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Abstract

The pairwise maximum entropy model (MEM) for resting state functional MRI

(rsfMRI) has been used to generate energy landscape of brain states and to explore

nonlinear brain state dynamics. Researches using MEM, however, has mostly been

restricted to fixed-effect group-level analyses, using concatenated time series across

individuals, due to the need for large samples in the parameter estimation of MEM.

To mitigate the small sample problem in analyzing energy landscapes for individuals,

we propose a Bayesian estimation of individual MEM using variational Bayes approx-

imation (BMEM). We evaluated the performances of BMEM with respect to sample

sizes and prior information using simulation. BMEM showed advantages over con-

ventional maximum likelihood estimation in reliably estimating model parameters for

individuals with small sample data, particularly utilizing the empirical priors derived

from group data. We then analyzed individual rsfMRI of the Human Connectome

Project to show the usefulness of MEM in differentiating individuals and in exploring

neural correlates for human behavior. MEM and its energy landscape properties

showed high subject specificity comparable to that of functional connectivity. Canon-

ical correlation analysis identified canonical variables for MEM highly associated with

cognitive scores. Inter-individual variations of cognitive scores were also reflected in

energy landscape properties such as energies, occupation times, and basin sizes at

local minima. We conclude that BMEM provides an efficient method to characterize

dynamic properties of individuals using energy landscape analysis of individual brain

states.
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1 | INTRODUCTION

The human brain has been viewed as a dynamic complex system that

possesses multiple stable states over a stable circuitry (Breakspear, 2017;

J. Cabral, Kringelbach, & Deco, 2014; Deco & Jirsa, 2012; Deco, Tononi,

Boly, & Kringelbach, 2015; Freyer et al., 2011; Freyer, Roberts, Ritter, &

Breakspear, 2012; Kelso, 2012; M. I. Rabinovich & Varona, 2011;

Tognoli & Kelso, 2014). In this view, the brain “at rest” is configured to

have multistability (J. Cabral, Kringelbach, & Deco, 2017; Deco, Jirsa, &

McIntosh, 2013; Deco, Senden, & Jirsa, 2012; Golos, Jirsa, &

Dauce, 2015; Kang, Pae, & Park, 2017), which is associated with the for-

mulation of diverse brain functions “at task” such as memory, decision-

making, and sensory processing (Cabessa & Villa, 2014; Knierim &

Zhang, 2012; Kringelbach, McIntosh, Ritter, Jirsa, & Deco, 2015; Mikhail

I. Rabinovich, Huerta, Varona, & Afraimovich, 2008; Tognoli &

Kelso, 2014). The multistable dynamic properties of the resting and task

brain have been explored in terms of energy landscape of brain states,

where energy of a state is defined by the negative log probability of the

occurrence of the state (e.g., low energy for a frequent state). To esti-

mate probability of all neural states, a pairwise maximum entropy model

(MEM) has often been used. In MEM, the probability of a state is deter-

mined by interactions within the system and composes the energy land-

scape of the system's states. Energy landscape analysis of brain states

enables identification of stable states (local minima, called “attractors”) of
the brain system and characterization of transition rates among those

states, which may characterize individuals or brain diseases.

So far, energy landscape analysis has been applied to explore

dynamics in the large-scale functional brain network, such as the default

mode and prefrontal networks, in the resting state fMRI (rsfMRI Ezaki,

Fonseca Dos Reis, Watanabe, Sakaki, & Masuda, 2020; Kang

et al., 2017; Kang, Pae, & Park, 2019; Watanabe et al., 2013; Watanabe,

Hirose, et al., 2014), sleep (Watanabe, Khan, et al., 2014), and vision-

related areas for bistable perception (Watanabe, Masuda, Megumi,

Kanai, & Rees, 2014). The abnormality of dynamic properties in autism

spectrum disorder (Watanabe & Rees, 2017) as well as schizophrenia

(Joana Cabral et al., 2013; Loh, Rolls, & Deco, 2007) has also been

researched using the energy landscape analysis. In those studies, brain

states are defined by distributed activity patterns across brain regions,

and the brain belongs to one of the states at each measurement time

point (Ezaki, Sakaki, Watanabe, & Masuda, 2018; Gu et al., 2018; Kang

et al., 2017; Watanabe et al., 2013; Watanabe, Hirose, et al., 2014;

Watanabe, Kan, et al., 2014; Watanabe, Masuda, et al., 2014).

Despite the unique advantage of energy landscape analysis for

modeling nonlinear dynamics of the brain, the application of this

approach to an individual has been hindered by the requirement of a

large sample size for model parameter estimation. Since the acquisi-

tion of a large sample data from an individual is not practical in most

clinical settings, the MEM analysis has mainly been restricted to the

fixed-effect group-level studies by concatenating time series of indi-

viduals without considering individual differences. In the estimation of

MEM model parameters with a network size N, the number of param-

eters equals to M = N× (N+1)/2 (see Section 2) and the estimation

procedure requires time series data of length approximately 10 times

according to the rule of 10 (Harrell Jr., Lee, Califf, Pryor, &

Rosati, 1984; Harrell Jr., Lee, & Mark, 1996). According to this rule,

for example, a system with an N = 15 has M = 120 parameters needs

approximately 1,200 (120 × 10) temporally independent time points,

which is generally much longer than the conventional rsfMRI data for

a subject (around 300 time points or 5 � 10 min per person).

According to Ezaki, Watanabe, Ohzeki, and Masuda (2017), the

amount of data for a reliable estimation of the pairwise MEM is pro-

portional to 2N, and thus the reliable estimation of the system with

N = 15 nodes requires C × 215 sample points, where C is a constant.

Due to the temporal dependency (redundancy) of rsfMRI samples,

more data is needed to fit the model reliably. It is for this reason that

fixed-effect analysis using group-concatenated data has been used so

far. However, the fixed-effect group-level analysis limits the applica-

tion of MEM and evaluation of state dynamics specific to each indi-

vidual. To mitigate the small sample size issue in characterizing an

individual's dynamic properties, we developed a Bayesian model esti-

mation scheme for MEM using a variational Bayes approach (BMEM)

to incorporate a priori information.

To evaluate the performance of BMEM, we conducted simulation

studies by changing sample sizes and a priori information compared to

conventional maximum likelihood estimation (MLE). We also con-

ducted an experimental study using rsfMRI data from the Human

Connectome Project (HCP) database (Van Essen et al., 2012) to assess

how well our proposed method differentiates the model parameters

of one individual from others (i.e., subject specificity) and to evaluate

the usefulness of MEM in characterizing human cognition (available in

the HCP database). For this, we used and compared sparse canonical

correlation analysis (sCCA) results between cognitive scores and

MEM parameters, between cognitive scores and energy landscape

features with that of functional connectivity matrix (FC).

The current article is composed of three main parts. First, we

described a mathematical formulation for the BMEM. Second, the

BMEM scheme was tested using a simulated dataset with respect to

sample sizes, empirical prior types, and estimation methods. Third, we

applied BMEM to the resting-state of fMRI data of 468 HCP subjects

and evaluated subject specificity and characterizability of human cogni-

tion using MEM parameters and local minima of energy landscapes com-

pared with correlation-based functional connectivity. We expected that

BMEM would provide a new framework for exploring individual brains

from the perspective of dynamic systems and become a useful tool for

characterizing or identifying healthy and abnormal brain dynamics.

2 | METHODS

2.1 | The pairwise maximum entropy model

The energy landscape analysis of brain states consists of steps for

defining brain states, construction of a pairwise MEM model for state

dynamics, optimization of MEM model parameters to fit probability

distributions of empirical brain states using states generated by the

model, and analysis of the energy landscape. In this paragraph, a brief
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introduction of MEM model estimation is presented. Details of the

model construction are provided in our previous study (Kang

et al., 2017, 2019) (for the mathematical details, see a review [Yeh

et al., 2010]).

Suppose the brain state space is represented by

S = σ = σ1,…,σNð Þ>� 0,1 gN
n ���σ is a possible staten o

, ð1Þ

where the value of σi (i = 1, 2, …, N) is either 0 (inactive) or 1 (active), indi-

cating a local activity at a node (brain region) i, and N denotes the total

number of nodes (or ROIs). Maximizing the entropy of the state space,

H pð Þ= −
P
σ�S

p σð Þlogp σð Þ , where p(σ) is the probability mass for the

state σ, leads to a special form of the probability distribution of each

state. This probability is given by a Boltzmann distribution as below

p σjh,Jð Þ= exp −E σjh,Jð Þf gP
σ0�S

exp −E σ 0 h,Jj Þð g,f ð2Þ

where

E σ j h,Jð Þ= −
X
i=1

N

hiσi−
X
i=1

N−1 X
j= i+1

N

Jijσiσj, ð3Þ

is the energy, and hi's and Jij's are model parameters. This model's total

number of parameters is then M = N+N(N−1)/2 = N(N+1)/2. If hi is

large, the energy is smaller (the probability is larger) with σi = 1 than

with σi = 0 and hence the i-th ROI tends to be activated. If Jij is large,

both the i-th ROI and j-th ROI tend to be activated at the same time.

For convenience, we reparametrize the model p(σ j h, J) as follows:

~σ = σ1,σ2,…,σN,σ1σ2,σ1σ3,…,σN−1σNð Þ>�ℝM, ð4Þ

θ= h1,h2,…,hN,J12,J13,…,JN−1,Nð Þ>�ℝM, ð5Þ

E σ θj Þ= −θ>~σ,
� ð6Þ

p σjh;Jð Þ= exp −E σjθð Þf gP
σ0�Sexp −E σ0jθð Þf g =

exp θ>~σ
� �

P
σ0�Sexp θ>~σ0

� � : ð7Þ

Note that Boltzmann distributions belong to the exponential fam-

ily and that θ is the vector of natural parameters.

2.2 | Model estimation: Maximum likelihood
method

Let D be the set of observed brain states at time points t = 1, 2, …, T:

D= σ tð Þ,t=1,2,…,Tf g: ð8Þ

Then, the log-likelihood function of the data set D is given as

ℓ θð Þ= logp Djθð Þ=
X
t =1

T

θ>~σ tð Þ−Tlog
X
σ�S

eθ
>~σ ð9Þ

The maximum likelihood estimator (MLE) of θ is defined by the

maximizer of ℓ(θ). One may conduct this maximization procedure

using the gradient ascent algorithm:

θ θ0 + ρrℓ θ0ð Þ, ð10Þ

where θ0 is the parameter vector before each updating step, rℓ(θ0) is
the gradient of ℓ(θ) assessed at θ = θ0, and ρ>0 is a learning rate. Note

that the gradient is simply given by

rℓ θð Þ= T ⟨~σ⟩empirical−⟨~σ⟩model

� �
, ð11Þ

where ⟨~σ⟩empirical is the average of observed ~σ tð Þ 's and ⟨~σ⟩model is the

model mean vector generated with model parameter θ.

2.3 | Bayesian formulation and variational Bayes
method

Now we develop a Bayesian treatment by introducing a prior distribu-

tion for the parameters θ�ℝM. Choosing the normal distribution for

the prior, θ�N η,diag αð Þ−1
� �

, with hyperparameters η�ℝM and

α�ℝM
+ , it is intractable to derive the posterior since the normal distri-

bution is not a conjugate prior for the Boltzmann distribution. So we

consider a variational approximation for the posterior (for details, see

Bishop, 2006) by using the normal distribution q θð Þ=N μ,diag βð Þ−1
� �

with μ�ℝM and β�ℝM
+ . Precisely,

p θjD,η,αð Þ≈q θð Þ=N μ,diag βð Þ−1
� �

=
Y
j=1

M β1=2jffiffiffiffiffiffi
2π
p exp −

βj
2

θj−μj
� �2� 	

,

ð12Þ

which is, like the prior, a factorized form of univariate normal distribu-

tions again. It is well known that this variational approximate solution

for the variational distribution, q (parameterized by μ and β) is

obtained by optimizing the evidence lower bound (ELBO), often called

free energy, F q,η,αð Þ:

F q,η,αð Þ≈
XT
t=1

μ>~σ tð Þ−T½log
X

σ�Se
η>~σ + ⟨~σ⟩

>
η μ−ηð Þ

+
1
2

tr diag βð Þ−1Cη

� �
+ μ−ηð Þ>Cη μ−ηð Þ

n o
+
1
2

XM

j=1
logαj

−
1
2

XM

j=1
αj μj−ηj

� �2
+ β−1

j

n o
−
1
2

XM

j=1
log βj + constant, ð13Þ

with Cη =Covη ~σð Þ. See Appendix A for technical details. Now, by maxi-

mizing F q,η,αð Þ with respect to μ and β, we have the posterior mean

μ and precision β as follows:
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μ= η+ TA−1
η,α ⟨~σ⟩empirical−⟨~σ⟩η

� �
, ð14Þ

β=α+ Tcη, ð15Þ

where Aη,α =diag αð Þ+ TCη and cη is the vector composed of the diago-

nal elements of Cη.

Thus, the prior distribution N η,diag αð Þ−1
� �

is updated to the pos-

terior distribution N μ,diag βð Þ−1
� �

. The observed data play a role in

the Bayesian update algorithm so that the mean vector is updated

from the prior along the direction of the gradient of log-likelihood.

The precision is improved by the magnitude of the variance of

observed data. This work does not consider any kind of iterative pro-

cedure such as expectation–maximization (EM-like) algorithms to

obtain the hyperparameters based on the dataset. We simply propose

an approximate algorithm to obtain the posterior given prior informa-

tion on the model parameters.

For the prior, we considered three types of information: (a) zero-

mean prior with η all components being equal to zero and with the

precision αj = 6.67 for all; (b) empirical prior obtained by group averag-

ing; and (c) empirical prior from the group concatenated data. For (b),

we first obtained variational Bayes model parameter estimates for

each individual using the zero-mean prior in (a), and then averaged

them to get the mean vector η for the empirical prior. For (c), we

concatenated group data and estimated parameters for group

concatenated data using the zero-mean priors in (a) and use it for the

mean vector η of the empirical prior. The prior precision α can be

viewed as a tuning parameter controlling the amount of shrinkage to

the prior mean for the resulting variational Bayes parameter esti-

mates. In this work, for parsimony, we used a common positive num-

ber 6.67 for the prior precision so that the probability for a normal

random variable to deviate from its mean by 2.58-SD (2:58× 1ffiffiffiffiffiffiffi
6:67
p ≈1)

is about 1% (99% stays within the range of ±1). This conforms with

the results observed in our empirical studies that the absolute values

of the MEM parameter estimate rarely exceeded 1.

Figure 1 presents a procedure for BMEM analysis of rsfMRI data

of an individual.

2.4 | Resting-state fMRI data of HCP

For the simulation and experimental analysis, we used rsfMRI time

series at the 15 subcortical and limbic brain regions of 468 participants

(192 males, 276 females, age: 29.2 ± 3.5 years) from the HCP data-

base (Van Essen et al., 2012), which were used in our previous study

(Kang et al., 2017). For the simulation, we estimated MEM of two dif-

ferently sized systems, that is, a system with eight regions of interest

F IGURE 1 An illustration of the variational Bayesian MEM analysis (BMEM) procedure. The rsfMRI signals were binarized to represent local
brain states used in BMEM to estimate h and J parameters. Model parameters were estimated using BMEM with three different types of priors—
(a) the zero-mean prior, (b) empirical priors with a group average of individual MEM parameter estimates with the zero-mean prior, and
(c) empirical priors with MEM parameter estimates for group concatenated data using the zero-mean prior
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(ROI) and a system with 15 ROIs in the subcortex and limbic cortex.

Eight regions were the hippocampus (a limbic cortex), amygdala, cau-

date, putamen, pallidum, thalamus, nucleus accumbens of the left

hemispheres, and brainstem. For the 15-ROIs system, seven homolo-

gous regions in the right hemispheres were added to the 8-ROIs sys-

tem. A time series of the first eigenvariate of principal component

analysis was used for the time series of all the voxels within each

region in the subsequent analysis. This eigenvariate is advantageous

in representing the time course of an ROI over a simple averaging

when an ROI is composed of voxels with heterogeneous activities

(B. Park, Ko, Lee, & Park, 2013). In line with our previous study (Kang

et al., 2017), we conducted detrending, despiking and regressing out

motion artifacts (rigid motion and their derivatives), and selected zero

as the threshold to binarize regional states after global regression

(global signals in the whole-brain mask) to emphasize regional changes

in signal levels in specific brain states.

All (binarized) 8 or 15 regional states compose a state vector. Due

to a demand for a large sample size to estimate brain states (for all 28

or 215 possible states), we concatenated all temporal samples from

four sessions of 468 participants (the total number of state samples

are 1,200 samples × 4 sessions × 468 participants) and estimated

parameters of the pairwise MEM for the concatenated data using the

methods described in the following sections. The estimated two

parameter sets (8-ROIs and 15-ROIs) from the concatenated data

were used as ground-truth parameters to make the simulation biologi-

cally plausible. The details of signal processing can be found in Kang

et al. (2017).

2.5 | Evaluation of BMEM with simulations

Simulation studies were conducted to explore the performance of

BMEM with regard to sample sizes and prior types for the two net-

works of 8- and 15-ROIs.

First, we performed two types of simulations for the network

with 8-ROIs. To evaluate the performance of each estimation method

(MLE and VB) with respect to sample sizes (50, 200, 500, and 1,200)

and prior types (zero-mean and empirical priors), we generated

500 datasets of time series for each condition from the ground-truth

model parameter vector.

Next, we implemented individual differences within a group to

simulate group studies. MEM parameters of individual 15-ROIs sys-

tems were set by adding Gaussian noises to the ground-truth model

parameter θgroup (as a group ground truth). Thus, a unique MEM

parameter θi is given by

θi = θgroup + εi, εi�N 0,s2
� �

, ð16Þ

where s represents SD of individuals (or jitters) and was set to s = 0.1.

Considering that the interaction parameters are generally in the range

between 0 and 0.5, one SD (0.1) of each parameter from the θgroup may

be a reasonable choice, especially when multiple combinations of devi-

ated parameters represent individual variations within a single group.

Sample signals for 30 individuals were generated based on

30 MEM parameter sets. For these data, the performance of all the

estimation methods (MLE and VB) was evaluated with various sample

sizes (50, 200, 500, and 1,200) and prior types (a zero-mean prior and

two empirical priors). The hyperparameter η for two-types of empiri-

cal priors was obtained by the average of parameter estimates from

all the subjects and by the parameter estimate from the concatenated

sample dataset. In addition, we set the variances of the normal priors

to 0.15 (precision = 6.67) by default; that is, θ � N(η, diag[0.15]). In all

simulations, to evaluate the accuracy of parameter estimation, we

used root mean square error (RMSE) between estimated and true

parameters:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
m=1

θm,estimated−θm,trueð Þ2
vuut , ð17Þ

whereM is the total number of MEM parameters (hi and Jij).

2.6 | Evaluation with experimental data: Capability
of detecting inter-individual variations

We evaluated the capability of BMEM in characterizing each individ-

ual's dynamic properties with MEM parameters and with energy land-

scape features in the rsfMRI of the HCP database by exploring an

inter-individual similarity matrix for those features across individuals.

The inter-individual similarity matrix was defined using a Pearson cor-

relation coefficient for MEM parameters across subjects. The size of

the inter-individual similarity matrix is the number of subjects by the

number of subjects. Since we do not have an established criterion to

evaluate the degree of the inter-individual variation of MEM parame-

ters, we considered the inter-individual variation of functional connec-

tivity as a reference to evaluate the level of inter-individual variation

of the MEM model parameters. To evaluate the level of inter-

individual variations of MEM parameters compared to that of the

functional connectivity, we conducted a Pearson correlation analysis

between the upper triangle of the inter-individual similarity matrix of

MEM parameters and that of functional connectivity. If the Pearson

correlation between the two inter-individual similarity matrices is

high, the individuals with similar functional connectivity would have

similar MEM parameters and vice versa. If so, the MEM parameters

would show high inter-individual variation comparable to functional

connectivity and reflect a biologically plausible aspect of each individ-

ual's resting-state brain.

The same evaluation was also applied to the energy landscape

features to test the capability of representing state dynamics specific

to each individual. For this, we constructed the inter-individual simi-

larity matrix of energy landscapes and correlated it with that of func-

tional connectivity. In this analysis, we also considered the inter-

individual similarity matrix of functional connectivity as a reference to

assess the degree of inter-individual similarity matrix of energy

landscapes.
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For this analysis, we constructed energy landscapes based on the

pairwise MEM estimation, following the procedure described in previ-

ous papers (Kang et al., 2017; Watanabe, Hirose, et al., 2014). Briefly,

to construct an energy landscape, we defined the distance between

two states as the number of elements (bits) that differ between two

state vectors. Based on a gradual state transition assumption, we

examined the energy landscape by changing one element of the state

vector for each step. The local minima (also called stable states) were

defined to have lower energy (more frequent) relative to their neigh-

bors. We calculated depths, basin sizes, and occupation times for local

minima, which were used to evaluate the subject specificity of BMEM.

The local minima, occupation times, and basin sizes were defined

according to previous work by Kang et al. (2017). Local minima indi-

cate states that have lower energy relative to their neighbors. A total

of 26 local minima were defined by the union of (1) and (2). The basin

region of a local minimum was defined as all the states with gradients

toward the local minimum. The basin size of a local minimum was

defined as the fraction of states that belong to the basin of the local

minimum. The occupation time of each local minimum was defined as

a sum of the probabilities of the states in its basin region.

Of note, although the energy landscape features (such as energies

at the local minima, their occupation times, and basin sizes) are

extracted from the MEM parameters, the energy landscape features

directly reflect information about frequent brain states and their prop-

erties in the dynamics, which cannot be explored directly from the

interaction parameters in FC or MEM. All the analysis was done with

the first session (1,200 samples) rsfMRI data of the HCP database,

with the zero-mean prior (precision = 6.67).

2.7 | Evaluation with experimental data: Capability
of reflecting cognitive scores

In order to evaluate the applicability of the energy landscape analysis using

BMEM in differentiating individuals and in exploring neural correlates for

human behavior, we have associated MEM parameters and brain state

energies with gender, age, and 15 cognitive scores; the 15 cognitions

scores used areMini Mental Status Exam Total Score (MMSE_Score), Pitts-

burgh Sleep Questionnaire Total Score (PSQI_Score), Penn Matrix Test:

Number of Correct Responses (PMAT24_A_CR), Penn Matrix Test: Total

Skipped Items (PMAT24_A_SI), Short Penn CPT Sensitivity (SCPT_SEN),

Short Penn CPT Specificity (SCPT_SPEC), NIH Toolbox Flanker Inhibitory

Control and Attention Test Age-Adjusted Scale Score (Flanker_AgeAdj),

NIH Toolbox Picture Sequence Memory Test Age-Adjusted Scale Score

(PicSeq_AgeAdj), NIH Toolbox Dimensional Change Card Sort Test Age-

Adjusted Scale Score (CardSort_AgeAdj), NIH Toolbox List SortingWorking

Memory Test Age-Adjusted Scale Score (ListSort_AgeAdj), NIH Toolbox

Oral Reading Recognition Test Age-Adjusted Scale Score

(ReadEng_AgeAdj), NIH Toolbox Picture Vocabulary Test Age-Adjusted

Scale Score (PicVocab_AgeAdj), NIH Toolbox Pattern Comparison

Processing Speed Test Age-Adjusted Scale Score (ProcSpeed_AgeAdj),

Penn Line Orientation: Total Number Correct (VSPLOT_TC), Penn Word

Memory: Total Number of Correct Responses (IWRD_TOT).

To associate MEM and energy landscape properties with cogni-

tive performances, we conducted sCCA (Chu, Liao, Ng, &

Zhang, 2013), which is multivariate data analysis for finding the corre-

lation between behaviors (cognitions) and neurobiological data

(BMEM parameters). sCCA is a sparse solution of the canonical corre-

lation analysis (CCA), which is described below.

Given two sets of variables X and Y, which are composed of col-

umn vectors X = [X1,X2, � � �,Xp] and Y = [Y1,Y2, � � �,Yq], let us consider

two column vectors U01 and V01 that are driven from the weighted sum

of the column vectors of Xi and Yi as below.

U01 = a
0TX = a11X1 + a12X2 + � � �+ a1pXp, ð18Þ

V01 = b
0TY = b11Y1 + b12Y2 + � � �+ b1qYq: ð19Þ

The sizes of vectors U01 and V01 are S subjects × p variables and

S subjects × q variables. CCA is to search the weights, called canonical

coefficients, a
0
and b

0
that maximize the correlation between the two

vectors U01 and V01.

a,bð Þ= argmax
a0 ,b0

corr U01,V
0
1

� � ð20Þ

The first pair of canonical variables are U1 = aTX and V1 = bTY.

The second pair of canonical variables maximize the same correlation

under the constraint that they are uncorrelated from the first pair of

canonical variables (U1,V1). This procedure continues up to minimum

of p and q. sCCA finds the optimal solution (a,b) under the additional

constraint of sparsity for (a
0
, b
0
). For the details, see sCCA (Chu

et al., 2013).

In the current study, cognitive scores were assigned to X, and

neurobiological features were assigned to Y. Three different biological

features were associated with cognition scores using sCCA: (a) MEM

parameters (a vector of h and an upper triangle of J); (b) a vector of

energy landscape features; and (c) a vector of an upper triangle of

functional connectivity of each individual. The energy landscape fea-

tures are composed of the union of (a) energies at the local minima of

the group concatenated data set, (b) energies at the local minima of

the group average energy landscape derived from the averaged proba-

bility distribution of all individuals, and (c) the occupation times and

basin sizes for the two lowest local minima specific to each individual.

sCCA between functional connectivity and the cognitive scores was

evaluated as a reference to sCCA for BMEM. All behavioral scores

and neurobiological scores were normalized across subjects by z-

transformation.

3 | RESULTS

RMSEs between the ground-truth parameters of the 8-ROIs system

and estimated parameters by MLE, variational Bayes MEM (BMEM)

approach with zero priors (VBz) and variational Bayes approach with

empirical priors (VBgc) for the 500 generated datasets with four
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different sample sizes (T = 50, 200, 500, and 1,200) are presented in

Figure 2a. All methods tend to show better reliability as the sample size

increases. For the datasets with short lengths (T = 50 and T = 200), VB

with group empirical prior tends to give model parameter estimates

having smaller RMSEs than the others. Similar results are found in

Figure 2b, wherein VB with an empirical prior obtained from

concatenated data (VBgc) shows the lowest RMSE in the 15-ROIs sys-

tem across 30 different individuals. For datasets with varying sizes of

sample (sample sizes T = 50, 200, 500, and 1,200), empirical priors

improved the reliability of parameter estimation of VB for the individual

data compared to MLE and VB with zero-mean priors. RMSEs for VB

with empirical priors were lower than those of MLE or VB with zero

priors. In particular, VB with empirical priors of a group-concatenated

dataset showed better parameter estimation (lower RMSE) than VB

with empirical priors of group averaged parameters. This tendency was

exemplified in a subject using a system of 15 ROIs (Figure 3).

When we average estimated parameters of all subjects to estimate

group-level model parameters, that is, θgroup in Equation (16), the aver-

aged parameters are highly consistent with the group ground-truth

model parameters (Figure 4). Both the 8-ROIs (Figure 4a) and 15-ROIs

systems (Figure 4b) showed a high correlation with the ground-truth

group model parameters regardless of estimation methods (MLE or

VBgc). VBs for larger datasets were highly accurate in all analyses, but

VBs for small datasets still worked reasonably well in the parameter

estimation.

Since the best results were obtained using VB with priors

obtained from concatenated datasets in the simulation, we applied it

to our analysis of the rsfMRI data of HCP, used previously in the Kang

et al. (2017). In this study, we used the zero-mean prior in the BMEM

estimation for the group concatenated data with precision αj = 6.67

for all j.

The relationship between the group union of all local minima

(estimated) for all individuals (iLMs) and the distribution of local

minima estimated using the group-concatenated data (gLM) is pres-

ented in Figure 5. There are correspondences between them, partic-

ularly in the frequently appearing local minima across subjects. This

result suggests the capability of BMEM in analyzing the individual

energy landscape of brain states, particularly in identifying local min-

ima at each individual. Most local minima of the group concatenated

data (gLMs) serve as references for clusters of iLMs. Some local

minima frequently found in many individuals are not detected as

local minima in the model of group concatenated data. Furthermore,

various frequencies indicate variations of local minima across indi-

viduals. This result suggests that although the group model with the

group concatenated data grossly reflects the group population's

brain states, individual MEM is needed to explore the subject-

specific variability.

We calculated inter-individual similarity matrices (cross-

correlation matrices across subjects) of functional connectivity, MEM

parameters, energy levels at all states, and energy levels at the group

local minima. The inter-individual similarity matrix of functional con-

nectivity was highly correlated with those of MEM, energy levels at all

states, energy levels at the group local minima (correlation coeffi-

cients = .88 (p = .0000, degree of freedom [df] = 466), .86 (p = .0000),

and .57 (p = .0000), respectively; Figure 6). Inter-individual variation

(reflected in the inter-individual similarity matrix) of the energy levels

F IGURE 2 Performance evaluation of model parameter estimations using synthetic data. Root mean square errors (RMSE) for all the
parameters estimated by maximum likelihood estimation (MLE), variational Bayes approach with the zero prior (VBz), variational Bayes approach
with the prior from the group average (VBga), and variational Bayes approach with the prior derived from group concatenation (VBgc), compared
to the ground truth. All state vectors that were used in the estimations were synthesized from the ground truth MEM parameters. (a) Mean and
SD of RMSEs were evaluated for model estimation reliability within a subject (a model parameter set) using a total of 500 repetitions of sample
generation with four sample sizes (T = 50, 200, 500, and 1,200) in the 8-ROIs systems. (b) Mean and SD of RMSEs for parameters in the 15-ROIs
systems were evaluated at the four different sample sizes for 30 individuals deviated from (Gaussian noise) a group-truth parameter, as a group
level analysis. The RMSE for MLE with 50 samples was very high beyond the current range between 0.1 and 0.4
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at the group local minima showed significantly reduced correlation

with inter-individual variation of the functional connectivity compared

to inter-individual variation of energy levels at all states (r = .67 vs.

r = .86, p = .000) and MEM parameters (r = .67 vs. .88, p = .000). No

significant difference exists between the inter-individual variation of

MEM parameters and inter-individual variation of energy levels at all

states in the correlation with the inter-individual variation of func-

tional connectivity (p = .104). This result implies that MEM and energy

F IGURE 3 Evaluation of MEM parameter estimation from a simulated dataset of a single subject with a 15-ROIs system. The results for
model parameter estimation with MLE and three different model priors for variational Bayes (VB) approach are displayed: zero prior expectations
(VBz), priors from group average (VBga), and priors from group-concatenated data (VBgc). Each model estimation method is compared with the

true parameter that generated state sequences. The red circles indicate h while blue circles indicate J. The x-axis shows the true parameters for a
given model, while the y-axis indicates the estimated parameters. RMSE for h and J are displayed in each scatter plot (RMSEh and RMSEJ)
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landscape features (e.g., local minima) reflect inter-individual differ-

ences in a biologically meaningful way comparable to functional

connectivity.

The applicability of BMEM and the energy landscape analysis in

characterizing individuals or in identifying neural correlates for

individual behaviors were evaluated using sCCA between cognitive

scores and neurobiological features estimated from BMEM and

energy landscape analysis. Figure 7 shows sCCA results between cog-

nitive scores and MEM parameters. The first canonical variable for

cognition scores composed of high fluid intelligence scores

F IGURE 4 Comparison between the average of 30 subjects' estimated parameters versus the group ground-truth parameter for a network
size of 8 (a) and of 15 (b). For MLE and VBgc, estimated model parameters for all 30 individuals were averaged for four different sample sizes
(T = 50, 200, 500, and 1,200) and compared with those of the group ground-truth. The red colors indicate h while blue colors indicate J. r and
p indicate correlation coefficient and its p-value. RMSE: root mean square error
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F IGURE 5 Local minima in the energy landscape of BMEM for the group-concatenated data (gLM) are presented with frequencies for all
individual local minima found in all the subjects (iLM). According to each state's identification number, the local minima of individuals is presented
in sorted order (x-axis). The frequencies are evaluated from the group union of all local minima for all individuals (iLMs). For an x-th gLM (i.e.,
gLMx), gLMx = 1 and gLMx = 2 indicate individual local minima with a Hamming distance = 1 and 2 from the gLMx. Most gLMs serve as
references for clusters of iLMs. Some frequent states at the individual level (small black dots, iLM) are not seen as local minima in the group
concatenated data (gLMs)

F IGURE 6 Group average interaction parameters (estimated from group-concatenated data) and regions of interests (ROI) (a). Inter-subject
similarity matrices of functional connectivity (b), MEM parameters (c), energy landscapes (energies at all the states) (d), and energy levels at the
group local minima (e). The adjacency matrices were evaluated by cross-correlation of the multivariate vectors (e.g., functional connectivity, MEM
parameters, etc.) across 468 individuals. Part label (a) was modified from Kang et al. (2017). The 15 ROIs were the hippocampus (HIPP), amygdala
(AMYG), caudate (CAU), putamen (PUT), pallidum (PAL), thalamus (THL), nucleus accumbens (NACC) of the left and right hemispheres, and
brainstem (BSTEM)
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(PMAT24_A_CR and PMAT24_A_SI) and high executive function/cog-

nitive flexibility score (CardSort-AgeAdj) showed a strong correlation

with MEM parameter scores, particularly for connectivity associated

with the right caudate (first canonical variable for neurobiological fea-

tures). The highest canonical correlation between cognitive scores

and MEM parameters were r = .66, p = .0000, df = 466. The highest

canonical correlation between cognitive scores and the functional

connectivity were r = .64, p = .0000 for full data or r = .62, p = .0000

after excluding one outlier, as shown in Figure 8. Figure 9 shows

sCCA results between cognitions and energy landscape properties of

brain states. The highest canonical correlation between the first pair

of canonical variables was r = .46 (p = .0000). Energy landscape fea-

tures showed significantly reduced canonical correlation with cogni-

tive scores compared to functional connectivity (r = .46 vs. r = .64,

p = .000) and MEM parameters (r = .46 vs. .66, p = .000). No signifi-

cant difference exists between MEM parameters and functional con-

nectivity in the canonical correlation with cognitive scores (p = .348).

In this evaluation, the first canonical variable for cognition scores

(including high fluid intelligence scores) was positively associated with

the basin sizes and negatively associated with the occupation times of

the first and second lowest local minima of each individual.

The computation time for estimating MEM for a single data of

HCP rsfMRI 1,200 scans are approximately 250.1 s for MLE and 7.3 s

for BMEM using MATLAB code (Mathworks Inc., Natick, Massachu-

setts) on Intel(R) Xeon(R) 3.50GHz. BMEM is very fast as BMEM does

not require iterations.

4 | DISCUSSION

In the current study, we propose a variational Bayesian scheme for

estimating pairwise MEM parameters to analyze brain states' energy

landscape using a small sample dataset obtained from a single individ-

ual in combination with empirical priors. The energy landscape of

brain states, derived from MEM, has provided an important perspec-

tive to brain science in understanding state dynamics in terms of a

complex brain system (Ezaki et al., 2018; Gu et al., 2018; Kang

et al., 2017; Watanabe et al., 2013; Watanabe, Hirose, et al., 2014;

Watanabe, Kan, et al., 2014; Watanabe, Masuda, et al., 2014; Park

and Kang, 2021).

Note that this nonlinear state dynamics in the current study dif-

fers from dynamic functional connectivity researched in recent studies

F IGURE 7 sCCA results between cognitive scores and maximum entropy model (MEM) parameters (h and J). (a) Canonical variables for
cognitive scores (U, with gender and age), (b) canonical variables for MEM parameters (V, h: upper part, J: lower part), and (c) canonical
correlations between every pairs of canonical variables for cognitive scores (each column in [a]) and MEM parameters (the column in [b],
corresponding to the column in [a]) are displayed. (d) The first MEM canonical variable and (e) the second MEM canonical variable estimated are

composed of diagonal elements of h and off-diagonal elements of J, restructured from the first and second columns in (b). (f ) The individual
samples of cognitive scores and MEM parameters projected onto the first canonical variable for cognition score (U1) and the first canonical
variable for MEM features (V1) showed a correlation of r = .66. In (a) and (b), each row was scaled to its maximum value for a better display
purpose. In (d and e), the h of the MEM (diagonal elements) was divided by 2 to balance the scales of h and off-diagonal elements J
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(Allen et al., 2014; Calhoun, Miller, Pearlson, & Adali, 2014; Chang &

Glover, 2010; Cribben, Haraldsdottir, Atlas, Wager, & Lindquist, 2012;

Handwerker, Roopchansingh, Gonzalez-Castillo, & Bandettini, 2012;

Hutchison, Womelsdorf, Gati, Everling, & Menon, 2013; Jeong, Pae, &

Park, 2016; Monti et al., 2014; H.-J. Park, Friston, Pae, Park, &

Razi, 2017; Preti, Bolton, & Van De Ville, 2017), which explains the

brain's dynamics in terms of temporal connectivity changes. In con-

trast, state dynamics in the current study is considered an emergent

property of nonlinear interactions among nodes in the stabilized sys-

tem in equilibrium without any changes in their interaction.

Using energy landscape analysis, we can explore the multistability

and state transitional properties of the human brain. For example, in

Kang et al. (2017), energy landscape analysis revealed that the subcor-

tical brain system at rest exhibits the maximal number of stable states

and small sets of stable states show most of the occupation times.

They also explored perturbation effects on the energy landscape at

hub nodes and at edges interconnecting nodes with relatively higher

node strength. Beyond the multistability of the resting-state brain sys-

tem, the architecture of state transition processes was analyzed by

applying a graph-theoretic analysis to the energy landscape (Kang

et al., 2019), which revealed a hub-like state transition organization

embedded in the resting-state human brain. These pieces of knowl-

edge were obtained from the group-level fixed-effect analysis by

concatenating individual data together. However, the application of

state transition analysis to individuals is limited in most studies with

small sample data sets. The clinical acquisition setting of rsfMRI data,

for which 200 � 500 samples are typically used, may not be sufficient

to estimate a model of a network size of 10 (55 parameters). More-

over, in the MEM estimation, the temporal dependency (redundancy)

of rsfMRI samples due to prolonged hemodynamic responses adds

the need for more data to fit the model reliably. To resolve this practi-

cal limitation, MEM model fitting has been done in two directions: to

increase the size of samples by concatenating individual data within a

group (by sacrificing individual variability) and/or to decrease the

number of parameters by reducing the number of brain regions of

interest. For example, relatively small brain networks were evaluated

in previous studies (Watanabe et al., 2013; Watanabe, Hirose,

et al., 2014). Kang et al. (2017) assessed the dynamics of a reduced

brain system at each hemisphere (mainly focusing on the left hemi-

sphere) to reduce the number of regions even with a group

concatenated data set. This makes energy landscape analysis of

nonlinear dynamics impractical to use in clinical studies or individual

characterization studies.

In this regard, BMEM is of high value in its applicability to individ-

uals. Compared to conventional MLE estimation, BMEM shows a reli-

able performance in estimating model parameters for a clinically

F IGURE 8 sCCA results between cognitive scores and functional connectivity matrix (FC). (a) Canonical variables for cognitive scores (with
gender and age), (b) canonical variables for FC, and (c) canonical correlations between every pairs of canonical variables for cognitive scores and
FC are displayed. (d) The first FC canonical variable and (e) the second FC canonical variable are shown. (f) The individual samples of cognitive
scores and FC projected on to the first canonical variable for cognition scores (U1) and the first FC canonical variable (V1) have a canonical
correlation of 0.64 between the two canonical variables. In (a) and (b), for a better display purpose, each row was scaled to its maximum value
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achievable data size from an individual due to its capability of utilizing

a priori information. When suitable empirical priors were used, the

accuracy of BMEM increased to a reasonable level for the small sam-

ple data. In particular, empirical priors derived from group-

concatenated data improved the parameter estimation of each indi-

vidual. As a Bayesian method, it is reasonable to expect better perfor-

mance for better priors that reflect the underlying parameter

distribution. In this study, priors with group-concatenated data

showed better performance than group average parameters or zero-

mean priors. It is speculated that model estimation for a small sample

dataset from an individual does not cover all the details of the human

brain's energy landscape. Simply averaging model parameters across

subjects within a group may not produce a better approximation of

priors for individuals than those estimated from a sufficiently large

dataset (even if concatenated). The other advantage of utilizing the

priors for concatenated data is its simplicity in the calculation com-

pared to using a group average's priors, which requires iterations of

model estimation for an individual twice.

It should be noted that BMEM showed empirically desirable sta-

tistical properties. As shown in Figure 4, the average of individually

estimated model parameters approximated the group ground-truth

parameters using the assumption that an individual's model

parameters were Gaussian variations from the group ground-truth. If

this assumption is valid in real human studies, we may consider the

average model parameters across individuals as a reasonable surro-

gate for the group model. This differs from the conventional way of

group model estimation using group-concatenated data. As shown in

Figure 5, there exist diverse local minima across individuals, and some

of the local minima frequently found in many individuals are not

detected as local minima in the model of group concatenated data.

Although the group model with the group-concatenated data grossly

reflects the group population's brain states, group local minima are

limited in representing details of subject-specific local minima. This

may be attributable to a nonlinear relationship between a set of model

parameters and the local minima in the energy landscape. In summary,

the energy landscape analysis may well be done with individual

models rather than with a group-level model.

BMEM and its energy landscape show subject specificity in char-

acterizing individuals comparable to subject specificity of functional

connectivity. The subject specificity of MEM parameters and their

energy landscape features were highly comparable to that of the same

data set's functional connectivity. If two individuals have similar func-

tional connectivity, they will have similar MEM parameters and energy

landscapes. Although the similarity between the inter-individual

F IGURE 9 sCCA results between cognitive scores and energy landscape features. (a) Canonical variables for cognitive scores (with gender
and age) and (b) canonical variables for energy landscape features (upper part: energies at local minima; lower part: the first and second
occupation times (OT) and basin sizes (BS) of the lowest local minima for each individual) are displayed. In (c), canonical correlations between
every pair of canonical variables for cognitive scores and energy landscape features are shown. In (d) and (e), each row indicates a binarized state
vector, weighted by the first and second canonical weights. (f) The individual samples of cognitive scores and energy landscape features projected
onto the first canonical variable for cognition scores (U1) and the first canonical variable for energy landscape feature (V1). In (a) and (b), each row
was scaled to its maximum value for a better display purpose
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similarity of functional connectivity and that of the energy landscape

features is high, energy landscape features also contain subject-

specific information different from the functional connectivity in char-

acterizing each individual. This is evident in the correlation analysis

between the similarity matrix of the functional connectivity and the

similarity matrix of the energy levels at the group model's local min-

ima. The inter-individual similarity of energy levels at the whole states

(which contain zero-mean states) are highly correlated with the inter-

individual similarity of functional connectivity (r = .86). However, if we

look at the details, energies at the group model's local minima show

divergence (relatively lower correlation) from functional connectivity

across individuals (r = .57). In line with the discussion above regarding

Figure 5, this lower correlation indicates that the local minima infor-

mation of individuals can be lost when we construct a group model

using concatenated data across individuals.

sCCA analysis between the cognitive scores and neurobiological

features (from fMRI brain signals) in the HCP database suggests the

effectiveness of BMEM in identifying neural correlates of cognitive

scores and thus in characterizing individuals. We used three sets of

neurobiological features from individuals: (a) MEM parameters;

(b) energy landscape features; and (c) functional connectivity matrices.

Although these features are estimated from the same rsfMRI data set,

the implication of each feature differs. Functional connectivity matri-

ces have been the most common neurobiological markers in many

brain studies, including analysis of brain diseases using functional con-

nectivity (Drysdale et al., 2017; Jang, Park, Chang, Pae, &

Chang, 2016; Lee et al., 2017; Yahata et al., 2016), exploration of neu-

ral correlates of behaviors (Kyeong, Kim, Park, & Hwang, 2014; Smith

et al., 2015), identification of individuals (Finn et al., 2015), analysis of

inter-individual variability (Jang et al., 2017), and features in machine

learning (Dosenbach et al., 2010; Drysdale et al., 2017; Finn

et al., 2015; Yahata et al., 2016). The correlation-based functional

connectivity matrix reflects the brain as a stable, linearly interacting

system among the brain regions. In contrast, exploration of the brain

using MEM and energy landscape features is based on the brain

state's nonlinear dynamics. MEM parameters indicate nonlinear inter-

actions among the brain regions that generate nonlinear state transi-

tions. Using sCCA, we found that the neurobiological features using

MEM parameters deliver information in explaining human cognitions

and thus in characterizing individuals (Figures 7 and 8).

The energy landscape features (such as energies at the local min-

ima, their occupation times, and basin sizes) are extracted from the

MEM parameters, which indicate interactions among brain regions or

self-excitability. Meanwhile, the energy landscape features directly

reflect information about frequent brain states and their properties in

the dynamics, which cannot be explored from the interaction parame-

ters in FC or MEM. Our preliminary study with sCCA suggests the

potential of the energy landscape features in explaining human cogni-

tions (r = .46), if not as high as MEM parameters (Figure 9). For exam-

ple, the basin sizes of the two lowest local minima for each individual

are highly associated with the first canonical variable for cognition

scores composed of high fluid intelligence scores (Figure 9). These

results indicate the importance of nonlinear dynamic properties of

brain states, and BMEM provides a critical method to explore those

properties at the individual level. It should be noted that the relation-

ship between MEM parameters and energy landscapes (probability

distribution) is nonlinear but is uniquely determined. Thus, the correla-

tion with inter-individual similarity matrix of functional connectivity

does not show a statistical difference between them. However, the

relationship between MEM parameters and energy landscape features

is highly complex and shows different aspects of the human brain

dynamics; the former focus on the amount of interaction the latter

the state dynamics.

We evaluated nonlinear dynamics at the subcortical and (part of)

limbic subsystem as an example to present a method for estimating

model parameters for a given subsystem. We chose this subcortical

system based on the previous study to show that MEM parameters

and energy landscapes can be used as biological markers in rep-

resenting individual characteristics, characterizing individual or biolog-

ical subgroups in a meaningful way. The characteristics of nonlinear

dynamics would differ according to different ROIs. Therefore, one

needs a hypothesis or question of interest when choosing a set of

ROIs, either the whole brain system or some specific subnetworks

such as DMN.

The validity of the proposed approach could be heavily depen-

dent upon the relevance of the prior, mainly when the length of the

time series is not long enough. If the length of time series is short, the

posterior mean vector is forced to shrink to the mean vector of the

prior distribution. Hence, if the hyperparameters of the prior are not

good, the resulting posterior for an individual cannot give reasonable

estimates. To circumvent this issue, we considered a group averaging

and a concatenating strategy to determine the mean vector of the

prior distribution, and used an arbitrarily small positive number for the

prior precision, say 6.67 as done in our experiments, not to make the

resulting posterior mean vector shrink to the prior mean vector too

much. A further study for any novel choice of the hyperparameters is

left for future research. Note that if the group size (number of sub-

jects) is high, we expect a variation of the group prior may be slight. In

this case, the group prior may not be highly dependent on how we

choose a group.

In the Bayesian formulation of the model parameter estimation,

one may question not using the conjugate prior as the Boltzmann dis-

tribution is an exponential family and has a conjugate prior. We pres-

ented a method of using conjugate prior in the MEM parameter

estimation at the Appendix C. As explained in Appendix C, the poste-

rior of an individual's model parameter is determined too much by the

group data, and the individual's data hardly contributes to the calcula-

tion of the individual's posterior. Thus, we decided to use a normal

prior, which enables us to regularize the effect of the group prior

directly by controlling the prior precision.

The current study used the HCP rsfMRI database since it contains

well-documented cognitive performance scores and high-quality

rsfMRI data from a large population. The database is advantageous to

test individual variations and the use of individualized MEM parame-

ters and energies in representing individual variations of cognitive per-

formance before application to clinical data. One drawback of using
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rsfMRI of the HCP database is that it does not reflect the conven-

tional clinical setting. The sample size of HCP rsfMRI (1,200 sample

points per session with a short TR = 0.72) is generally large compared

to the conventional clinical setting. However, the fMRI sample acqui-

sition duration (14.4 min per session) is not sufficient for traditional

MEM estimation for a large network that requires independent sam-

ples due to the prolonged hemodynamics response (peaks at around

6 s). As shown in Appendix B, the time lags of 6 � 8 s to avoid the

temporal dependence results in much reduced independent sample

numbers. As we confirmed the usefulness of MEM-based features in

characterizing individual differences in cognition, we expect that the

current method can be used to analyze data samples acquired from

the conventional environment in identifying brains and characterizing

brain diseases.

In the current study, we have primarily focused on explaining

BMEM and an evaluation of its basic performance. Thus, the detailed

characterization of individuals using various energy landscape

properties and their behavioral implications remain to be further

researched. In particular, dynamic properties in brain diseases

according to symptom levels could be studied using BMEM, which

was not possible in previous energy landscape analyses of autism

spectrum disorders (Watanabe & Rees, 2017) and schizophrenia

(Joana Cabral et al., 2013; Loh et al., 2007). We expect that more

studies using basic and clinical data will validate the usefulness of

the proposed approach and expedite our understanding of the brain

states' dynamics.
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APPENDIX A. MATHEMATICAL DETAILS OF BMEM FORMULA

This appendix explains the mathematical details of BMEM formula-

tion. The evidence lower bound (ELBO) is defined as follows:

F q,η,αð Þ=
ð
q θð Þlogp D,θ η,αj Þ

q θð Þ dθ= T1 + T2 + T3,




with T1 =
Ð
q θð Þlogp Djθð Þdθ, T2 =

Ð
q(θ)log p(θj η,α)dθ and T3 = −

Ð
q(θ)

log q(θ)dθ. Plugging logp Djθð Þ= P
t =1

T
θ>~σ tð Þ−Tlog

P
σ�S

eθ
>~σ into T1,

we have

T1 =
X
t=1

T

μ>~σ tð Þ−T
ð
q θð Þlog

X
σ�S

eθ
>~σdθ:

The integration in the above is intractable, so we consider a Tay-

lor series expansion near η for its integrand given by

log
X
σ�S

eθ
>~σ≈log

X
σ�S

eη
>~σ + ⟨~σ⟩

>
η θ−ηð Þ+ 1

2
θ−ηð Þ>Cη θ−ηð Þ,

where ⟨~σ⟩η and Cη =Covη ~σð Þ are the model mean vector and the

variance–covariance matrix of ~σ when the model parameter is θ = η,

respectively. By plugging this approximation into T1, we have

T1≈
X
t =1

T

μ>~σ tð Þ−T log
X
σ�S

eη
>~σ + ⟨~σ⟩

>
η μ−ηð Þ

"

+
1
2

tr diag βð Þ−1Cη

� �
+ μ−ηð Þ>Cη μ−ηð Þ

n o
�:

It is rather simple to compute T2:

T2 =
1
2

X
j=1

M

logαj−
1
2

X
j=1

M

αj μj−ηj
� �2

+ β−1
j

n o
+ constant:

The term T3 is the entropy of q, so it holds that

T3 = −
1
2

X
j=1

M

logβj + constant:

Hence, we have an approximation for ELBO as follows:

F q,η,αð Þ≈
XT
t=1

μ>~σ tð Þ−T log
X

σ�Se
η>~σ + ⟨~σ⟩

>
η μ−ηð Þ

h

+
1
2

tr diag βð Þ−1Cη

� �
+ μ−ηð Þ>Cη μ−ηð Þ

n o
�+ 1

2

XM

j=1
logαj

−
1
2

XM

j=1
αj μj−ηj

� �2
+ β−1

j

n o
−
1
2

XM

j=1
logβj + constant:

Now, we are to maximize the above approximate F with respect

to q. For j = 1, 2, …, M,

∂F
∂μj

= T ⟨~σj⟩empirical−⟨~σj⟩η
� �

−T μj−ηj
� �

Cη,jj−T
X
i≠j

μi−ηið ÞCη,ij−αj μj−ηj
� �

=0,

∂F
∂βj

=
TCη,jj

2β2j
+

αj
2β2j

−
1
2βj

=0,

where Cη,ij is the (i,j) component of Cη. Solving the above equation sys-

tem, we have posterior mean μ and its precision β:

μ= η+ TA−1
η,α ⟨~σ⟩empirical−⟨~σ⟩η

� �
,β=α+ Tcη,

with Aη,α =diag αð Þ+ TCη and cη is the vector composed of the diago-

nal elements of Cη.

APPENDIX B. TEMPORAL DEPENDENCY OF FMRI SIGNALS

The temporal dependency of fMRI signals was evaluated using auto-

correlation analysis. The results for 15 ROIs are shown in Figure B1.
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APPENDIX C. CONJUGATE PRIOR BASED APPROACH

A Boltzmann distribution belongs to the exponential family, and every

member of the exponential family has a conjugate prior, see Diaconis

and Ylvisaker (1979). The canonical conjugate prior can be written as

below.

p θj λð Þ/ exp λT1θ+ λ2a θð Þ� �
,λ= λ1,λ2ð Þ,

of which hyperparameter vector is given in a form related to the

group size:

λ1 =
XG
g =1

XTg

t =1

~σg tð Þ, λ2 =
XG
g =1

Tg ,

where G is the number of subjects in the group concatenated data

and Tg is the length of time series observed from the g-th subject,

g = 1, 2, …, G. With this prior, the resulting parameter vector of poste-

rior distribution is given by the sum of the individual data vector and

the hyperparameter vector (i.e., the sum of group data vector):

p θjD,λð Þ/ exp λ1 + T⟨~σ⟩empirical

� �T
θ+ λ2 + Tð Þa θð Þ

n o
:

Therefore, especially when the number of subjects (G) in the

group concatenated data for the prior is large, λ1 and λ2 get very large,

and the information from the individual of interest hardly contributes

to constructing the posterior. One may select a subset from the data-

base to form a “good” group concatenated data with “proper” size,

but this arouses a new problem: which and how many subjects?

Instead, we decided to use the normal prior, which enables us to regu-

larize the effect of the prior (group) information in a direct fashion by

controlling the prior precision.

F IGURE B1 Autocorrelation function of fMRI time series with
different time lags at 15 ROIs of a subject in the HCP database. The
autocorrelation functions show that fMRI samples' temporal
dependency is substantially weakened for time lags of 6 � 8 s
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