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Hepatocellular carcinoma is a disastrous cancer with an aberrant metabolism. In this
study, we aimed to assess the role of metabolism in the prognosis of hepatocellular
carcinoma. Ten metabolism-related pathways were identified to classify the hepatocellular
carcinoma into two clusters: Metabolism_H and Metabolism_L. Compared with
Metabolism_L, patients in Metabolism_H had lower survival rates with more mutated
TP53 genes and more immune infiltration. Moreover, risk scores for predicting overall
survival based on eleven differentially expressed metabolic genes were developed by the
least absolute shrinkage and selection operator (LASSO)-Cox regression model in The
Cancer Genome Atlas (TCGA) dataset, which was validated in the International Cancer
Genome Consortium (ICGC) dataset. The immunohistochemistry staining of liver cancer
patient specimens also identified that the 11 genes were associated with the prognosis of
liver cancer patients. Multivariate Cox regression analyses indicated that the differentially
expressed metabolic gene-based risk score was also an independent prognostic factor
for overall survival. Furthermore, the risk score (AUC = 0.767) outperformed other clinical
variables in predicting overall survival. Therefore, the metabolism-related survival-predictor
model may predict overall survival excellently for HCC patients.

Keywords: hepatocellular carcinoma, metabolism, mutant oncogene, tumor immunity, overall survival
Abbreviations: HCC, Hepatocellular carcinoma; TCGA, The cancer genome atlas; ICGC, International cancer genome
consortium; DEMGs, Differentially expressed metabolic genes; LASSO, Least absolute shrinkage and selection operator;
tdROC, Time-dependent receiver operating characteristics; OS, Overall Survival; CNV, Copy number variation; TACE,
Transarterial chemotherapy with embolization; ssGSEA, Single-sample gene-set enrichment analysis; AUC, Area under the
curve; IHC, Immunohistochemistry.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most prevalent
primary cancers worldwide and ranks third in all cancer-related
mortality (1, 2). Numerous therapeutic strategies for treating
liver cancer have been developed, including surgical resection,
radiofrequency ablation, liver transplantation, and targeted
therapy (3, 4). Despite the fact that great progress has been
made in clinical treatment, the survival rates of liver cancer
patients within 5 years are still as low as 18% because of the
highly malignant tumors, the high recurrence rate, and drug
resistance (5, 6). Several factors have been identified to affect and
predict HCC prognosis, such as microRNAs and blood groups
(7, 8). However, these factors still could not predict the prognosis
accurately. Therefore, it is paramount to exploring how specific
cellular tumor progression pathways contribute to HCC
prognostic stratification for cancer treatment development.

It is proposed that cancer cells must modify their metabolic
programs to obtain energy and macronutrient during rapid
growth (9, 10). Metabolism regulated by oncogenes allow
tumor cells to survive and proliferate in the tumor
microenvironment (11). In fact, metabolic reprogramming is a
well-established hallmark of cancer (12, 13). Many studies
suggested that in order to adapt to the growth and
proliferation of HCC cells, the aberrant metabolism of cells
develops, which is related to the prognosis of patients (14–16).
Strikingly, the functional importance of metabolic alterations
often diverges on tumor subtypes, leading to visible therapeutic
vulnerability discrepancies in cancer therapy (17, 18). However,
metabolic heterogeneity within different HCC subtypes defined
by distinct metabolic pathways, which may further result in
differences in oncogenes and tumor immunity, has not been
well implemented.

In this study, we classified HCC into two different clusters by
metabolism-related pathways profiling: Metabolism_H and
Metabolism_L. Then, we explored the relationship between the
classification and mutation of oncogenes and tumor immunity.
Differentially expressed metabolic genes (DEMGs) were
identified according to metabolism status and the DEMG-
based survival-predictor model was also developed for
predicting survival rates of HCC patients, as shown in
Figure 1. Moreover, immunohistochemistry staining showed
that, compared with normal tissues, 8 of the 11 genes were
differentially expressed in cancer tissues, while 3 genes revealed
no significant differences. Most of these differentially expressed
genes (DEGs) were consistent with our prognostic model, which
further verified the reliability of the model. Therefore, the
DEMG-based survival-predictor model might have the great
potential to predict survival rates of HCC patients.
MATERIALS AND METHODS

Patient Datasets
The data of RNA-seq and clinical features in HCC patients were
extracted from The Cancer Genome Atlas (TCGA) (https://
Frontiers in Oncology | www.frontiersin.org 2
portal.gdc.cancer.gov/) and LIRI_JP from International Cancer
Genome Consortium (ICGC) (https://icgc.org/). For further
analysis, a total of three hundred and twelve patients with both
gene expression and overall survival (OS) data were extracted.
Moreover, a total of thirty pairs of paraffin-embedded specimens
were collected for this study from the pathology department,
including both HCC and matched para-carcinoma tissues. All
the specimens were obtained from HCC patients who underwent
tumor resection. Clinical and pathological information of these
specimens are presented in Table S1. This study was approved by
the Ethics Department of the First Affiliated Hospital of
Wenzhou Medical University.

Clustering
We first downloaded KEGG pathways from GSEA (http://
software.broadinstitute.org/gsea/index.jsp). Then, we conducted
univariate Cox analyses by SPSS 19.0 in TCGA and LIRI_JP,
respectively, to acquire significant metabolism-related pathways.
We selected the 10 mutual metabolism-related pathways between
TCGA and LIRI_JP. For each HCC dataset, we quantified the
enrichment levels of the 10 mutual metabolism-related pathways
in each HCC sample through the single-sample gene set
enrichment analysis (ssGSEA) score. Based on the enrichment
levels (ssGSEA scores) of the 10 mutual metabolism-related
pathways, we performed hierarchical clustering analysis of HCC.

Multi-Omics Analysis
We obtained the mutation data of HCC patients from TCGA
and LIRI_JP. The data containing somatic variants were stored
in the form of Mutation Annotation Format (MAF). Mutation
data were analyzed and summarized using “GenVisR” package
in R software. Copy number variation (CNV) analysis was
performed using data of TCGA through cBioPortal (www.
cbioportal.org).

To screen out methylation-driven genes, we calculated
correlation between gene methylation level and expression
using the “MethylMix” package in R software with corFilter =
−0.3 and adjusted p-value < 0.05 as the cutoff value. Then,
based on the median of beta-values of methylation, we
divided HCC patients into two groups and performed
Kaplan–Meier (K-M) survival analysis. The genes were
considered to be significantly associated with OS based on
the threshold of p < 0.05.

Evaluation of Immune Cell Infiltration
Level, Tumor Purity, and Stromal Content
Between the Two Clusters
We used ESTIMATE (19) to evaluate the immune cell
infiltration level (immune score), tumor purity, and stromal
content (stromal score) of each HCC sample in Metabolism_H
and Metabolism_L cohorts.

Assessment of Tumor-Infiltrating
Immune Cells
After removing data with p-value >0.05 of the correlation
between the samples and the immune cells, the RNA-
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sequencing data of TCGA and LIRI_JP were used to estimate the
proportions of 22 types of infiltrating immune cells using the
CIBERSORT algorithm following the procedure as previously
reported (20). We calculated the expression level of 22 immune
cells in each sample through a deconvolution algorithm to
quantify the number of cells in each sample. The R packages of
e1071, parallel, and preprocessCore were used. The estimate
package could adopt the RNA-seq data to calculate the immune
and mechanism scores of the specimen, and then evaluate the
purity of the tumor. The principle was to evaluate the above
content through the signature of the characteristic tumor’s RNA-
seq and the input file needed RNA-seq. Common genes data
were also required to calculate the inner matrix. We used the
estimate package to calculate the score of each sample’s
immunity and matrix, then obtained the purity of the tumor
and used it for the next calculation.

Identification of Metabolism-Related
Pathways–Immune-Related
Pathways Networks
We first quantified the enrichment levels of immune-related
pathways in each HCC sample of Metabolism_H and
Metabolism_L by the ssGSEA score. Then, metabolism-related
pathways–immune-related pathways networks were drawn by
cytoscape online software (http://www.cytoscape.org/).
Frontiers in Oncology | www.frontiersin.org 3
Gene Set Enrichment and Functional
Enrichment Analyses
We performed gene set enrichment analysis of the LIRI_JP and
TCGA datasets by GSEA (R implementation) (21, 22). This
analysis identified the KEGG (22) pathways that were
upregulated or downregulated in Metabolism_H and
Metabolism_L, respectively. Terms in KEGG with a false
discovery rate (FDR) < 0.05 were considered significantly
enriched and were visualized using R package “plyr”, “grid”,
“gridExtra”, and “ggplot2” (23). Gene ontology (GO) analysis
was performed using the R package “GOplot” (FDR < 0.05) (24).

DEMG-Based Classifiers for
Overall Survival
The least absolute shrinkage and selection operator (LASSO)-
Cox regression model (25) was used to identify the most accurate
predictive DEMGs for OS. The risk score of each patient was
determined based on the DEMG-based classifiers. The patients
were categorized into two groups by median score. The survival
estimation of patients was analyzed by the K-M method.

Predictive Performance of the
DEMG-Based Classifiers
The univariate and multivariate Cox regression analyses were
conducted to identify significant prognostic predictors associated
FIGURE 1 | The workflow of this work.
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with OS. The time-dependent receiver operating characteristics
(tdROC) analysis by the “timeROC” package of R software was
used to assess performance of clinical variables and classifiers.
The area under the curve (AUC) of tdROC represented the
predictive accuracy. In addition, p-values < 0.05 were considered
statistically significant.

Immunohistochemical Staining
Paraffin-embedded liver tissue sections (4 µm) were deparaffinized
in xylene and rehydrated in ethanol solutions. Then, the tissue
sections were boiled in sodium citrate buffer using a microwave
oven for 15 min to perform antigen retrieval, and 3% hydrogen
peroxide was used for inhibiting the activity of endogenous
peroxidase. Subsequently, to prevent nonspecific binding, the
sections were blocked with 5% normal goat serum for 30 min at
a temperature of 37°C. Primary antibodies for RRM2 (Proteintech,
Wuhan, China, 11661-1-AP; 1:200), LPCAT1 (Proteintech,
Wuhan, China, 16112-1-AP; 1:200), G6PD (Proteintech, Wuhan,
China, 25413-1-AP; 1:500), CYP3A5 (Proteintech, Wuhan, China,
13737-1-AP; 1:200), CYP2C9 (Proteintech, Wuhan, China, 16546-
1-AP; 1:500), BDH1 (Proteintech, Wuhan, China, 15417-1-AP;
1:200), ADH4 (Proteintech, Wuhan, China, 16474-1-AP; 1:200),
PYCR1 (ABclonal, Wuhan, China, A13346; 1:100), PTGES
(ABclonal, Wuhan, China, A18632; 1:100), HK2 (ABclonal,
Wuhan, China, A0994; 1:100), and ADH1C (ABclonal, Wuhan,
China, A8081; 1:100) diluted with antibody diluent buffer were
added to corresponding tissues and then incubated overnight at 4°
C. After washing, secondary antibodies (goat anti-rabbit antibody)
(BioSharp Inc., China) were employed to incubate for 1 h. Finally,
the sliders were stained with diaminobenzidine (DAB) (Beijing
Zhongshan Golden Bridge Biotechnology, China) for color
visualization and counterstained with hematoxylin. The staining
results were evaluated by three blinded pathologists independently,
and their median values were adopted as final score. Staining
intensity was divided into four levels according to the following
criteria: 0 point (negative), 1 point (weak), 2 points (moderate), and
3 points (strong). The proportion of positive staining area was
scored as follows: 0 point (<5%), 1 point (5%–25%), 2 points (26%–
50%), 3 points (51%–75%), and 4 points (>75%). The total scores
consisted of multiplying the positive staining area percentage scores
by staining intensity scores (26, 27).

Data Analysis
The Student’s t-test, Wilcoxon test, and other data processing
were completed by SPSS 19.0 and GraphPad Prism 7.0 software.
The K-M log rank test was calculated by medcalc (Version 19.0).
Continuous variables were expressed as the mean ± standard
deviation (SD). When all the hypotheses have a p-value < 0.05,
the difference is statistically significant.
RESULTS

Metabolism-Related Pathways Profiling
Identified Two HCC Clusters
Firstly, we acquired KEGG signaling pathways by GSEA and
singled out 42 metabolism-related pathways (Table S2). There
Frontiers in Oncology | www.frontiersin.org 4
were 14 significant pathways in TCGA (Figure 2A) and 19
significant pathways in LIRI_JP (Figure 2B), which were both
associated with OS of HCC. Among the metabolism-related
pathways, there were 10 pathways shared by the two
datasets (Figure 2C).

Next, the 10 metabolism-related pathways were clustered in
TCGA and LIRI_JP, respectively (Figures 2D, G). Interestingly,
the two datasets showed similar clustering results, with two
clusters being clearly separated (Figures 2E, H). The 10
metabolic pathways related to prognosis were clustered using
the k-means method. As shown in Figure 2E, in the two
classifications, 10 pathways have different expression trends.
We defined the one with poor prognosis as Metabolism_H,
and the other as Metabolism_L. The clusters significantly
correlated with histologic grade, TMN stage, and AJCC
pathological stage (p < 0.001) (Table 1). Moreover, survival
analyses showed that the different metabolic subtypes of HCC
had distinct clinical outcomes. The Metabolism_L subtype likely
had a better survival prognosis than the Metabolism_H subtype
(Figures 2F, I).

The Mutant Oncogenes, Copy Number
Variation, and DNA Methylation Analysis
To explore why the Metabolism_L subtype likely had a better
survival prognosis than the Metabolism_H subtype, we analyzed
three parts of the differences between the two clusters: the
mutant oncogenes, copy number variation, and DNA
methylation. Obviously, there were several oncogenes mutated
in most HCC patients, especially TP53, TTN, and MUC16
mutated in more than 50 samples (20%) (Figures 3A–C). For
most cancer types, the TP53, TTN, andMUC16 genes were found
to mutate frequently (25). The waterfall plot illustrated that TP53
and TTN were mutated in different numbers of patients.
Metabolism_H was more likely to have TP53 mutations
(Student’s t-test, p < 0.001) (Figure 3D), while TTN showed
the opposite. Figure 3E shows that the mutated TP53 gene was
less expressed than the wild (Wilcoxon test, p < 0.05).

As demonstrated in Figure S1, HCC patients showed
significantly different CNV in the two subtypes. For instance,
according to the blue representing deletions and the red
representing amplifications, large chunks of DNA were
removed in chromosome 4 of the Metabolism_H subtype. The
detailed information of CNV of each gene is shown in Table S3.
Figure S1C shows ten genes with the most obvious differences in
CNV between Metabolism_H and Metabolism_L: NUP210L,
KCNN3, FAM189B, SCAMP3, CTSS, DPM3, EFNA1, GBA,
GBAP1, and KRTCAP2, all of which were amplified on
chromosome 1, and more frequent in Metabolism_H.

Through whole-genome DNAmethylation analysis, we firstly
screened out 240 methylation-driven genes whose genetic
expressions were negatively correlated with methylation, and
found that 30 of them were related to the HCC prognosis. Then,
based on the 30 methylation-driven genes, the heatmap indicated
that methylation levels of the 30 genes were significantly different
between Metabolism_H and Metabolism_L (Figure 4A). For
example, the methylation level of PDK4 was higher in
Metabolism_H, while the methylation level of TMEM165 was
May 2022 | Volume 12 | Article 863266

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ye et al. Novel Prognostic Signatures of HCC
higher in Metabolism_L. Moreover, the survival analyses also
showed that the survival rates of HCC patients with
hypermethylated PDK4 and hypomethylated TMEM165 were
lower, which was consistent with differences in gene methylation
leve l s and prognos i s be tween Metabol i sm_H and
Metabolism_L (Figure 4B).

Immunological Evaluation of the
Metabolism-Related Pathway-Based
HCC Subtypes
Due to the fact that tumor infiltration lymphocytes were closely
related to metabolism and prognosis of tumors (28), we explored
the immune infiltration of the metabolism-related pathway-
based HCC subtypes according to immune scores (Figure S2).
When comparing the tumor immunity microenvironment of the
two HCC subtypes, we found that the two clusters were
significantly different. Compared with Metabolism_L, the
immune scores were significantly higher in Metabolism_H
Frontiers in Oncology | www.frontiersin.org 5
(Kruskal–Wallis test, p < 0.001) (Figure S2B). In addition,
although stromal scores did not have significant difference
between Metabolism_H and Metabolism_L in TCGA,
we obtained opposite trends when comparing the tumor
purities and stromal scores of the two HCC subtypes. The
tumor purity was higher in Metabolism_L while the stromal
score was higher in Metabolism_H (Kruskal–Wallis test, p <
0.05) (Figures S2A, C). The ESTIMATE Score was also higher in
Metabolism_H (Kruskal–Wallis test, p < 0.01) (Figure S2D). In
conclusion, these results indicated that Metabolism_H contained
more immune cells and stromal cells, while Metabolism_L
contained more tumor cells.

Therefore, we analyzed immune cell makeups of the two
subtypes and found that they were obviously different.
Metabolism_H contained more M2 macrophages in LIRI_JP
and neutrophils in TCGA, while Metabolism_L contained
more CD8 T cells in LIRI_JP and M1 macrophages in TCGA
(Wilcoxon test, p < 0.05) (Figures 5A, B). Based on the two
B CA

E FD

H IG

FIGURE 2 | Metabolism-related pathways profiling identified two HCC clusters. (A) In TCGA, univariate Cox analyses showed that there were 14 significant
metabolic pathways contributing to OS in HCC. (B) In LIRI_JP, there were 19 significant pathways. (C) A Venn diagram showed 10 metabolism-related pathways
shared by TCGA and LIRI_JP. (D, E) Based on the different gene expressions of the 10 pathways, HCC was clustered: Metabolism_H and Metabolism_L in TCGA.
(G, H) HCC was also clustered: Metabolism_H and Metabolism_L in LIRI_JP; Kaplan–Meier survival analysis results indicated that the two clusters had significantly
different survival rates in both (F) TCGA (log-rank test p-value = 6.02e−05) and (I) LIRI_JP (log-rank test p-value = 2.527e−04). HCC, hepatocellular carcinoma; OS,
overall survival.
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TABLE 1 | Correlations between risk score of the metabolism-related pathways classifier with overall survival and clinicopathological characteristics in the TCGA-LIHC cohort.

Clinicopathological variables Number of patients (n = 355) Metabolism_H Metabolism_L p-value

Age
<65 (n, %) 210 (59.2%) 78 (37.1%) 132 (62.9%)
≥65 (n, %) 145 (40.8%) 36 (24.8%) 109 (75.2%) 0.015

Gender
Male (n, %) 239 (67.3%) 71 (29.7%) 168 (53.7%)
Female (n, %) 116 (32.7%) 43 (37.1%) 73 (62.9%) 0.164

Histologic Grade
G1+G2 (n, %) 219 (61.7%) 50 (22.8%) 169 (77.2%)
G3+G4 (n, %) 131 (36.9%) 63 (48.1%) 68 (51.9%) <0.001
NA 5(1.4%)

TNM staging system
T1+T2 (n, %) 262 (73.8%) 70 (26.7%) 192 (73.3%)
T3+T4 (n, %) 91 (25.6%) 44 (48.4%) 47 (51.6%) <0.001
NA 2(0.6%)
N0 (n, %) 244 (68.7%) 84 (34.4%) 160 (65.6%)
N1 (n, %) 2 (0.6%) 1 (50.0%) 1(50.0%) <0.001
NA 109(30.7%)
M0 (n, %) 256 (72.1%) 92 (35.9%) 164 (64.1%)
M1 (n, %) 4 (1.1%) 2 (50.0%) 2 (50.0%) <0.001
NA 95(26.8%)

AJCC pathological stage
I+II (n, %) 246 (69.3%) 65 (26.4%) 181 (73.6%)
III+IV (n, %) 88 (24.8%) 43 (48.9%) 45 (51.1%) <0.001
NA 21 (5.9%)
Frontiers in Oncology | www.frontiersin.org
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NA, not available.
B C

D E

A

FIGURE 3 | Different mutant oncogenes between HCC Metabolism_H and Metabolism_L. (A) Waterfall plots suggested that TP53, TTN, and MUC16 were main mutant
oncogenes in HCC patients, but they were different between (B) Metabolism_H and (C) Metabolism_L. (D) Metabolism_H was more likely to have TP53 mutations
(Student’s t-test, p < 0.001). (E) The mutated TP53 gene was less expressed than the wild type (Wilcoxon test, p = 0.037). HCC, hepatocellular carcinoma. *p < 0.05,
**p < 0.01, ***p < 0.001.
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subtypes, we analyzed their immune pathways, which were also
differently expressed (Figure 5C). Then, for identifying the
relationship between metabolism and immune in HCC, a
metabolism-related pathways–immune-related pathways
network was conducted including 5 immune-related pathways
and 9 metabolism-related signal pathways (Figure 5D).

Furthermore, we further analyzed the immune checkpoint-
related gene expression and found that the expression levels of
PD-L1, CTLA-4, TIM-3 were significantly higher in
Metabolism_H (Figure S3A). Based on the previous study of
the cancer stemness (29), mRNA expression-based stemness
index (mRNAsi) was higher in Metabolism_H (Figure S3B).

GSEA-Based KEGG Analysis
and GO Analysis
A total of 110 prominent KEGG pathways including pathways
expressed differently in Metabolism_H and Metabolism_L were
selected (Table S4). The 82 high-expression pathways in
Metabolism_H, such as “Pathways in cancer” and “TOLL like
receptor signaling pathways”, were related to tumor proliferation
and metastasis, indicating worse survival prognosis of
Metabolism_H. However, the 28 high-expression pathways in
Metabolism_L were mainly concentrated on metabolic process,
such as “Tryptophan metabolism”, “Primary bile acid
biosynthesis”, and “Retinol metabolism”. Figure 6A shows
GSEA enrichment plots of representative gene sets on several
representative pathways of Metabolism_H and Metabolism_L.
Frontiers in Oncology | www.frontiersin.org 7
There were 946 metabolism-related genes (MRGs) that
expressed in 110 prominent KEGG pathways. There were 757
DEGs between Metabolism_H and Metabolism_L in TCGA and
2,468 DEGs in LIRI_JP. A total of 135 DEMGs overlapped
among TCGA_DEGs, LIRI_JP_DEGs, and MRGs in the Venn
diagram (Figure 6B). The 135 DEMGs were mainly associated
with the following biological processes: small molecule catabolic
process; carboxylic acid biosynthetic and catabolic processes;
organic acid biosynthetic and catabolic process; cellular amino
acid biosynthetic, metabolic, and catabolic process; and alpha-
amino acid metabolic and catabolic process (Figure 6C). The
results also indicated that the DEMGs were mainly associated
with the following cellular contents: mitochondrial matrix,
peroxisome, and microbody (Figure 6C). Moreover, the
DEMGs were related to molecular functions, such as coenzyme
binding, iron ion binding, and cofactor binding (Figure 6C).

Prognostic Value of DEMGs
In order to investigate the effect of DEMGs on HCC prognosis,
we first conducted univariate Cox analyses in TCGA and
LIRI_JP, respectively. Sixty DEMGs in TCGA and LIRI_JP
related to mortality were identified (Figures 7A, B). Among
the 60 DEMGs, there are 36 genes shared by the two datasets
(Figure 7C). According to the results of the LASSO-Cox
regression model, 11 prognostic DEMGs with non-zero
regression coefficients were finally chosen as the potential
prognostic biomarkers for the OS of HCC patients
BA

FIGURE 4 | The DNA methylation level analysis. (A) The heatmap of 30 methylation driving genes associated with prognosis. (B) K–M survival analysis of HCC
patients with hypermethylated or hypomethylated PDK4 and TMEM165.
May 2022 | Volume 12 | Article 863266
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(Figures 7C, D). The detailed information of DEMGs for
constructing the prognostic signature is summarized in Table
S5. The formula of the eleven-DEMG survival-predictor model
was as follows: eleven-DEMG survival-predictor model score =
(0.0177074543570851 * RRM2) + (0.000599168151290748 *
Frontiers in Oncology | www.frontiersin.org 8
PYCR1) + ( 0 . 0 00451238392995456 * PTGES ) +
(0.0000832126857397287 * LPCAT1) + (0.0154490143978134 *
H K 2 ) + ( 0 . 0 0 8 2 4 5 0 5 2 9 1 1 3 1 1 9 7 * G 6 P D ) −
(0.00170896754573046* CYP3A5) − (0.000591128394736733*
CYP2C9 ) − ( 0 . 0 0 1 9 0 3 9 5 4 6 4 0 8 25 2 5 * BDH1 ) −
B

C D

A

FIGURE 5 | Distribution of immune cells in Metabolism_H and Metabolism_L. (A) In TCGA, Metabolism_L contained more naive B cells, gamma delta T cells, and resting
mast cells (Wilcoxon test), the same as in (B) LIRI−JP. (C) A heatmap showed that different clusters led to significantly different gene expressions in immune pathways.
(D) A metabolism-related pathways–immune-related pathways network indicated that metabolic pathways were associated with tumor immunity.
May 2022 | Volume 12 | Article 863266
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(0.000171745083443705 * ADH4) − (0.000267396449305932 *
ADH1C). Based on the survival-predictor model, we evenly
divided HCC patients into two groups by the median risk
score cutoff point, whose value is −0.0687, in TCGA: high risk
and low risk (Figure 7E). The enrichment levels of the 11 genes
Frontiers in Oncology | www.frontiersin.org 9
in the two groups quantified by the ssGSEA was also significantly
different. Then, K-M analysis showed that survival rates were
significantly lower in the high-risk group (p < 0.001)
(Figure 7G). Interestingly, we used the same eleven-DEMG
survival-predictor model and cutoff point to cluster patients in
B C

A

FIGURE 6 | Gene set enrichment and functional enrichment analyses. (A) KEGG pathways enriched in Metabolism_H and Metabolism_L, respectively. (B) A Venn
diagram showed 135 DEMGs were overlapped among TCGA_ DEGs, LIRI_JP_DEGs, and MRGs. (C) KEGG pathways in Immunity_H and Immunity_L.
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LIRI_JP, in which the similar results were obtained (Figure 7F).
The survival analysis also indicated that high risk had a worse OS
(p < 0.001) (Figure 7H).

Differential Expression Levels of the
Eleven DEMGs
To further verify the bioinformatics analysis results, we collected
both HCC and matched para-carcinoma tissues for IHC.
Compared with normal tissue, the PYCR1, LPCAT1, and
G6PD significantly expressed more in HCC tissue, while
CYP3A5, CYP2C9, BDH1, ADH4, and ADH1C expressed less
(Figure 8A), and the expression of RRM2, PTGES, and HK2 has
no significant difference between two tissues (Figure S4A). The
statistical analysis results are shown in Figures 8B–I and Figures
S4B–D. Most of these results were consistent with our prognostic
model, further indicating that the gene-based classifier had great
value in predicting the mortality for HCC patients.

The DEMGs-Based Risk Score
Outperforms Other HCC Prognostic
Factors
For identifying the clinical significance of the DEMG-based
survival-predictor model, we conducted the univariate Cox
Frontiers in Oncology | www.frontiersin.org 10
analysis in TCGA. The results indicated that tumor stage, T
classification, M classification, and risk score were correlated
with the survival rates (p < 0.05) (Figure 9A). Moreover, in
multivariate Cox analysis, the risk score was significant (p < 0.01)
while other factors were not associated with OS (p > 0.05)
(Figure 9B). More importantly, the time-dependent ROC
curves suggested that the DEMG-based risk score with an
AUC of 0.767 could predict mortality more accurately than
other HCC prognostic factors: age (AUC = 0.527), gender
(AUC = 0.501), grade (AUC = 0.501), stage (AUC = 0.661), T
(AUC = 0.667), N (AUC = 0.494), and M (AUC = 0.506)
(Figure 9C). In LIRI-JP, we acquired the same results
(Figures 9D–F).
DISCUSSION

As the center of human metabolism, the liver is engaged in the
metabolic interchange of water-soluble and lipid metabolites all
the time; no other organ can match the metabolic rate of the liver
(30). Moreover, the biological processes of toxic substance
decomposition and metabolism processes, P450 pathway, p53
pathway, and alcohol dehydrogenase activity have been reported
BA DC

FE

HG

FIGURE 7 | The survival-predictor model based on eleven DEMGs. Univariate Cox analyses showed that 60 DEMGs contributed to the OS in (A) TCGA and (B)
LIRI_JP, respectively. (C, D) The LASSO regression model identified the 11 most accurate predictive DEMGs in TCGA. (E) HCC patients were divided into two
groups by the median risk score cutoff point in TCGA: high risk and low risk. (F) According to the same cutoff point, HCC patients were also divided into two groups
in LIRI_JP; Kaplan–Meier Survival analysis results indicated that the two groups had significantly different survival rates in both (G) TCGA (log-rank test p-value =
1.217e−06) and (H) LIRI_JP (log-rank test p-value = 9.355e−10). DEMGs, differentially expressed metabolic genes; HCC, hepatocellular carcinoma.
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FIGURE 8 | The differential expression of 8 genes in cancer and matched normal tissues. (A) Representative image of immunohistochemistry staining and (B–I)
immunohistochemical staining scores. (× 200, scale bar = 100 µm). Data are presented as the means ± SD. *p < 0.05 and **p < 0.01.
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to be related to HCC in previous studies (31–33). Thus,
metabolism pathways in the liver may provide a way to predict
the prognosis of HCC (34).

In this study, we divided HCC patients into two groups by
analyzing the activation of metabolic pathways (Figures 2E, F).
The two groups mainly showed significant differences in
expressions in 10 metabolic pathways, such as purine
metabolism, pyrimidine metabolism, and fructose and
mannose metabolism. Tumor cells generate energy by
glycolysis despite the presence of sufficient oxygen to support
the proliferation and differentiation of cancer cells, which is
called the Warburg effect (35). Glutamines, which provide the
nitrogen required for the biosynthesis of purine and pyrimidine
nucleotides, are also needed in the survival and growth of tumor
cells (35). These studies are consistent with our conclusions,
suggesting that the Metabolism_L subtype with a lower
expression of purine metabolic, pyrimidine metabolic, fructose
and mannose metabolic, and amino sugar and nucleotide sugar
metabolic pathways will likely have a better survival prognosis
(Figures 2F, I). The two subtypes also showed significant
differences on taurine and hypotaurine metabolism, retinol
metabolism, and fatty acid metabolism. Free fatty acid was
confirmed as an independent risk factor for cancer (36), and
statin can improve survival outcomes and increases overall
survival (37–39). Furthermore, the retinol and retinal are also
Frontiers in Oncology | www.frontiersin.org 12
associated with the diagnosis and prognosis of HCC (16). In
brief, the metabolic pathways selected in the current study were
all related to survival and proliferation of tumors.

Then, we analyzed mutated genes and tumor immunity in
two subtypes, respectively. Figure 3 shows that the mutation rate
of the TP53 gene was significantly different in Metabolism_H
and Metabolism_L, and Metabolism_H expressed more TP53.
The wild-type TP53 protein plays an important role in apoptosis
after DNA damage and in cell cycle regulation (40). However, the
mutant TP53 protein loses its wild-type function and
accumulates in the nucleus, which is considered to be a highly
specific marker of malignant tumors (41). Similarly, TP53 also
plays an important role in HCC (42, 43). Mutant TP53 proteins
simultaneously lose their tumor-suppressive functions and
obtain new capacities to advance tumorigenesis (44). Ling et al.
(45) indicated that HCC patients with non-functional mutant
genes of TP53 tended to have a worse survival prognosis. CNV
analysis suggested that the two HCC subtypes were different in
chromosomal structural variation. As we have mentioned,
several genes promoting the development of liver cancer, such
as SCAMP3 and CCT3 (46), amplified more frequently in
Metabolism_H. However, some gene expressions were
negatively correlated with methylation. For instance, as shown
in Figure 4, the levels of methylation of the MRG PDK4 were
higher in Metabolism_H, and low expression of PDK4 promoted
B CA

E FD

FIGURE 9 | Comparison of prediction accuracy among the classifiers and other factors. The (A) univariate Cox analysis and (B) multivariate Cox analysis of DEMG-
based risk score and other factors in TCGA. (C) The DEMG-based risk score was more accurate with an AUC of 0.767 in TCGA. The (D) univariate Cox analysis
and (E) multivariate Cox analysis of risk score and other factors in LIRI_JP. (F) The DEMG-based risk score was more accurate with an AUC of 0.785 in LIRI_JP.
DEMGs, differentially expressed metabolic genes; AUC, area under the curve.
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proliferation and metastasis of HCC (47). In conclusion, these
findings explain why survival rates in Metabolism_H are lower.
Interestingly, the two subtypes also showed significant
differences in tumor immunity, and the immune-related
pathways interacted with metabolic pathways. Some studies
have proved that some immune cells associate with the
prognosis of HCC, such as CD8+ T cells, regulatory T cells
(Tregs), and B cells (48). HCC produced lactic and carbonic acids
excessively by exacerbating glycolysis to change the tumor
immunity microenvironment (49). Figure S1 shows that
Metabolism_L contained more tumor cells and less immune
cells compared with Metabolism_H. Recent studies reported that
immune cell infiltration could affect the prognosis of HCC and
intratumoral infiltration by dendritic cells and neutrophils may
result in poor prognosis in HCC patients (50, 51). Neutrophils
not only were involved in the activation and regulation of
immune cells, but also promoted the progression of HCC by
releasing cytokines (52). Moreover, macrophages, especially M2
macrophages, contributed to the poor prognosis of HCC (53),
whose infiltration within the tumor microenvironment could
facilitate tumor growth, angiogenesis, invasion, as well as
metastasis (54). According to our results, tumor tissue of
Metabolism_H contained more M2 macrophages and
neutrophils. Conversely, tumor tissue of Metabolism_H
contained less CD8 T cells, which were the primary cytotoxic
lymphocytes exerting antitumor effects (55). Although p-values
of M2 macrophages, neutrophils, and CD8 T cells were less than
0.05 in only one of the two databases, which may be due to
insufficient data, the difference in the two immune cells was
consistent between the two databases. Moreover, a lower
proportion of CD8 T cells indicated an immune-suppressive
state in Metabolism_H, and the Metabolism_H subtype had
higher mRNAsi and higher expressions of immune
checkpoint-related genes such as PD-L1 (56, 57). Therefore, it
was no surprise that the Metabolism_H had a lower survival rate.

According to the LASSO regression method, we determined 11
DEMGs: RRM2, PYCR1, PTGES, LPCAT1, HK2, G6PD,
CYP3A5, CYP2C9, BDH1, ADH4, and ADH1C. Reports have
indicated that most of the 11 DEMGs were closely related to the
OS of tumor (58–61). Among the 11 DEMGs, PYCR1 plays a vital
part in the promotion of HCC cell proliferation by increasing
proline biosynthesis effectively (62). Additionally, LPCAT1
participates in cell proliferation, migration, and invasion by
modulating phospholipid composition, in HCC (63). In our
study, we divided the HCC patients into two groups based on
the 11-DEMG-based classification in TCGA. Then, we verified the
correctness of this grouping method in TCGA. The two groups all
showed significantly different survival rates in TCGA and LIRI-JP.
Moreover, the differential expression of the 11 genes in cancer and
matched normal tissues was observed by immunohistochemistry
staining. Compared with normal tissues, 8 genes showed
remarkable differential expression between cancer tissues and
normal tissues, while 3 genes revealed no significant differences.
The limitations may come from differential expression patterns of
genes, population differences, or statistical noise, and require more
experiments to be verified. In addition, when compared with the
clinicopathological risk factors, the 11-DEMG-based risk score
Frontiers in Oncology | www.frontiersin.org 13
was better at predicting survival in both TCGA and LIRI-JP, which
was the highlight of this study. There is absolutely no doubt that
our 11-DEMG-based classifiers possessed their own unique
prediction. When the classifiers are combined with
clinicopathological risk factors, it would provide a more accurate
prediction for OS at different times for HCC patients. Therefore,
the DEMG-based survival-predictor model has shown a favorable
effect on survival prediction, which will contribute to therapeutic
decision-making.

However, there are several limitations in this study. Firstly, we
found that tumor metabolism was associated with tumor
immunity, but, regrettably, this study mainly focused on the
association between the MRGs and the OS of HCC. It will be
interesting to combine metabolic genes with immune genes to
predict HCC OS in the future. Secondly, this study was a
retrospective study utilizing the TCGA and LIRI-JP databases.
Therefore, more prospective studies were still needed. Third, if
we could discover tumor biomarker detection in a more
accessible blood sample, it would be more clinically valuable.
Finally, a study at the single-cell level would be better in
entangling the heterogeneity among the cells (64–66), which
will be the subject of a future work.
CONCLUSIONS

In summary, we identified two metabolism-based classifiers
associated with OS in HCC and confirmed that the differences
in survival rates in the two clusters may be related to mutated
genes and tumor immunology. According to the LASSO
regression method, we determined 11 DEMGs. Notably, the
DEMG-based survival-predictor model could accurately predict
the OS of HCC patients, and the results may contribute to the
development of individual therapy.
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Supplementary Figure 1 | Analysis of Copy number variation. Copy number
variation in (A) Metabolism_H and (B) Metabolism_L; (C) Focal copy number
alterations in several genes.
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Supplementary Figure 2 | Different tumor immunoinfiltration between
Metabolism_H and Metabolism_L. (A) the two clusters showed significantly different
Stromal Score in LIRI−JP (Kruskal–Wallis test), while no significantly different
Stromal Score in TCGA (Kruskal–Wallis test); (B) Immune Score was higher in
Metabolism_H (Kruskal–Wallis test) both in TCGA and LIRI−JP; (C) Tumor Purity
was higher in Metabolism_L (Kruskal–Wallis test) both in TCGA and LIRI−JP; (D)
ESTIMATE Score was higher in Metabolism_H (Kruskal–Wallis test) both in TCGA
and LIRI−JP. *P < 0.05, **P < 0.01, ***P < 0.001.

Supplementary Figure 3 | The immune checkpoints related gene expression
and the cancer stemness analyses. (A) PD-L1, CTLA-4 and TIM-3 expressed more
in Metabolism_H; (B) mRNA expression-based stemness index (mRNAsi) was
higher in the Metabolism_H. ***P < 0.001.

Supplementary Figure 4 | The expression of 3 genes in cancer and matched
normal tissues. (A) Representative image of immunohistochemistry staining and (B–
D) immunohistochemical staining scores. (× 200, Scale bar = 100 µm). Data are
presented as the means ± SD. ns, not significant.
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