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Abstract

GluA2-containing AMPA receptors and their association with protein kinase M zeta (PKMζ) and post-synaptic
density-95 (PSD-95) are important for learning, memory and synaptic plasticity processes. Here we investigated
these synaptic markers in the context of an acute 1h platform stress, which can disrupt spatial memory retrieval for a
short-term memory on the object placement task and long-term memory retrieval on a well-learned radial arm maze
task. Acute stress increased serum corticosterone and elevated the expression of synaptic PKMζ while decreasing
synaptic GluA2. Using co-immunoprecipitation, we found that this stressor promotes the clustering of GluA2, PKMζ
and PSD-95, which is consistent with effects reported from overexpression of PKMζ in cell culture. Because PKMζ
overexpression has also been shown to induce spine maturation in culture, we examined how stress impacts
synaptic markers within changing spines across various hippocampal subfields. To achieve this, we employed a new
technique combining Golgi staining and immmunohistochemistry to perform 3D reconstruction of tertiary dendrites,
which can be analyzed for differences in spine types and the colocalization of synaptic markers within these spines.
In CA1, stress increased the densities of long-thin and mushroom spines and the colocalization of GluA2/PSD-95
within these spines. Conversely, in CA3, stress decreased the densities of filopodia and stubby spines, with a
concomitant reduction in the colocalization of GluA2/PSD-95 within these spines. In the outer molecular layer (OML)
of the dentate gyrus (DG), stress increased both stubby and long-thin spines, together with greater GluA2/PSD-95
colocalization. These data reflect the rapid effects of stress on inducing morphological changes within specific
hippocampal subfields, highlighting a potential mechanism by which stress can modulate memory consolidation and
retrieval.
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Introduction

The ability of stress paradoxically either to enhance or impair
memory consolidation and retrieval is a well-documented
phenomenon [1]. In particular, the hippocampus, an area
widely known for its role in learning and memory processing, is
vulnerable to stress-induced neuroendocrine responses
affecting structure and function [2]. The degree to which the
hippocampus is affected by stress depends upon the timing
and type of stressor [1,3]. The effects of stress in rodent
models are contingent on various parameters, including
stressor duration and intensity, ranging from mild to severe [4].
Typically mild stressors induce enhanced performance for

spatial and fear conditioning tasks [5], while severe stressors
produce impairments in memory function irrespective of
whether the stress is acute or chronic [6]. These effects are
associated in part with changes in hippocampal neuronal
structure and spine density. Chronic and/or severe stressors
induce rapid changes in spine density in CA1 [7] while
promoting dendritic retraction in CA3 [8]. Stress-induced spine
changes in CA3 coincide with deficits in hippocampal function
involving radial arm maze, Y-maze, and water maze
performance [9–11]. The mechanisms by which stress induces
these changes in structure and function of the hippocampus
are largely unknown.
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In the adult brain, axons and dendrites remain relatively
stable, while dendritic spines appear to be the primary site of
structural plasticity [12]. Spines form the post-synaptic
component of excitatory synapses and are capable of rapid
development, expansion, contraction and elimination [13–15].
Typically, spines are characterized by their morphology, based
on a dynamic continuum. The relationship between the
diameter of the spine head and length of the neck provides an
indication of spine development. Spines develop from filopodia,
characterized by thin, long dendritic protrusions, lacking a head
or post-synaptic density. Stubby spines usually show major
hallmarks of synapses, including post-synaptic densities, but
lack necks. In contrast, long-thin and mushroom spines have
distinct necks and wider heads [16]. Large spines generally
persist for weeks to months and form strong synapses. In
contrast, small spines are generally transient, forming weaker
synapses [13,15,17]. Based on these properties, mushroom-
type spines have been hypothesized to represent physical
substrates of long-term memories, i.e., memory spines, while
small or stubby spines represent the capacity for adaptive,
experience-dependent rewiring of neuronal circuits, i.e.,
learning spines [17,18].

Recent findings have also identified a potential mechanism
for clustering of synaptic markers known to play a role in the
development of excitatory synapses [19]. These protein
clusters involve protein kinase M zeta (PKMζ) and the α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
(AMPAR) subunit GluA2, together with the post-synaptic
density protein 95 (PSD-95). PKMζ is a persistently active
kinase that is necessary for maintaining the late-phase of long-
term potentiation (LTP) [20,21] and increasing EPSCs by
selectively upregulating the AMPAR insertion [22,23]. PKMζ
activity is important for various forms of long-term memory
involving spatial appetitive and avoidance memories,
conditioned reflex memory, and taste avoidance memory
[24–27]. Recent studies have confirmed that the insertion of
GluA2 subunits into the synapse is a key function of PKMζ
activity necessary for long-term memory maintenance [23,28].
In cultured cells, a chemical LTP paradigm increased clustering
of PKMζ/PSD-95 while PKMζ overexpression increased spine
colocalization of GluA2/PSD-95 [19]. Similarly, PKMζ
overexpression has also been shown to increase mature spine
levels without affecting overall spine density [29].

Though new studies are beginning to elucidate the
mechanisms and functionality of synaptic protein clusters in
memory, it remains unclear how these clusters of colocalizing
proteins are impacted by stress, a common and dynamic
modulator of hippocampal function. Furthermore, the functional
aspects of these changes are largely unknown. Thus, we
address the following questions: How are clusters of key
synaptic markers affected by an acute physiological stress?
How are dendritic spines affected by this stress across
hippocampus subfields? Finally, how are these synaptic protein
clusters participating in stress-induced changes in spine
morphology?

Materials and Methods

Subjects / Stress Treatment
Young adult (9-15 weeks) male Sprague-Dawley rats

(Charles River; Boston, MA) were pair-housed in plastic cages
(48 x 27 x 16 cm) containing hardwood bedding. Animal
quarters were maintained at constant temperature (22±1°C)
and relative humidity (40-50%) with a 12h light/dark cycle
(lights on at 8AM). Food (Harlan Teklad; Frederick, MD) and
water were available ad libitum. Rats were subjected to an
acute stressor by being placed on a small, elevated platform
(pedestal = 1.22 m high; platform = 12.7 x 12.7 cm) for 1 hour.
All procedures were performed in accordance with the NIH
Guide for the Care and Use of Laboratory Animals and
approved by the Institutional Animal Care and Use Committee
at Hunter College.

Object Placement Task
Rats received a 5min habituation to the empty open field

(0.91 x 0.91 meters) 30 min prior to the task. They were then
placed into the field with two identical objects. The time spent
exploring each object was recorded. Following the first trial
subjects were returned to their home cages for one hour.
Stressed rats were then placed on the platform for 1h while
naïve controls remained in their home cage. Two hours after
trial 1 and immediately post-stress, all subjects were given trial
2, in which one of the objects (Object 2) was moved to a novel
location (Figure 1A). If the animal spent more time exploring
the object in the novel location, it was considered to have
demonstrated intact memory.

Radial Arm Maze
Procedures are as previously published [26,30]. Briefly, rats

were food-deprived to 85% of their initial body weight. Before
training all rats were habituated to the maze and to the
sweetened oatmeal mash, which served as the food reward.
During training each rat received 10 consecutive trials per day
over a period of 6 days (60 trials total). In each trial the same 4
out of 8 arms had food located at the end of each arm (Figure
1C). The number of arms entered to collect the food reward
was recorded. Each trial had a maximum latency of 180s. A
percent correct score was calculated for every trial and
averaged across trial blocks (5 trials each). Twenty-four hours
after the last training trial, 3 additional trials were given as a
retention test. A subset of the trained rats were given a 1h
platform stress immediately before the retention test to
measure the effects of platform stress on spatial memory
retrieval.

Tissue Collection
All tissue samples were collected immediately following the

1h platform stress or retention test. For experiments in Figures
2-3, subjects were rapidly decapitated, trunk blood was
obtained and brains were removed for hippocampal
dissections. Blood samples were spun at low speed (3,000g for
10min at 4°C) to obtain sera for corticosterone analysis.
Following ether extraction of the sera, corticosterone was
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analyzed by Enzyme-linked immunosorbent assay (ELISA) kit
(Neogen; Lexington, KY). Plates were read in a BioPlex Bead
Array Reader (BioRad; Hercules, CA). Whole hippocampi were
stored at -80°C until processed for fractionation or co-
immunoprecipitation (Co-IP). For experiments in Figures 4, 5,
6, subjects were deeply anesthetized with pentobarbital and
perfused with 4% paraformaldehyde to prepare the tissue for
Golgi-Immunohistochemistry.

Fractionation
Fresh frozen whole hippocampi were homogenized in TEE

buffer containing protease and phosphatase inhibitors and
spun at low speed (3,000g for 5min at 4°C) to remove the
nuclear pellet. Samples were then ultracentrifuged (100,000g
for 30min at 4°C) to separate out the cytosolic fraction in the
supernatant [31]. The remaining pellet was resuspended in
homogenizing buffer containing 0.001% Triton X-100 and
incubated on ice for 1h and then spun in the ultracentrifuge
(100,000g for 1h at 4°C). The pellet from this spin is the
synaptic fraction [32]. Fractions were prepared for

immunoblotting by standardizing total protein concentrations
using a BCA assay (Pierce; Rockford, IL).

Co-Immunoprecipitation
This technique used the Dynabeads Co-Immunoprecipitation

kit as per manufacturer’s instructions (Life Technologies; Grand
Island, NY). Briefly, magnetic epoxy beads were coupled with
antibody overnight, washed, and incubated with whole
hippocampal homogenate for one hour. Eluted samples were
denatured and analyzed by immunoblotting. Relative
differences between the protein pulled down and the protein
that co-immunoprecipitated with it indicate the amount of
interaction in vivo as a function of the experimental
manipulations.

Immunoblotting
Samples were subjected to SDS-PAGE and transferred to

nitrocellulose membranes. The membranes were incubated
overnight at 4°C with primary antibodies selective for: PKMζ

Figure 1.  Spatial memory on the object placement and radial arm maze tasks is impaired after platform stress.  (A)
Schematic diagram of the object placement task experimental design. (B) There were no significant differences in time spent
exploring objects during Trial 1 of the object placement task prior to stress. Controls showed a significant increase in exploration of
the object in the novel location (object 2) while stress subjects failed to make a dissociation between objects (n = 6 control, 7
stress). (C) Schematic diagram of the radial arm maze task experimental design. (D) Rats learned the radial arm maze equivalently
and significantly improved their performance over training days prior to stress (n = 5 control, 5 stress). (E) Stress prior to the
retention test impaired memory retrieval 24h after the last training trial. For all graphs, *p<0.05, ***p<0.001.
doi: 10.1371/journal.pone.0079077.g001
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Figure 2.  Stress increases serum corticosterone and differentially affects synaptic markers for memory in the
hippocampus.  (A) Serum corticosterone increased immediately after 1h elevated platform stress (n = 6 control, 10 stress). (B)
Synaptic PKMζ in hippocampus increased with platform stress while (C) synaptic GluA2 expression decreased after stress (n = 4
control, 8 stress). (D) Representative blots shown. For all graphs, *p<0.05, ***p<0.001.
doi: 10.1371/journal.pone.0079077.g002

Figure 3.  Acute stress increases synaptic clustering of GluA2, PKMζ and PSD-95 in hippocampus.  (A) Co-IP of PKMζ with
PSD-95 significantly increased (n = 6 control, 8 stress), as did (B) Co-IP of PSD-95 with GluA2 (n = 5 control, 8 stress) and (C) Co-
IP of PKMζ with GluA2 (n = 6 control, 6 stress). Overall levels of PSD-95 (D) or GluA2 (E) did not differ between conditions. (F)
Representative immunoblots for IP shown. For all graphs, *p<0.05.
doi: 10.1371/journal.pone.0079077.g003

Acute Stress Promotes Synaptic Marker Clustering

PLOS ONE | www.plosone.org 4 October 2013 | Volume 8 | Issue 10 | e79077



Figure 4.  Stress increases both mature spines and colocalization of GluA2 with PSD-95 in area CA1.  (A-D) Representative
2D reconstruction of dendrites for control (A, C) and stress (B, D) conditions (scale bar = 5mm for A-B; 3mm for C-D). Golgi-Cox
indicated in green, colocalization of synaptic markers in yellow. Red arrowheads indicate long-thin spines, blue arrowheads indicate
mushroom spines. (E) Stress increased long-thin (n = 10 control dendrites, 12 stress) and mushroom (n = 11 control, 12 stress)
spine counts with a concomitant decrease in filopodia (n = 10 control, 11 stress) and no change in stubby spines (n = 11 control, 12
stress). (F-G) No changes in GluA2, PSD-95 or their colocalization were found in either filopodia (n = 10 control, 8 stress) or stubby
spines (n = 12 control, 12 stress). (H) Long-thin spines showed increases in GluA2, PSD-95 and their colocalization (n = 10 control,
10 stress). (I) Mushroom spines showed increases in GluA2, PSD-95 and in their colocalization (n = 11 control, 9 stress). For all
graphs, *p<0.05, **p<0.01, ***p<0.001.
doi: 10.1371/journal.pone.0079077.g004
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Figure 5.  Stress reduces both immature spines and colocalization of GluA2 with PSD-95 in area CA3.  (A-D) Representative
2D reconstruction of dendrites for control (A, C) and stress (B, D) conditions (scale bar = 5mm for A-B; 3mm for C-D). Golgi-Cox
indicated in green, colocalization of synaptic markers in yellow. Yellow arrowheads indicate stubby spines, purple arrowheads
indicate filopodia. (E) Stress decreased filopodia (n = 11 control dendrites, 9 stress) with a concomitant increase in long-thin spines
(n = 11 control, 11 stress). Stubby spines (n = 12 control, 11 stress) also demonstrated a trend towards decreased expression, while
mushroom spines (n = 12 control, 11 stress) showed no change overall. (F) Filopodia showed a decrease in GluA2, PSD-95 and in
their colocalization (n = 9 control, 8 stress). (G) Stubby spines showed a decrease in GluA2 and PSD-95 but no significant change
in their colocalization (n = 9 control, 8 stress). (H) No changes in GluA2, PSD-95 or their colocalization were found in long-thin
spines (n = 11 control, 11 stress). (I) Stress increased GluA2 expression in mushroom spines but had no effect on PSD-95 or
colocalization (n = 12 control, 9 stress). For all graphs, ^p=0.05, *p<0.05.
doi: 10.1371/journal.pone.0079077.g005
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Figure 6.  Stress selectively increases both mature and immature spine types along with colocalization of GluA2 with
PSD-95 in the outer molecular layer of the dentate gyrus.  (A-D) Representative 2D reconstruction of dendrites for control (A, C)
and stress (B, D) conditions (scale bar = 5mm for A-B; 3mm for C-D). Golgi-Cox indicated in green, colocalization of synaptic
markers in yellow. Yellow arrowheads indicate stubby spines, red arrowheads indicate long-thin spines. (E) Stress increased stubby
(n = 11 control dendrites, 11 stress) and long-thin (n = 12 control, 10 stress) spine counts. (F) No changes in GluA2, PSD-95 or their
colocalization were observed in filopodia (n = 11 control, 10 stress). (G) Stubby spines showed increases in GluA2, PSD-95 and
their colocalization (n = 10 control, 10 stress). (H) Long-thin spines showed increases in GluA2, PSD-95 and their colocalization (n =
12 control, 12 stress). (I) No changes were observed in mushroom spines (n = 12 control, 12 stress). For all graphs, *p<0.05,
**p<0.01, ***p<0.001.
doi: 10.1371/journal.pone.0079077.g006
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(1:1000, Santa Cruz Biotechnology; Santa Cruz, CA), GluR2
and PSD-95 (1:1000, EMD Millipore; Billerica, MA). After
incubation with appropriate alkaline-phosphatase conjugated
secondary antibodies, the reaction product was visualized
using BCIP/NBT (KPL; Gaithersburg, MD). GAPDH or α-
Tubulin (1:2000, EMD Millipore; Billerica, MA) was used as a
loading control. The membranes were scanned and band
density measured using ImageJ (NIH; Bethesda, MD).

Golgi-Immunohistochemistry
Following perfusion, brains were post-fixed overnight. Whole

brains were then rinsed with 0.4M Sorensonon’s phosphate
buffer before being placed in Golgi-Cox solution containing 5%
potassium chromate, 5% potassium dichromate and 5%
mercuric chloride for 2d. Samples were moved to fresh Golgi-
Cox solution for 14d before cryoprotection in 30% sucrose
solution for 2-3d. Whole brains were then snap frozen in
isopentane on dry ice and cut serially into 100 µm coronal
sections, containing septal hippocampus. The Golgi-Cox stain
was then developed: slices were washed for 1min in deionized
water, incubated for 30min in 50% NH4OH, incubated for 30min
in fixer solution (Kodak; Rochester, NY), washed for 1min in
deionized water and stored in phosphate buffer at 4°C until
immunostaining. Sections were incubated in 0.05M glycine in
0.2% Triton X-100 in PBS for 30min to quench peroxidase
activity and washed in PBS before being incubated in blocker
containing 5% NGS, 5% BSA and 0.5% Triton X-100 in PBS
overnight at 4°C. Sections were then incubated in primary
antibodies selective for GluR2 and PSD-95 (1:1000 in PBS,
EMD Millipore; Billerica, MA) for 48h at 4°C and washed in
PBS before being incubated in secondary antibodies (1:1000 in
PBS, Life Technologies; Grand Island, NY) for 2h at room
temperature. Sections were washed in PBS, mounted onto
slides and coverslipped with ProLong Gold antifade reagent
(Life Technologies; Grand Island, NY). Fluorescent-labeled
secondary antibodies were matched to laser excitation
wavelengths (488nm, 568nm) to optimize emission spectra.
Furthermore, the metallic deposits in dendritic structures were
reflected by a 514nm laser-line to resolve processes through
laser scanning confocal microscopy. Sections were paired (one
from each condition) and imaged in batches using a Leica SP2
laser scanning confocal microscope (Leica Microsystems;
Buffalo Grove, IL). Images were taken in a 1024x1024 format,
at 12-bits, to achieve 0.146 voxels per micron. Each scan line
was averaged twice. During the resolution of the Golgi-Cox
stain and synaptic markers, minimum gain settings were used.
Confocal images were taken of CA1 tertiary dendrites
projecting into stratum radiatum, CA3 tertiary dendrites, and
tertiary dendrites from the outer molecular layer (OML) of the
dentate gyrus (DG). Z-stacks (4-6 µm; Z-step size 0.041 µm for
CA1; 0.122 µm for CA3 and OML) were acquired using preset
laser power and gain settings. IMARIS 7.5 (Andor Technology;
Belfast, Northern Ireland) was used to reconstruct z-stacks into
3D models for analysis. Models were constructed with
optimized presets as described by Spiga et al. [33]. Additional
presets were used to construct models of synaptic markers,
which were colocalized with respect to dendritic structures.
Using customized settings based on spine parameters as

previously described [34,35], IMARIS Filament Tracer module
was used to detect, quantify, and characterize spine structures
(Table 1). Multiple tertiary dendrites, approximately 15-75 µm,
were analyzed per subject (n = 3 subjects per condition, total
8-12 dendrites per condition). For the colocalization of synaptic
markers for each spine type, masked binary channels (inside
voxels set to 150) were created for the dendritic shaft, filament,
and each spine class. Colocalized voxels in the dendritic shaft
alone were subtracted from the total amount of colocalized
voxels in each filament to determine the number of colocalized
voxels within spines. The number of colocalized voxels for
individual synaptic markers was also determined by
colocalizing the masked channel for each marker with the
masked filament channel of interest.

Statistical Analyses
For experiments in Figure 1, performance on the object

placement task was analyzed using a two-way ANOVA with a
Bonferroni post-hoc. Training on the radial arm maze was
analyzed using a two-way, repeated measures ANOVA.
Performance on the radial arm maze retention test was
analyzed with an unequal variance, two-tailed t-test. For
experiments in Figures 2-3, corticosterone and immunoblotting
data were also analyzed using unequal variance, two-tailed t-
tests. For experiments in Figures 4, 5, 6, we followed the
recommendations of a recent guide to statistical techniques
applicable to repeated-measures data [36]. We accounted for
the biological and statistical non-independence of data
obtained from multiple dendrites within the same subjects by
applying a mixed model in JMP 10.0 software (SAS Institute;
Cary, NC) to avoid pseudoreplication. The Restricted Maximum
Likelihood (REML) method allows for regression modeling of
repeated-measures and requires no assumptions regarding the
distribution of the data. Experimental groups were treated as a
fixed effect while multiple dendrites were treated as a random
effect nested within each subject.

Results

Acute platform stress disrupted spatial memory
retrieval

Previous studies have shown that acute stressors, such as
novelty exposure and footshocks, induce impairments in spatial
memory retrieval [37–39]. Accordingly, we began by evaluating
the behavioral effects of our stress paradigm (1 hour on an

Table 1. Classification of spine morphology using IMARIS
software.

Type Parameters

Long-Thin spines
Mean_width(neck)*2 < length(spine) AND mean_width(neck)
<= max_width(head)

Mushroom spines Mean_width(head) > mean_width(neck)
Stubby spines Length(spine) < 1
Filopodia Mean_width(head) <= mean_width(neck)

doi: 10.1371/journal.pone.0079077.t001
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elevated, unstable platform) on two spatial memory tasks,
object placement and radial arm maze. In the object placement
task, subjects explored two identical objects in an open arena
(Figure 1A). After a 2h delay, subjects were placed back in the
arena for trial 2, in which one of the objects was moved to a
novel location. Typically, rats spend more time exploring the
object in the new location, demonstrating an intact memory of
the original positioning of the objects. Indeed, control animals
showed a significant increase in exploration of the object in the
novel location (object 2). Stressed subjects, given 1h platform
stress immediately before retention testing, failed to make a
distinction between objects (Figure 1B; Object F(1,22) = 90.62,
***p = 0.0001; no stress effect; Interaction F(1,22) = 123.36, ***p
= 0.0001; Bonferroni post-hoc: Control Obj. 1 vs Obj. 2 ***p =
0.001, Stress Obj. 1 vs Obj. 2 not significant; n = 6 control, 7
stress). These data suggest that 1h platform stress significantly
disrupts performance on a spatial memory task.

However, because the object placement task involves only
two trials over the course of a few hours, it is difficult to
definitively determine whether the stressor disrupted memory
retrieval or affected consolidation. Therefore, we examined the
effects of platform stress on memory retrieval using the radial
arm maze task, which allows for consolidation to take place
over a period of days prior to retrieval (Figure 1C). Rats were
given 10 trials per day for 6 consecutive days, as previously
reported [26,30]. Prior to stress, both groups of rats learned
equivalently and significantly improved performance over
training days (Figure 1D; Time F(11,88) = 26.28, ***p = 0.0001; no
stress effect; n = 5 control, 5 stress). Twenty-four hours after
the last training trial, rats in the stress condition were given 1h
platform stress immediately before the retention test, resulting
in impaired retrieval (Figure 1E; t (6) = 2.658, *p = 0.038).
Specifically, stressed subjects made more reference memory
errors compared to controls (mean ± SEM: control = 0.667 ±
0.236, stress = 1.667 ± 0.279; t (6) = 2.739, *p = 0.029; figure
not shown) but showed no deficit in working memory (mean ±
SEM: control = 0.467 ± 0.309, stress = 0.600 ± 0.194; t (6) =
0.365, p = 0.728; figure not shown). Together with the results of
the object placement task, these data indicate that our acute
stress paradigm can significantly alter memory retrieval for
either a short- or long-term spatial memory.

Platform stress increased sera corticosterone and
modulated synaptic expression of long-term memory
markers

Next, we examined the physiological and neurochemical
changes induced by the platform stress paradigm. To confirm
the effects of platform stress on hypothalamic-pituitary axis
(HPA) activation and to determine its impact on the expression
of synaptic markers within the hippocampus, groups of rats
were given either 1h exposure on the elevated platform or 1h in
their home cage prior to tissue collection. Figure 2A shows that
serum corticosterone from trunk blood increased after 1h on
the elevated platform (t (13) = 5.510, ***p = 0.001; n = 6 control,
10 stress), indicating a robust physiological stress response.
Additionally, we analyzed select synaptic markers associated
with long-term memory. We focused on PKMζ, a brain-specific
molecule known to play a key role in long-term memory

maintenance for object placement and radial arm maze [26,40].
We also examined GluA2 expression within the synapse, which
is particularly important for maintaining object placement
memory [28]. Specifically, the dynamic interaction between
PKMζ and GluA2 results in the stabilization of the subunit in the
synapse. Loss of this stabilization by PKMζ inhibition leads to
internalization of the receptor and memory impairment [28]. In
the hippocampus, platform stress significantly increased
synaptic PKMζ expression (t (7) = 3.366, *p = 0.012; n = 4
control, 8 stress) with a concomitant decrease in GluA2 (t (5) =
3.330, *p = 0.021; n = 4 control, 8 stress) compared to controls
(Figure 2B-C). These data suggest that increasing synaptic
PKMζ without increasing GluA2 is an expression pattern
associated with stress-induced memory impairment. We
hypothesize that increases in PKMζ as a consequence of
stress may be altering spine densities, creating a spine density
expression pattern that interferes with memory and LTP
function. Therefore, to test whether stress promotes synaptic
dysfunction, we looked for alterations in synaptic clustering.

Platform stress increased synaptic clustering
GluA2, PKMζ and PSD-95 are known to create synaptic

clusters in culture, which are significantly increased by PKMζ
overexpression [19]. In culture, corticosterone also increases
GluA2 mobilization [41]. Given that we found stress increased
synaptic PKMζ (Figure 2B) and serum corticosterone (Figure
2A), we asked whether platform stress could then affect the
expression of GluA2, PKMζ and PSD-95 synaptic clusters.
Figure 3 shows significant increases in Co-IP of PKMζ with
PSD-95 (Figure 3A; t (9) = 2.462, *p = 0.036; n = 6 control, 8
stress), GluA2 with PSD-95 (Figure 3B; t (8) = 4.590, **p =
0.002; n = 5 control, 8 stress), and PKMζ with GluA2 (Figure
3C; t (5) = 2.645, *p = 0.046; n = 6 control, 6 stress). No
significant differences between overall levels were found
between conditions for IP of PSD-95 (Figure 3D) or IP of GluA2
(Figure 3E).

Platform stress increased mature spines in CA1
The expression of spine number and type associated with

various stress conditions can be indicative of short- and long-
term effects of stress. Rapid stress effects on spines are
associated with changes in spine density [12,18,42] while
chronic effects of stress are associated with changes in
dendritic morphology [43–45]. The mechanisms driving these
modifications in spine morphology are known to involve a
range of neurotransmitters, growth factors and hormones
[46,47]. However, the underlying expression pattern of various
synaptic markers within these changing spines in vivo is largely
unknown and difficult to measure, except with gold-
impregnated electron microscopy. Traditional Golgi-Cox
staining, while useful for determining changes in spine density,
has limited application in identifying spine shape. To
circumvent these limitations, we utilized a new technique that
allows for simultaneous immunohistochemistry and Golgi-Cox
staining [33]. Recently, imaging of Golgi staining by confocal
microscopy has been shown to provide enhanced 3D
resolution of neuronal dendrites and spines beyond the visual
resolution of traditional Golgi using brightfield microscopy alone
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[48]. Additional analysis of these images by customizable
algorithms in IMARIS software allows for the reliable
quantification of specific spine shapes [35]. The combination of
Golgi-Cox staining with immunohistochemistry further
enhances the spine analysis with the colocalization of various
synaptic markers within specific spine types and allows for the
identification of these changes within discrete hippocampal
sub-regions. Within the CA1 subfield (Figure 4E), stress
significantly increased long-thin (F(1,20) = 6.774, *p = 0.017; n =
10 control dendrites, 12 stress) and mushroom (F(1,21) = 8.567,
**p = 0.008; n = 11 control, 12 stress) spine types. Stress
produced a corresponding decrease in filopodia (F(1,19) = 5.854,
*p = 0.026; n = 10 control, 11 stress) and no change in stubby
spines (F(1,21) = 0.191, p = 0.666; n = 11 control, 12 stress). In
long-thin spines (Figure 4H), there were increases in GluA2
(F(1,18) = 9.006,**p = 0.008), PSD-95 (F(1,18) = 10.252,**p =
0.005) and their colocalization (F(1,18) = 10.280,**p = 0.005; n =
10 control, 10 stress). A similar effect was observed in
mushroom spines (Figure 4I) with increases in GluA2 (F(1,18) =
11.127, **p = 0.004), PSD-95 (F(1,18) = 15.965, ***p = 0.0008)
and in their colocalization (F(1,18) = 8.266, *p = 0.010; n = 11
control, 9 stress). Stress did not alter the expression of GluA2,
PSD-95 or their colocalization in filopodia and stubby spines
(Figure 4F-G). Total spines counted were not significantly
different between control and stress conditions (Table 2).

Platform stress decreased immature spines in CA3
In contrast to what we observed in CA1, in CA3 (Figure 5E)

stress had no effect on mushroom spine expression (F(1,21) =
0.512, p = 0.482; n = 12 control dendrites, 11 stress), but
decreased filopodia significantly (F(1,18) = 6.911, *p = 0.017; n =
11 control, 9 stress). Stubby spines also demonstrated a trend
towards decreased expression (F(1,21) = 4.322, p = 0.050; n =
12 control, 11 stress). In addition, long-thin spines did
significantly increase in this subfield (F(1,20) = 4.388, *p = 0.049;
n = 11 control, 11 stress). Filopodia (Figure 5F) showed a
decrease in GluA2 (F(1,15) = 5.332, *p = 0.036), PSD-95 (F(1,15) =
6.340, *p = 0.024) and in their colocalization (F(1,15) = 5.002, *p
= 0.041; n = 9 control, 8 stress). Within stubby spines (Figure
5G), there were decreases in GluA2 (F(1,15) = 5.836, *p = 0.029)
and PSD-95 (F(1,15) = 6.436, *p = 0.023) expression but no
significant change in their colocalization (F(1,15) = 4.342, p =
0.055; n = 9 control, 8 stress). No changes in GluA2, PSD-95

Table 2. Total spine counts across hippocampal subfields.

 CA1 CA3 Dentate gyrus

 Control Stress Control Stress Control Stress
Total spines 531 529 749 447 920 1329

Avg. spines per dendrite 44.3 44.1 62.4 39.9 76.7 110.8

SD 14.1 9.3 23.8 20.8 11.0 18.4

p 0.987 0.285 0.064

Avg. dendrite length 32.8 30.3 53.6 43.1 38.8 44.7

SD 4.9 2.0 7.6 7.3 9.1 10.7

p 0.489 0.160 0.505

doi: 10.1371/journal.pone.0079077.t002

or their colocalization were found in long-thin spines (Figure
5H). Stress did increase the expression of GluA2 in mushroom
spines (F(1,19) = 7.710, *p = 0.012; n = 12 control, 9 stress) but
did not change the expression of PSD-95 or their colocalization
(Figure 5I). Total spines counted were not significantly different
between control and stress conditions (Table 2).

Platform stress increased both immature and mature
spines in DG-OML

In an effort to further understand the changing spine density
and synaptic marker expression induced in various
hippocampal subfields after stress, we also focused on the
outer molecular layer of the dentate gyrus. The OML is directly
activated by discrete projections from the entorhinal cortex
(EC), which itself is activated by terminals fibers originating
from hippocampal CA1. The superficial layers of EC project
almost exclusively to the OML [49], connecting activity in CA1
to OML through EC [50]. Following acute stress, spine counts
(Figure 6E) for neither filopodia (F(1,22) = 0.069, p = 0.796; n =
12 control dendrites, 12 stress) nor mushroom spines (F(1,18) =
0.119, p = 0.734; n = 10 control, 10 stress) were affected by
stress. However, we found that stress significantly increased
stubby (F(1,20) = 5.192, *p = 0.037; n = 11 control, 11 stress) and
long-thin spines (F(1,20) = 6.956, *p = 0.016; n = 12 control, 10
stress). The pattern of changing spine morphology for stubby
and long-thin spines also demonstrated significant changes in
the expression of synaptic markers. Stubby spines (Figure 6G)
showed increases in GluA2 (F(1,18) = 12.037, **p = 0.003),
PSD-95 (F(1,18) = 10.142, **p = 0.005) and their colocalization
(F(1,18) = 6.702, *p = 0.019; n = 10 control, 10 stress). Similarly,
long-thin spines (Figure 6H) also showed increases in GluA2
(F(1,22) = 12.092, **p = 0.002), PSD-95 (F(1,22) = 23.469, ***p =
0.0001) and their colocalization (F(1,22) = 8.027, *p = 0.010; n =
12 control, 12 stress). No changes were observed in synaptic
marker expression for filopodia (Figure 6F) or mushroom
spines (Figure 6I). Total spines counted were not significantly
different between control and stress conditions (Table 2).

Discussion

In this report, we aimed to examine the effects of an acute,
physiological stressor on memory function and markers of
synaptic plasticity. We began by characterizing the effects of 1-
hour platform stress on memory retrieval and found that
platform stress produced significant deficits in memory retrieval
for both a short-term memory involving object placement and
also a long-term memory involving radial arm maze (Figure 1).
The stress-induced memory deficits on the RAM were
restricted to reference memory, without any deficits in short-
term working memory, indicating that platform stress selectively
undermines long-term memory retrieval. Interestingly, we show
that stress also produced changes in the individual expression
of markers from the PSD-enriched fraction of the hippocampus,
with a significant increase in synaptic PKMζ and a concomitant
decrease in synaptic GluA2 (Figure 2B-C). At the same time,
total levels of GluA2 precipitated from hippocampal
homogenate did not change (Figure 3E). Taken together, these
results suggest that stress induces GluA2 to move out of the
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synapse, with the subunit possibly being sequestered in extra-
synaptic membrane or taken up by endocytosis. Previous
studies examining AMPA receptor mobility in culture have
shown that the stress hormone corticosterone enhances
surface mobility of GluA2 without affecting total GluA2 levels
[41,51]. Additional work implicating internalization of the
receptor (reducing synaptic GluA2) with memory impairment
[22,23,28,52] is consistent with our behavioral results (Figure
1).

While stress resulted in divergent effects on PKMζ and
GluA2 as individual synaptic markers, their co-
immunoprecipitation together with PSD-95 increased in the
total homogenate (Figure 3). In conjuction with increased
synaptic PKMζ levels (Figure 2), these results are consistent
with what we know of PKMζ colocalization with both GluA2 and
PSD-95. In separate experiments, overexpression of PKMζ in
cultured neurons has been shown to increase colocalization of
GluA2/PSD-95 and to promote spine maturation [19,29].
Additionally, induction of chemical LTP in culture has been
shown to increase clustering of PKMζ and PSD-95 [19].

It is important to note that our results in Figures 2, 3 illustrate
the effects of stress on the expression and interaction of these
markers in whole hippocampi. As stress has been shown to
affect hippocampal function and plasticity differently depending
on sub-region [2–4,7], we examined the expression and
localization of GluA2 and PSD-95 in different spine types within
particular hippocampus sub-fields using combined Golgi-IHC.
The Golgi-IHC data revealed discrete effects observed in areas
CA1, CA3 and DG-OML. These differences are consistent with
glucocorticoid receptor (GR) and mineralocorticoid receptor
(MR) expression in these areas [3,4], which may play a
significant role in each area’s vulnerability to stress and/or their
role in creating a new, stress-induced memory. We
hypothesize that mature spines are produced with stress in
CA1 since this sub-region has a high expression of the low
affinity GR [53], which upon activation increase protein
synthesis and AMPAR insertion via exocytosis [41], thus,
explaining increased localization of GluA2 in CA1 spines
(Figure 4H-I). Conversely, in CA3 where MR receptors are
highly expressed [53], opposite effects can be observed. MR
activation by corticosterone induces the movement of GluA2
subunits away from the synapse (lateral diffusion) through non-
genomic functions, which may mediate the decrease in GluA2
within spines in CA3 (Figure 5F-G). Within the dentate gyrus,
the OML receives spatial information from entorhinal cortex
(EC), which itself is activated by inputs from CA1 [54,55]. This
suggests that the OML can reflect activity similar to that
observed in CA1 via EC and may also be encoding the stress
experience as a new memory with increases in stubby and
long-thin spine formation. This effect is consistent with a report
showing increased PKMζ/GluA2 colocalization within spines in
the dentate gyrus of monkeys with better scores on the
delayed-nonmatch to sample test [52].

Spines demonstrate dynamic changes in morphology,
forming from filopodia that do not contain post-synaptic
densities and have few AMPARs [18]. In particular, GluA2-
containing AMPARs are necessary for spine formation and
stabilization [56]. In addition, spines undergo continuous

turnover and replacement, an activity that can be altered under
various conditions including sensory input during development
[57,58], memory [59], and stress [46,47]. The increases in
GluA2, PSD-95 and their colocalization within mature spines in
CA1 are consistent with the understanding that synaptic
maturation is associated with increased stability and resistance
to disassembly [60]. Changes in spine morphology provide a
predictable measure for shifts in stability and synaptic strength;
large spines form stronger, longer lasting synapses while small
spines are generally transient, forming weaker synapses
[13,15,17]. This current understanding fits with our
interpretation of the changes that are occurring after stress. We
observe that within CA1 the changing spine morphology moves
towards an increase in mature spines, in particular mushroom
spines, which have been hypothesized to represent physical
substrates of long-term memories [17]. Inherent to spine
stabilization is PSD-95, an abundant structural protein
fundamental to the organization of the spine [61,62]. In most
cases, we found that increases in PSD-95 were also matched
by increases in GluA2 and their colocalization, which is
consistent with what is observed during LTP [63,64]. We infer
that these synaptic changes highlight the interaction of GluA2,
PKMζ and PSD-95 in spine stabilization. Further experiments
are needed to determine the exact mechanisms by which
stress activates pathways important to AMPAR subunit
trafficking and spine stabilization.

The dendritic changes reported here may in fact underlie
both deficits in the retrieval of previously acquired memories
and the formation of new memories associated with the stress
experience (Figure 1). GR activation immediately after training
promotes memory consolidation [65] but immediately before
retention testing impairs memory retrieval [38,66]. The shift to
more mature spines in CA1 concomitant with an increase in
GluA2 and PSD-95 colocalization is consistent with
consolidation of a new stress memory, as GluA2 expression
also increases within mushroom spines after fear conditioning
[67]. A reduction of immature spines in CA3 is consistent with
the elimination of spines after stress [68] and diminished
synaptic GluA2 is associated with non-genomic activation of
MR [41]. The increase in synaptic PKMζ as a consequence of
platform stress suggests that PKMζ may be actively creating a
stress memory that is undermining or in conflict with previously
encoded memories. Thus, differential shifts in spine
morphology between hippocampal subfields may reflect
mechanisms involved in enhancing and/or impairing different
types of memory processing in parallel. CA3 appears important
for the retrieval of short-term spatial and/or novel information
[69–71]. When long-term retention is required, the involvement
of CA3 is diminished and CA1 begins to play a larger role [72].
These reports suggest that the 1h platform experience may be
sufficiently long to activate the long-term memory encoding
mechanisms. It is interesting to speculate that these rapid
changes in spine morphology and clustering of synaptic
markers may reflect long-term memory consolidation of a
stress memory. Future studies are needed to dissect out the
exact timing and contributions of these shifts across
hippocampal subfields and along the dorsoventral axis of the
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hippocamapus, which also plays a role in stress-induced
memory impairments [73].

While much is known about the effects of stress on learning,
much less is known about the effects of stress on memory
maintenance and/or retrieval and their associated synaptic
architecture. Our stress paradigm generated impairments in
retrieval whether the memory was encoded only a few hours
before or over a period of many days. These results may hint at
the vulnerability of even life-long memories to stress during
retrieval, at which point, they can be much more malleable [74].
The stress response, which re-sculpts the pattern of spines,
may make memories vulnerable to disruption, in much the
same way as re-consolidation [74]. Thus, the stress effects
described here, involving changing spine morphology and
synaptic clustering, may reflect basic mechanisms that are
compromised in diseases of memory. In Alzheimer’s disease,
for example, neurofibrillary tangles within the hippocampus,
medial temporal cortex, and amygdala show high expression of
PKMζ and GluA2 aggregates [75].

These data are the first demonstration of a potential
molecular mechanism underlying stress-induced memory
impairment involving changing spine types across various
hippocampus subfields. The stress-induced changes in the
expression and clustering of GluA2, PKMζ and PSD-95 can be
seen immediately after the 1h stressor, which is the same time

point at which the retention tests in Figure 1 were administered.
Though these markers are typically associated with memory
maintenance, it is possible that under stress conditions, their
clustering may impair maintenance and/or retrieval processes
for previously acquired memories. Here we use a single
stressor, which equally impairs a recently acquired memory or
a memory acquired over several days, to highlight the
sensitivity of memory to stress and the need to further
investigate overlapping mechanisms between the two.
Examining memory maintenance and/or retrieval processes in
a variety of contexts has wide implications for understanding
differences in short- and long-term memory mechanisms and
also dysfunction of memory involving PKMζ and GluA2.
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