 7

post-boost

GA2-MP,

FI-RSV,

and CP52

miR-195a-5p, miR-320-3p, let-7a-5p, miR-181b-5p, miR-672-5p, let-7e-5p, miR-17-5p, let-7c-5p,

miR-714, let-7d-5p, let-7f-5p, miR-574-5p, miR-182-5p, miR-16-5p, miR-467f, miR-21a-5p,

miR-130b-3p, miR-1187, miR-15b-5p, miR-26b-5p, miR-20a-5p, miR-184-3p, miR-762, miR-20b-5p,

miR-25-3p, let-7i-5p, let-7g-5p

None

FI-RSV and

GA2-MP

miR-331-3p, miR-103-3p, miR-29a-3p, miR-30e-5p, miR-23b-3p, miR-101a-3p, miR-106b-5p,

miR-142a-5p, miR-19b-3p, miR-19a-3p, miR-101b-3p, miR-30b-5p, miR-221-3p, miR-106a-5p,

miR-30a-5p, miR-346-5p, miR-93-5p, miR-29b-3p, miR-466j, miR-15a-3p, miRR-15a-3p, miR-29c-3p

None

GA2-MP and

CP52

miR-223-3p, miR-669e-5p, miR-98-5p, miR-26a-5p, miR-155-5p None

FI-RSV and

CP52

miR-483-5p, miR-1196-5p

GA2-MP miR-669f-3p, miR-142a-3p None

FI-RSV miR-326-3p, miR-145a-3p, miR-466f-3p, miR-24-3p, miR-181a-5p, miR-27a-3p, miR-125b-5p,

miR-31-5p, miR-214-3p, miR-466f-5p, miR-365-3p, miR-146b-5p, miR-30c-5p, miR-466h-5p,

miR-126a-3p

None

Sera miR profiles of vaccinated mice (n = 4/group) were evaluated at day 7 post-boost using a miR PCR array. The relative expression levels of candidate miRs selected from the PCR

array analysis were validated by RT-qPCR. Values are represented as fold-change/mock (PBS vaccinated/RSV A2 challenge). miR levels were normalized by RNU6B gene expression

and all samples were run in duplicate. Fold-change was calculated using 2(−11CT) method. Differential expression was determined using the following criteria, if the fold change was

>2, the result was reported as a fold upregulation. If the fold-change was <0.5, the result was reported as a fold-downregulation.

TABLE 4 | miRs at post-RSV challenge.

Time-point Vaccine type Upregulated-miRs Downregulated-miRs

Day 3

post-challenge

GA2-MP and

RSV CP52

miR-467f, miR-184-3p None

GA2-MP miR-145a-5p, miR-346-5p, miR-146b-5p miR-669e-5p

FI-RSV None miR-483-5p

CP52 let-7f-5p, miR-103-3p, miR-15b-5p, miR-101a-3p, miR-16-5p, miR-20a-5p, miR-106a-5p, miR-98-5p,

miR-30a-5p, miR-17-5p, miR-195a-5p, miR-142a-5p, miR-181a-5p, miR-714, miR-31-5p,

miR-101b-3p, miR-25-3p, let-7i-5p, miR-130b-3p

miR-182-5p

Sera miR profiles of vaccinated mice (n = 4/group) were evaluated at day 3 post-challenge using a miR PCR array. The relative expression levels of candidate miRs selected from

the PCR array analysis were validated by RT-qPCR. Values are represented as fold-change/mock (PBS vaccinated/RSV A2 challenge). miR levels were normalized by RNU6B gene

expression and all samples were run in duplicate. Fold-change was calculated using 2(−11CT) method. Differential expression was determined using the following criteria, if the fold

change was >2, the result was reported as a fold-upregulation. If the fold change was <0.5, the result was reported as a fold-downregulation.
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TABLE 5 | Patterns of miR expression following prime, boost, and challenge.

Fold-change

Prime Boost Challenge (day 3)

>2.0 ≤0.5 >2.0 ≤0.5 >2.0 ≤0.5

CP52 miR-466f-3p,

miR-467b-3p

NA let-7f-5p, miR-103-3p,

miR-15b-5p, miR-101a-3p,

miR-16-5p, miR-20a-5p,

miR-106a-5p, miR-98-5p,

miR-30a-5p, miR-17-5p,

miR-195a-5p, miR-142a-5p,

miR-181a-5p, miR-714,

miR-31-5p, miR-101b-3p,

miR-25-3p, let-7i-5p,

miR-130b-3p

miR-182-5p

FI-RSV Let-7d-5p, miR-326-3p,

miR-331-3p, miR-16-5p,

miR-103-3p, miR-30a-5p,

miR-93-5p, miR-181a-5p,

miR-101a-3p, miR-15b-5p,

miR-15a-3p, miR-106b-5p,

miR-142a-3p, miR-19a-3p,

miR-30c-5p, miR-101b-3p,

miR-25-3p, miR-31-5p,

let-7i-5p, let-7g-5p

miR-365-3p,

miR-762

miR-326-3p, miR-145a-3p,

miR-466f-3p, miR-24-3p,

miR-181a-5p, miR-27a-3p,

miR-125b-5p, miR-31-5p,

miR-214-3p, miR-466f-5p,

miR-365-3p, miR-146b-5p,

miR-30c-5p, miR-466h-5p,

miR-126a-3p

NA miR-483-5p

GA2-MP Let-7e-5p, miR-26b-p miR-669-3p, miR-142a-3p NA miR-145a-5p, miR-346-5p,

miR-146b-5p

miR-669e-5p

miR expression for the top 96 miRs associated with T cell development and function were evaluated in sera obtained day 7 post-prime, day 7 post-boost, or day 3 post-challenge using

miR qPCR arrays. Fold-change was calculated using 11Ct method relative to several reference genes that showed no change in expression across time-points and treatments. All

data represent >3 independent experiments. miRs common between time-points or treatments are highlighted in bold. NA, not applicable.

miR-467b-3p), to FI-RSV (let-7d-5p, miR-326-3p, miR-331-
3p, miR-16-5p, miR-103-3p, miR-30a-5p, miR-93-5p, miR-181a-
5p, miR-101a-3p, miR-15b-5p, miR-15a-3p, miR-106b-5p, miR-
142a-3p, miR-19a-3p, miR-30c-5p, miR-101b-3p, miR-25-3p,
miR-31-5p, let-7i-5p, let-7g-5p) and to GA-M2 vaccines types
(let-7e-5p, miR-26b-5p).

miRs Patterns Induced by Post-Boost
Vaccination and RSV Challenge
Serum miR profiles were examined to determine the miR
profiles by the vaccine types post-boost (Table 3). Of 75
differentially expressed miRs evaluated (Table 3; Figure 3), the
miRs commonly expressed were miR-195a-5p, miR-320-3p, let-
7a-5p, miR-181b-5p, miR-672-5p, let-7e-5p, miR-17-5p, let-7c-
5p, miR-714, let-7d-5p, let-7f-5p, miR-574-5p, miR-182-5p, miR-
16-5p, miR-467f, miR-21a-5p, miR-130b-3p, miR-1187, miR-
15b-5p, miR-26b-5p, miR-20a-5p, miR-184-3p, miR-762, miR-
20b-5p, miR-25-3p, let-7i-5p, let-7g-5p which were induced by
all vaccine types. As these miRs are commonly expressed it is
likely their expression is linked to a general response, i.e., the pro-
inflammatory response associated with vaccination. The serum
miRs upregulated specific to CP52 vaccinated mice were miR-
98-5p, miR-26a-5p, miR-155-5p, miR-223-3p, miR-669e-5p, for
GA2-MP vaccinated mice miR-669f-3p and miR-142a-3p, and
fifteen miRs were upregulated in the sera of FI-RSV vaccinated
mice. TwomiRs, miR-669f-3p andmiR-142a-3p, were commonly
expressed in CP52 and GA2-MP vaccinated mice, and 50 miRs

were differentially expressed post-RSV challenge of vaccinated
mice. All data are shown in Supplementary Tables 2, 3. At day 3
post-RSV challenge, 24 miRs were upregulated for all vaccinated
mice types compared to mock-vaccinated (Table 4). For CP52-
vaccinated mice, several serum miRs were upregulated (e.g.,
let-7f-5p, miR-103-3p, miR-15b-5p, miR-101a-3p, miR-16-5p,
miR-20a-5p, miR-106a-5p, miR-98-5p, miR-30a-5p, miR-17-5p,
miR-195a-5p, miR-142a-5p, miR-181a-5p, miR-714, miR-31-5p,
miR-101b-3p, miR-25-3p, let-7i-5p, miR-130b-3p), for FI-RSV-
vaccinated mice only miR-483-5p was upregulated, and for GA2-
MP vaccinated mice miR-145a-5p, miR-346-5p, and miR-146b-
5p were upregulated. Interestingly, miR-184-3p was expressed
in the sera by all vaccine groups suggesting that this miR is
not vaccine-specific. The data from these studies is summarized
in Table 5.

miRs and the Host Pathway
miRs act as rheostats to subtly regulate aspects of the host
immune response to virus infection and vaccination (64). They
fine-tune responses, adjust functions, and bolster or dampen
immune operations to maintain homeostasis. The pattern of
miR expression highlights their function, i.e., constrain or
enhance responses in a temporal fashion. As this study examines
the pattern and tempo of miRs expressed in the response to
vaccination and challenge, it is not surprising to identify unique
and common miR profiles and those that are differentially
expressed during and after vaccination or challenge. A goal of
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these studies is to determine if the miR expression patterns can
be used to predict safe or unsafe responses to vaccination or
challenge. Viral infection and vaccination induce inflammation
and determining miR pathways that are induced or repressed in
mice can help differentiate safe vs. disease risk vaccines. As we
examined themiR expression pattern linked to the type of vaccine
and the cytokine response to RSV vaccination and challenge,
we analyzed the gene pathways that could be regulated by miRs
that are induced or repressed following CP52, FI-RSV or GA2-
MP priming, prime-boost, and RSV challenge using DIANA
miRPath (117–119). The intersecting pathways were selected for
examination having a p-value cutoff of p < 0.05 (Table 5). CP52
vaccination downregulated miR-466f-3p and miR467b-3p which
is known to regulate genes of the TGFβ signaling which has
been shown to have an important role in RSV replication and
inflammation leading to lung injury, fibrosis, and remodeling
(136–144). Additionally, these miRs are predicted to regulate
cancer-related pathways (Table 6; Supplemental Table 1) which
contain many of the top genes involved in cell cycle control, a
feature live RSV infection is known to regulate (65, 102, 142,
145–147). FI-RSV priming induced miRs predicted to regulate
mucin biosynthesis, axon guidance, and other pathways in cancer
(Table 2) while GA2-MP primed miRs were predicted to regulate
Lysine degradation, proteoglycan expression and function and
FoxO signaling (Table 6). FoxO signaling pathway has been
shown to regulate the innate immune pathways in respiratory
epithelium following infection (148). Analysis of miR at 7d post-
boost showed distinct miR pathway profiles among candidate
vaccines. While both CP52 and GA2-MP boosting did not alter
miR expression, FI-RSV boosting led to many deregulated miRs
(Table 5). In particular, the fatty acid metabolism pathway is
predicted to be regulated by these miRs. Fatty acid metabolism
is essential for RSV replication (149). Additional pathways
predicted to be regulated by miRs and linked to FI-RSV boosting
include lysine degradation and steroid biosynthesis (Table 6).
GA2-MP boosting affected miRs patterns predicted to regulate
adherens junction signaling which are associated to disruption
of the airway barrier during infection [Table 7; (150–152)].
miRs deregulated following RSV challenge in CP52 or GA2-MP
vaccinated mice were predicted to regulate multiple pathways in
fatty acid metabolism and pluripotency, likely related to cell cycle
(Table 8). Additionally, TGFb and Hippo signaling pathways
were also shown to likely regulated by the miR expression
patterns (Table 8). The Hippo pathway is thought to be involved
in modulating the potency of anti-viral response particularly in a
nutritional deprivation state (153).

The results indicate that the miR profiles and their tempos
of expression are adjusted to the type of vaccine and
challenge, an effect linked to both non-specific responses (e.g.,
inflammation) and specific immune responses (e.g., T cell
activation or memory). It is important to note that some miRs
are unaffected by vaccination while others undergo a global
up- or down-regulation upon vaccination or challenge. For
reasons of brevity, we have focused on understanding those
miR expression patterns induced ≥2SD above the control. It
is important to note that several immune regulatory molecules
are miR targets. Specifically, cytokines/chemokines are immune
effector molecules and are integrated in the net responses to

TABLE 6 | Pathway analysis following priming by different vaccine types.

Treatment Pathway name p-value # of miRs

Vaccine Type

CP52 TGFb signaling pathway 3.55e-12 18

Endometrial cancer pathway 1.04e-09 11

Prostate cancer pathway 8.35e-08 12

FI-RSV Mucin type O glycan biosynthesis 3.63e-13 6

Axon guidance 9.07e-13 7

Pathways in cancer 3.99e-11 7

GA2-MP Lysine degradation 3.09e-14 2

Proteoglycans in cancer 2.24e-06 2

FoxO signaling pathways 1.44e-05 2

Pathways regulated by miRs in Table 1 were analyzed using DIANA miRPath (117–119)

using the microT-CDS database. E-values designate statistical confidence ascribed to

gene hits for pathways using standard hypergeometric distribution and meta-analysis

statistics (p < 0.05, Fisher’s exact t-test).

TABLE 7 | Pathway analysis of miRs deregulated following boosting by different

vaccine types.

Pathway name p-value # of miRs

Post-boost

CP52 No deregulated miR NA NA

FI-RSV Fatty acid metabolism 1.33e-13 3

Lysine degradation 2.13e-10 7

Steroid biosynthesis 3.99e-06 4

GA2-MP Adherens junction signaling 0.012 2

Pathways regulated by miRs in Table 1 were analyzed using DIANA miRPath (117–119)

using the microT-CDS database. E-values designate statistical confidence ascribed to

gene hits for pathways using standard hypergeometric distribution and meta-analysis

statistics (p < 0.05, Fisher’s exact t-test). NA, not applicable.

TABLE 8 | Pathway analysis of miRs deregulated following challenge of

vaccinated mice.

Pathway name p-value # of miRs

Post-challenge

CP52 Fatty acid metabolism 6.22e-16 15

Prion diseases 9.06e-09 13

Fatty acid degradation 3.12e-08 14

FI-RSV No deregulated miR NA NA

GA2-MP TGFb signaling 6.17e-05 2

Hippo signaling pathways 0.000474 2

Signaling pathways

regulations pluripotency of

stem cells

0.009 2

Pathways regulated by miRs in Table 1 were analyzed using DIANA miRPath (117–119)

using the microT-CDS database. E-values designate statistical confidence ascribed to

gene hits for pathways using standard hypergeometric distribution and meta-analysis

statistics (p < 0.05, Fisher’s exact t-test). NA, not applicable.

vaccination and challenge. miRs control the activation and
integration of the pathways to support T cell responses while
maintaining homeostasis. Additional information regarding the
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miR host pathway analysis can be found in Data Sheet 1 of the
Supplementary Material section.

DISCUSSION

The development of safe and effective RSV vaccine candidates
can be assisted by a better understanding of biomarker
expression. Biomarkers may allow for the prediction of probable
vaccine candidate outcomes. Additional analyses are needed to
further aid decisions regarding vaccine candidates, but ways to
improve RSV vaccine candidate selection has become paramount
after more than 5 decades of unsuccessful research efforts.
We hypothesized that assessment of miR profiles with general
Th1/Th2 cytokine responses would enable correlations with safe,
live vaccines (CP52), subunit vaccines (GA-M2), and disease-
enhancing vaccines (FI-RSV) to help develop baselines for a
better understanding of prospective RSV vaccine candidates.
In this study, show vaccine-specific and temporal miRNA
expression profiles relating to efficacy or vaccine-associated
disease. We examined miR expression profiles of vaccinated
mice pre- and post-RSV challenge were determined for 84 miRs
associated with T cell responses and function. We showed that
while both CP52 and FI-RSV vaccination induce a humoral
response, only CP52 induced a neutralizing antibody response
leading to reduction in RSV replication (Figure 1E). Further,
splenocytes from CP52, FI-RSV, or GA2-MP vaccinated mice
were stimulated with RSV-specific peptides then assayed for Th1-
type or Th2-type cytokines. The cytokine and miR expression
showed that M282−90 re-stimulation of splenocytes from CP52
but not FI-RSV vaccinated mice led to a strong induction of
IFNg which is characteristic of a Th1 response. In contrast,
peptide stimulation of splenocytes from FI-RSV vaccinated mice
led to a strong induction of IL4, a cytokine characteristic
of a Th2-type response. Peptide stimulation of splenocytes
from GA2-MP vaccinated mice led to a higher number of
G183−198 IL4- and IFN-specific secreting cells, characteristic of
a balanced Th1-/Th2-type response to the G protein. Taken
together, these results led to the assessment that CP52 vaccination
primes for a safe response while FI-RSV primes for disease
following vaccination and GA2-MP primes for a mostly balanced
cytokine response.

The miR PCR array showed differential expression of a
conserved set of miRs across prime-boost vaccination and RSV-
challenge, more specifically 11 miRNAs in GA2-MP vaccinated
mice, 18 miRs in FI-RSV vaccinated mice, and 8 miRs in
RSV CP52 vaccinated mice. Several of these miRs have been
shown to participate in the regulation of the immune response,
and in some cases are associated with RSV infection. FI-RSV
vaccinated mice had let-7d-5p, let-7f-5p, and let-7g-5p miR
expression at post-prime, post-boost, and post-challenge. GA2-
MP vaccinated mice had similar results with let-7e-5p and let-7f
expression. Members of the let-7 family target IL-6 expression,
and has an extensive list of other experimentally validated targets
including SOCS4, caspase-3, p27, TLR4, IL-13, and IL10 (101).
Let-7 could be a mechanism of IL-6 regulation during RSV
infection (101). RSV infection induces secretion of numerous
pro-inflammatory cytokines, including type I and types II IFNs,
TNFα, IL-12, and IL-6 (101, 154–156). Mice vaccinated with

CP52 or GA2-MP induced differential miR-467f expression
during prime-boost vaccination and post-challenge. Previous
miR screens for respiratory viruses have not previously identified
miR-467f; however, a microarray-based approach to evaluate the
miR profile of HIV-associated nephropathy in a mouse model
showed that treatment with rapamycin (an mTOR inhibitor)
to halt disease progression induced upregulation of miR-467f
expression (157). Interestingly, rapamycin inhibits RSV-induced
mTOR activation and increases the frequency of RSV-specific
CD8T cells and RSV-specific memory T cell precursors in mice
(158). Therefore, miR-467f may have a role in cellular immunity
during vaccination and RSV infection. miR-106a-5p and miR-
106b-5p expression levels were upregulated in FI-RSV vaccinated
mice during prime-boost vaccination and post-challenge with
RSV. Interestingly, allergic airway inflammation in mice has been
associated with increased miR-106a expression and decreased
IL-10, suggesting that miR-106a may regulate IL-10 expression
and Th2-type responses (159, 160). Expression levels of miR-
30c-5p and miR-30e-5p (from the miR-30/384-5p family) were
upregulated in FI-RSV vaccinated mice at prime and boost-
vaccination, and post-challenge. Upregulation of miR-30c-5p
expression in the airway wall has been shown in a BALB/c mouse
model of chronic asthma (161). The miR profiles identified
for vaccine-induced protection and vaccine-enhanced disease
appear to correlate with protective immune functions and airway
inflammation, respectively. Although this study produced a list of
miRs that may regulate RSV vaccine efficacy, additional studies
are warranted to clarify the mechanisms behind how these miRs
mediate host-virus interactions.

Overall, the results from these studies show that vaccine
candidates associated safe or disease responses exhibited
differential miR profiles following boosting which were
higher in magnitude compared to priming or RSV challenge
sera specimens. The results demonstrate that a considerable
number of miRs are different between vaccine types, and a
common set of miRs is expressed for all vaccine treatments.
Pathway analysis of miR targets identified pathways correlated
with inflammation particularly those that may contribute
to airway inflammation, leukocyte recruitment and alveolar
infiltration (12, 162, 163). The miR profiles from vaccinated
mice were linked to cytokine phenotypes of protection or
disease and appear to correlate with miRs that regulate
protective immune functions or airway inflammation.
Additional studies are warranted to validate miR phenotypes
to determine the mechanisms of action linked to host
gene regulation, and the associated immune response to
determine their value as predictive biomarkers. These studies
show that serum miR profiles may offer a proxy to assist
vaccine development and facilitate a better understanding of
vaccine studies.
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