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Abstract: Cervical cancer is one of the most dangerous diseases that affect women worldwide. The
diagnosis of cervical cancer is challenging, costly, and time-consuming. Existing literature has focused
on traditional machine learning techniques and deep learning to identify and predict cervical cancer.
This research proposes an integrated system of Genetic Algorithm (GA), Multilayer Perceptron
(MLP), and Principal Component Analysis (PCA) that accurately predicts cervical cancer. GA is
used to optimize the MLP hyperparameters, and the MLPs act as simulators within the GA to
provide the prediction accuracy of the solutions. The proposed method uses PCA to transform the
available factors; the transformed features are subsequently used as inputs to the MLP for model
training. To contrast with the PCA method, different subsets of the original factors are selected. The
performance of the integrated system of PCA–GA–MLP is compared with nine different classification
algorithms. The results indicate that the proposed method outperforms the studied classification
algorithms. The PCA–GA–MLP model achieves the best accuracy in diagnosing Hinselmann, Biopsy,
and Cytology when compared to existing approaches in the literature that were implemented on the
same dataset. This study introduces a robust tool that allows medical teams to predict cervical cancer
in its early stage.

Keywords: cervical cancer; genetic algorithm; machine learning; multilayer perceptron; principal
component analysis

1. Introduction

Cancer is a leading cause of death across the world. In 2020, around 604,000 women
were diagnosed with cervical cancer and 342,000 cervical cancer deaths were recorded [1].
Cervical cancer is one of the most dangerous diseases for women, and approximately 80%
of those diagnosed were aged 15 to 45.

Cervical cancer is caused by mutations in genes that regulate cell division and pro-
liferation. Two associated symptoms of early-stage cervical cancer are pelvic discomfort
and vaginal bleeding. Because cervical cancer cannot be diagnosed in its early stages, these
symptoms are the only early warning signs. If gone unnoticed, cervical cancer can spread to
other body regions, such as the lungs and abdomen. Cervical cancer can be identified with
diffusion-weighted and Magnetic Resonance Imaging in its later stages (diffusion-weighted
imaging). Symptoms, which include tiredness, back discomfort, leg pain, weight loss, and
potential bone fractures, often become more severe as the disease progresses [1].

Cervical cancer risk is raised by early pregnancy, contraception usage, numerous
pregnancies, cigarette use, and Human Papillomavirus (HPV) [2]. HPV, one of the most
critical risk factors for cervical cancer, is a DNA virus that spreads mainly through sexual
interaction. HPV is identified in cervical cancer patients 99.7% of the time and consists of
more than 100 distinct factors [3].

Cervical cancer is detected using four specific tests: Hinselmann, Schiller, Cytology,
and Biopsy (HSCB). Hinselmann is a member of the “colposcopy with acetic acid” group.

Healthcare 2022, 10, 2002. https://doi.org/10.3390/healthcare10102002 https://www.mdpi.com/journal/healthcare

https://doi.org/10.3390/healthcare10102002
https://doi.org/10.3390/healthcare10102002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com
https://orcid.org/0000-0001-8710-2306
https://doi.org/10.3390/healthcare10102002
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com/article/10.3390/healthcare10102002?type=check_update&version=2


Healthcare 2022, 10, 2002 2 of 23

Schiller, Cytology, and Biopsy, on the other hand, use Lugol iodine [4]. Diagnosing cervical
cancer is expensive and time-consuming. Unfortunately, low-income nations face signifi-
cant challenges in raising cancer awareness and screening. In addition, a lack of resources,
such as medical expertise, equipment, and specialist doctors, contributes to the spread of
cervical cancer in developing nations. As a result, patient fatality rates are rising [5].

In recent decades, Machine Learning (ML) techniques have been used to identify and
predict cervical cancer. Among the most widely used approaches are Neural Network
(NN), Ensemble Learning, Support Vector Machine (SVM), K-Nearest Neighbor (KNN),
Texture Analysis, and Deep Learning [6–17].

One of the most effective techniques for predicting cervical cancer is NN. There are
several types of NNs, such as Multilayer Perceptron (MLP), Convolution Neural Network
(CNN), Probabilistic Neural Network (PNN), and Recurrent Neural Network (RNN) [18,19].
Many researchers over the last decade have endorsed the use of MLP when predicting
cervical cancer because it provides a decent classification accuracy [19,20].

The MLP is a feedforward NN that learns via the Backpropagation method. It has an
input layer of neurons that function as receivers, and it contains one or more hidden layers
of neurons that compute data and iterate. Finally, an output layer predicts the result, as
summarized in Figure 1.

Figure 1. MLP architecture.

Genetic Algorithm (GA) is a stochastic population searching technique that examines
large search areas efficiently. GA has been used to optimize a range of MLP parameters,
including momentum, size of the neurons, stopping criteria, solver(s), and activation
function(s) [19,21].

This paper is organized as follows: Section 2 discusses related literature on cervical
cancer prediction. Section 3 summarizes the contribution of this research. Section 4
describes the research methods, data preprocessing, dataset for the study, and procedures
used to combine GA with MLP. Section 5 discusses the results of the proposed method
and compares the proposed method with other classification approaches. Finally, Section 6
provides the conclusions and future research directions.

2. Related Literature

This section discusses and criticizes relevant current ML approaches for predicting
cervical cancer. Most of the studies that have been conducted to predict cervical cancer
used the cervical cancer dataset from the University of California Irvine (UCI) Machine
Learning Repository.

Wu and Zhou [4] implemented three different methods to diagnose four target vari-
ables of cervical cancer: HSCB. The dataset contained 32 factors that potentially cause
cervical cancer. The authors used the Random Oversampling method to balance the dataset
of 668 patients. They combined SVM with Recursive Feature Elimination (RFE), combined
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SVM with Principal Component Analysis (PCA), and employed the traditional SVM, and
they compared these method’s characterization of cervical cancer. The classification results
show that SVM–RFE and SVM–PCA provide more accurate results when selecting only
eight factors instead of using the traditional SVM techniques [4,22].

Abdoh et al. [22] predicted cervical cancer by using RFE and PCA to eliminate several
features. The researchers used the Synthetic Minority Oversampling Technique (SMOTE)
to balance the cervical cancer dataset from UCI. Random Forest (RF) was used to diagnose
cervical cancer and was compared with RF–PCA and RF–RFE. Their results show that
integrating SMOTE with RF classifiers enhances classification accuracy by about 4% when
compared with the work conducted by Wu and Zhou [4].

Deng et al. [23] applied RF, SVM, and eXtreme Gradient Boosting (XGBoost) to di-
agnose four target variables of cervical cancer: HSCB. Similar to Abdoh et al. [22], the
authors used SMOTE to balance the dataset. However, their research did not use feature
elimination techniques. Their results show that RF and XGBoost performed better than
SVM in terms of classification accuracy. The results of Deng et al. [23] are similar to those
reported by Abdoh et al. [22].

Adem et al. [15] used Deep Learning to predict the same dataset of cervical cancer by
employing Softmax classification with a stacked autoencoder. The stacked autoencoder
was used as a dimensional reduction tool, while the softmax layer was used to predict
HSCB of cervical cancer. The authors validated their approach with six ML methods: RF,
Decision Tree (DT), MLP, SVM, Rotation Forest models, and KNN [15]. Their proposed
approach for diagnosing the four target variables (HSCB) of cervical cancer achieved better
performance than the method of Wu and Zhou (2017), with close to 4% improvement in
classification accuracy.

Alsmariy et al. [24] used RF, Logistic Regression (LR), and DT to diagnose HSCB of
cervical cancer. Similar to Deng et al. [23] and Abdoh et al. [22], the authors applied SMOTE
to balance the dataset. They used PCA as a feature reduction approach. They implemented
a voting technique that enables several algorithms to vote to select a winner. Their results
perform better than those of Abdoh et al. [22], Deng et al. [23], and Wu and Zhou [4].

Wahid and Al-Mazini [5] adopted a meta-heuristic algorithm, Ant Colony Optimiza-
tion (ACO) with the Ant-Miner data classification rule, to select the most critical risk factors
to diagnose HSCB of cervical cancer. The authors claimed that their method was used for
the first time in the literature for the UCI cervical cancer dataset. Their classification results
perform better than those of Wu and Zhou [4] but are inferior to the reported results of
Alsmariy et al. [24], Abdoh et al. [22], and Deng et al. [23].

Other researchers such as Devi et al. [10] and Fernandes et al. [14] used image process-
ing and Deep Learning to diagnose and predict cervical cancer with a different dataset from
the UCI. Devi et al. [10] classified cervical cancer into normal and abnormal cells using NN
and Learning Vector Quantification (LVQ). Digital photographs of patients were used as
inputs. To diagnose cervical cancer, LVQ was used to obtain the coefficient mean value of
the extracted photographs. Their model achieves a 90% classification accuracy [10].

In contrast, deep learning algorithms were used by Fernandes et al. [14] to predict
cervical cancer. Their approach is founded on a loss function that permits dimensional
reduction to identify the most important classification variables. They concentrate on a
specific form of cervical cancer called biopsy. Their algorithm achieves an Area Under the
Curve (AUC) of 0.6875 [14].

There were a few studies that combined GA with MLP to diagnose cervical cancer.
In one study, GA was used to determine the optimal initial weights and bias of MLP to
classify cervical cancer [25]. The study was conducted on a dataset with 401 patients,
of which 51.2% had cervical cancer, and included 16 risk factors. The accuracy of their
proposed model improved from 94.51% to 96.26% when combining GA with MLP. Similarly,
another study adopted GA to optimize the MLP’s initial weights and threshold to identify
Nanoparticle (NP) sensors in the early diagnosis of cervical cancer cells. Their study
compared the performance of the GA and MLP combination with a standalone MLP. Their
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results indicated that combining GA with MLP achieved statistically better root mean
Square (RMS) and Mean Absolute Error (MAE) than MLP alone [26].

In summary, most of the research used classical machine learning classification al-
gorithms and deep learning approaches to diagnose cervical cancer. The literature on
diagnosing HSCB cited above is also summarized in Section 5 where it compared with
the proposed hybrid system of PCA–GA–MLP. There were two studies that used GA to
optimize MLP’s initial weights, threshold, or bias to diagnose cervical cancer. However,
none of the research optimized the parameters of MLP, which include the size of each
hidden layer, solvers, and activation functions, to diagnose cervical cancer. Further, a
hybrid model of PCA–GA–MLP for the diagnosis of cervical cancer has not been proposed
in the literature.

3. Contribution

This study is the first that integrates PCA, GA, and MLP altogether in one framework
that accurately predicts cervical cancer using the benchmark dataset from UCI. The pro-
posed method transforms all available features using the PCA method. The transformed
features are utilized in model constructions of the MLP, which is within a hybrid system
of GA and MLP. GA is used to optimize the MLP parameters, whereas the MLP acts as a
simulator within the GA. The hybrid system iteratively evolves the optimal design of MLP
that provides the best cervical cancer classification accuracy. The developed framework
introduces a robust tool that allows medical teams to predict cervical cancer as a preventive
strategy that reduces cervical cancer rates and costs while improving the quality of care for
cancer patients.

4. Research Methodology

This research has four main steps, as summarized in Figure 2. Step 1 involves prepro-
cessing and balancing the dataset. Step 2 describes the application of the feature selection
process. In this research, four feature selection approaches separately diagnose each target
variable/test of cervical cancer: using the transformed features from PCA; using all original
features; using the top 18 features based on RF importance; and using the top 10 features
based on RF importance. Step 3 explains how GA is used as an optimization tool to deter-
mine the optimal parameters of the MLP to predict cervical cancer. This process is applied
to the four target variables (HSCB) of cervical cancer separately. Four feature selection
approaches are implemented for each target variable, which results in 16 different scenarios
(i.e., four scenarios for each cervical cancer variable: PCA–GA–MLP, GA–MLP using all
30 factors, GA–MLP using the top 18 factors, and GA–MLP using the top 10 factors). Step
4 determines the performance measures for each scenario using a 5-fold cross-validation
and compares each scenario’s results with nine other classification algorithms. Five-fold
cross-validation is used because it allows all available data instances to be used for both
model development and model validation [27]. The nine algorithms are as follows: RF,
Linear Discriminant Analysis (LDA), SVM, LR, Gaussian Naïve Bayes (NB), KNN, DT,
Adaptive Boosting (AdaBoost), and Centroid-Displacement-based KNN (CD-KNN) [28].
Therefore, a total of 160 different experiments are implemented.

Over the past decade, researchers have advocated the use of MLP in cervical cancer pre-
diction due to its respectable classification accuracy [10,18–20,25,26,29,30]; therefore, MLP
is selected for optimization by GA in this study. In addition, various researchers used SVM,
RF, LR DT, KNN, NB, LDA, and AdaBoost to classify cervical cancer [4,9–11,13,22,23,30–33].
Those algorithms are among the most common classification algorithms in modeling medi-
cal datasets. Therefore, those algorithms are used in this study to validate the proposed
approach, and their results are compared.
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Figure 2. The framework of the proposed approach.

4.1. Dataset Description and Data Preprocessing

UCI published the cervical cancer dataset. The dataset contains 858 patients that
have 32 cervical cancer factors as summarized in Table 1. It has four cervical cancer target
variables: Hinselmann, Schiller, Cytology, and Biopsy. Each cervical cancer target variable
is treated as a separate problem in this research. Therefore, four datasets are prepared to be
used separately: Hinselmann, Schiller, Cytology, and Biopsy.
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Table 1. Risk factors of cervical cancer.

Factor
Number Factor Name Factor

Number Factor Name

1 Age 17 STDs: vulvo-perineal
condylomatosis

2 Number of sexual partners 18 STDs: syphilis

3 First sexual intercourse (age) 19 STDs: pelvic inflammatory disease

4 Number of pregnancies 20 STDs: genital herpes

5 Smokes 21 STDs: molluscum contagiosum

6 Smokes (years) 22 STDs: AIDS

7 Smokes (packs/year) 23 STDs: HIV

8 Hormonal contraceptives 24 STDs: Hepatitis B

9 Hormonal contraceptives (years) 25 STDs: HPV

10 Intrauterine Device (IUD) 26 STDs: Number of diagnoses

11 IUD (years) 27 STDs: Time since first diagnosis

12 Sexually Transmitted
Diseases (STDs) 28 STDs: Time since last diagnosis

13 STDs (number) 29 Dx: Cancer

14 STDs: condylomatosis 30 Dx: CIN

15 STDs: cervical condylomatosis 31 Dx: HPV

16 STDs: vaginal condylomatosis 32 Diagnosis (Dx)

Because some patients refused to answer personal questions, some data are missing.
As a result, the dataset needed to be preprocessed to account for the null data. Two
factors were removed due to having a large amount of missing data (i.e., factor numbers
27, and 28 in Table 1). Further, some samples were removed for the same reason. As a
result, there are 668 patients in the final (preprocessed) dataset. Each data instance has
30 distinct risk factors and four target variables (HSCB) of cervical cancer. Normalization is
used for some numerical factors to eliminate data redundancy and avoid any undesirable
characteristics due to the wide range of values in those factors. The percentage of cervical
cancer patients within the dataset is 4.5% for Hinselmann, 9.4% for Schiller, 5.8% for
Cytology, and 6.7% for Biopsy. Therefore, the random oversampling technique is used to
balance the unbalanced dataset.

4.2. Feature Selection and Principal Component Analysis

Feature selection is the process of minimizing the number of input variables when
creating a predictive model. The number of input variables might be reduced to decrease
the computational cost of modeling and, in some circumstances, to improve the model’s
performance [33,34].

RF is a Bagging algorithm that mixes several different DTs. Tree-based techniques
in RFs are naturally rated by how well they improve node purity or, in other words,
how well they minimize impurity (Gini impurity) across all trees. The nodes with the
greatest reduction in impurity are located at the beginning of the trees, while those with
the smallest reduction are found at the conclusion. A subset of the most important features
may be created by pruning trees below a certain node [35–37]. The proposed framework
investigates two feature selection methods, PCA and RF importance, where RF is used to
select the best 18 factors and the best 10 factors with the highest relative importance in
predicting cervical cancer, as shown in Tables 2 and 3. The factors listed in Tables 2 and 3
refer to the factor numbers provided in Table 1.
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Table 2. Top 18 factors for four target variables based on RF relative importance sequence.

Hinselmann Schiller Cytology Biopsy

1 1 1 1

9 9 3 9

3 3 9 3

2 4 2 4

4 2 4 2

31 11 7 12

6 7 11 7

7 8 6 11

23 17 23 32

11 6 31 8

17 31 32 6

12 12 26 17

8 5 8 18

29 23 5 10

14 29 14 5

5 16 18 29

26 26 12 30

16 10 29 21

Table 3. Top 10 factors for four target variables based on RF relative importance sequence.

Hinselmann Schiller Cytology Biopsy

1 1 1 1

9 9 3 9

3 3 9 3

2 4 2 4

4 2 4 2

31 11 7 12

6 7 11 7

7 8 6 11

23 17 23 32

11 6 31 8

PCA is a statistical method that uses the eigenvector to determine the orientation
of features. PCA’s fundamental idea is to map a j-dimensional feature space into an i-
dimensional space, which is generally known as the principal components, where i < j.
The covariance matrix is calculated, and the eigenvectors and eigenvalues are computed.
Because an eigenvalue shows the most significant relationship between the dataset charac-
teristics, the eigenvector with the greatest eigenvalue is selected as the principal component
of the cervical cancer dataset. The eigenvalues are sorted in ascending order to select the
most significant principal component(s), while the lowest eigenvalues are discarded. This
process reduces large dimensional datasets to smaller dimensional datasets. The variance
measures the dispersion of the data in the cervical cancer dataset. Lastly, eigenvectors and
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eigenvalues for the covariance matrix are computed. Eigenvalues are transformed using
varimax orthogonal rotation or oblique rotation [38].

In this research, PCA transforms the 30 original factors into a two-dimensional space,
which accounts for most of the variance in the original dataset. The PCA approach re-
duces the noise in the cervical cancer dataset and also reduces the computational time for
model development.

4.3. Combination of GA–MLP

GA is used in this research as an optimization tool to determine the optimal hyperpa-
rameters for the MLP that provides the highest classification accuracy in diagnosing each
target variable of cervical cancer. The MLP has several hyperparameters that need to be
fine-tuned, which include the size of each hidden layer, solvers, and activation functions.
The hyperparameters of MLP are encoded as chromosomes in the GA. The population of
solutions/chromosomes in the GA represents a population of MLPs. The classification
accuracy of each MLP, after network training is completed, is used as the fitness value of
that solution.

Initially, the GA has a random population of solutions. In each generation, each solu-
tion (MLP) goes through the training process to determine its fitness value (classification
accuracy). The evaluated solutions will then go through the typical evolution process of the
GA: select two parent solutions, crossover the parent solutions to create two children with a
probability of Pc, and mutate the children with a probability of Pm. Once the internal loop
is completed and reaches half of the population size (n/2), the replacement process will
then cull all the parent solutions, the children will advance to the next generation, and the
generation counter will increase by one. This process will continue until the termination
criteria are met (gmax). Finally, the best solution out of all generations will be selected,
which represents the MLP’s optimized parameters for predicting patients with cervical
cancer. Algorithm 1 represents the pseudocode of the hybrid GA–MLP for optimizing the
MLP parameters.

Algorithm 1. Hybrid GA–MLP for optimizing MLP parameters

1: Set GA parameters (Pc, Pm, n, gmax)
2: Encode solutions (MLP parameters) using real value encoding
3: Randomly generate n solutions
4: Calculate the fitness value of each solution by the trained MLPs
5: for i = 1, until gmax do
6: for i = 1, until n/2 do
7: Select two parents
8: Crossover to create two children with Pc
9: Mutate children with Pm
10: end for
11: Replace parents with children
12: end for
13: Return the best solution

4.4. Main Operators and MLP Hyperparameters

The following parameters are used to design the GA: tournament selection is used
to select the parents (k = 4) for breeding; the crossover probability is set at 1 to perform a
single-point crossover operation; the mutation probability is set at 0.001; the population
size is fixed at 50; and the stopping criterion is 200 generations.

The hyperparameters of MLP are the encoded solution vectors in the GA. Each solution
vector considers 4 types of activation functions, 3 types of solvers, and 50 different sizes
for the first and the second layers in the MLP. However, some hyperparameters for the
MLP are fixed: the learning rate is set at 0.001, the momentum is set at 0.90, and the
stopping criterion is set to 200 iterations. Each solution undergoes network training, and
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the classification accuracy of the trained MLP is used as its fitness value in the GA. The
proposed methodology is coded in the Python 3.9 environment.

4.5. Performance Metrics

Accuracy, sensitivity, specificity, and precision are the most common data mining
performance metrics [39]. These performance metrics are defined in Equations (1)–(5).
The confusion matrix output determines the following metrics: True Negative (TN), True
Positive (TP), False Negative (FN), and False Positive (FP) [40]. TP is the number of correct
predictions that a patient has cervical cancer, i.e., cervical cancer is correctly classified
as cervical cancer. TN is the number of correct predictions that a patient does not have
cervical cancer, i.e., non-cervical cancer is correctly classified as non-cervical cancer. FN is
the number of incorrect predictions that a patient does not have cervical cancer, i.e., cervical
cancer is identified as non-cervical cancer. FP is the number of incorrect predictions that a
patient has cervical cancer, i.e., non-cervical cancer is detected as cervical cancer. Table 4
summarizes the confusion matrix for diagnosing cervical cancer.

Accuracy =
TP + TN

TP + FP + TN + FN
× 100 (1)

Sensitivity =
TP

TP + FN
× 100 (2)

Specificity =
TN

TN + FP
× 100 (3)

Precision =
TP

TP + FP
× 100 (4)

F1 − Score =
2 × Sensitivity × Precision

Sensitivity + Precision
× 100 (5)

Table 4. Confusion matrix.

Predicted Class

Non-Cervical Cancer Cervical Cancer

Actual Class
Non-Cervical Cancer TN FP

Cervical Cancer FN TP

In cervical cancer, the performance metrics are interpreted as follows: accuracy refers
to how well the model can accurately categorize TP and TN cervical cancer cases out of all
instances. Sensitivity refers to the percentage that the model correctly classifies TP cervical
cancer cases out of all patients with cervical cancer. The model’s specificity measures how
well it can categorize individuals as not having cervical cancer out of those diagnosed
without the disease. Precision refers to the percentage that the model correctly classifies TP
cervical cancer cases out of all cases that are classified as cervical cancer. Finally, F1-score
is generally considered a better performance measure; it represents a weighted average
between sensitivity and precision.

5. Results and Discussion

Experimental results of each target variable of cervical cancer are discussed separately
in this section. The proposed approach is compared with nine different classification
algorithms. Further, the performance of the PCA–GA–MLP model is compared with
the best results in the studies that were conducted on the same cervical cancer dataset
from UCI.
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5.1. Target Variable: Hinselmann

Table 5 summarizes the performance measures obtained when comparing GA–MLP
with other classifiers to diagnose Hinselmann. When adopting PCA as a dimensional
reduction tool, PCA–GA–MLP outperforms all nine classification algorithms; it has an
accuracy of 98.20%, a sensitivity of 100.00%, a specificity of 96.37%, a precision of 96.54%,
and an F1-score of 98.24%. PCA–AdaBoost is the next best method; it has an accuracy
of 94.67%, a sensitivity of 100.00%, a specificity of 89.29%, a precision of 90.41%, and an
F1-score of 94.96%.

When using all (available) 30 factors to diagnose Hinselmann, GA–MLP has the best
accuracy, sensitivity, specificity, precision, and F1-score (97.57%, 100.00%, 95.15%, 95.36%,
and 97.62%, respectively), followed by AdaBoost, KNN, and CD-KNN. When incorporating
the top 18 factors to diagnose Hinselmann, GA–MLP provides the best results across all
performance measures. When selecting the top 10 factors to diagnose Hinselmann, GA–
MLP achieves the best accuracy, specificity, precision, and F1-score.

Table 5. Comparison of the proposed method using four feature selection methods with nine other
classification algorithms in diagnosing Hinselmann.

Feature Selection:
PCA/Method

Performance Measures

Accuracy Sensitivity Specificity Precision F1-Score

PCA–GA–MLP 98.20 100.00 96.37 96.54 98.24

PCA–RF 92.16 98.67 85.57 87.22 92.58

PCA–LDA 61.05 52.17 69.93 63.24 57.05

PCA–SVM 75.23 84.81 65.52 71.07 77.28

PCA–LR 64.11 60.65 67.56 64.95 62.67

PCA–NB 60.34 100.00 20.58 55.75 71.59

PCA–KNN 85.81 100.00 71.67 77.93 87.57

PCA–DT 83.39 95.69 71.31 76.98 85.21

PCA–AdaBoost 94.67 100.00 89.29 90.41 94.96

PCA–CD-KNN 84.40 99.55 69.29 76.53 86.49

Feature Selection:
All 30 Factors/Method

Performance Measures

Accuracy Sensitivity Specificity Precision F1-Score

GA–MLP 97.57 100.00 95.15 95.36 97.62

RF 85.27 86.09 84.47 84.59 85.09

LDA 72.33 76.01 68.65 70.83 73.28

SVM 75.39 87.42 63.36 70.58 78.06

LR 72.33 75.14 69.43 71.07 72.96

NB 51.57 100.00 3.11 50.79 67.35

KNN 85.58 100.00 71.14 77.73 87.42

DT 71.40 95.71 47.24 64.69 77.06

AdaBoost 87.07 93.58 80.47 82.69 87.74

CD-KNN 85.66 99.39 71.90 78.07 87.42
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Table 5. Cont.

Feature Selection:
Top 18 Factors/Method

Performance Measures

Accuracy Sensitivity Specificity Precision F1-Score

GA–MLP 97.02 100.00 94.08 94.36 97.09

RF 85.11 88.04 82.23 83.17 85.32

LDA 70.92 73.24 68.46 69.91 71.48

SVM 71.71 84.75 58.63 67.27 74.95

LR 71.00 73.24 68.63 70.03 71.53

NB 55.25 100.00 10.39 52.76 69.07

KNN 85.42 100.00 70.82 77.50 87.29

DT 71.32 95.71 47.09 64.62 77.01

AdaBoost 87.07 93.58 80.47 82.69 87.74

CD-KNN 84.40 99.55 69.29 76.53 86.49

Feature Selection:
Top 10 Factors/Method

Performance Measures

Accuracy Sensitivity Specificity Precision F1-Score

GA–MLP 96.79 99.21 94.40 94.65 96.84

RF 83.39 95.68 71.24 77.15 85.18

LDA 66.93 68.13 65.58 66.50 67.28

SVM 67.79 68.23 67.49 67.62 67.68

LR 66.46 68.15 64.66 65.97 66.95

NB 61.98 50.85 73.01 64.58 55.01

KNN 84.40 100.00 68.79 76.24 86.50

DT 70.61 97.25 44.04 63.62 76.83

AdaBoost 85.74 92.13 79.15 81.58 86.43

CD-KNN 83.86 99.39 68.40 75.86 86.01

Figure 3 illustrates the performance of the hybrid system of PCA–GA–MLP and the
three GA–MLPs that used the top 10 factors, the top 18 factors, and all 30 factors to diagnose
Hinselmann. The figure indicates that marginal improvement in model performance is
observed when a larger number of factors is used in GA–MLP. Furthermore, the hybrid
system of PCA–GA–MLP outperforms all three GA–MLPs across all performance measures.
The PCA–GA–MLP offers a simpler input structure in the MLP as a result of the dimension
reduction in PCA.

Figure 3. Comparison of the proposed method using four feature selection methods to diagnose
Hinselmann.
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As shown in Table 6, PCA–GA–MLP performs better than the methods reported by
Wu and Zhou [4], Adem et al. [15], Alsmariy et al. [24], Abdoh et al. [22], Deng et al. [23],
and Wahid and Al-Mazini [5], in terms of accuracy, sensitivity, and F1-score. In terms of
specificity, PCA–GA–MLP performs better than the method reported by Wu and Zhou [4].

Table 6. Comparison of the proposed method with the best results in the literature in diagnosing
Hinselmann.

Study Validation Method Accuracy Sensitivity Specificity Precision F1-Score

Proposed
Method

5-Fold Cross-
Validation PCA–GA–MLP 98.20 100.00 96.37 96.54 98.24

[4] 5-fold cross-
validation

SVM
SVM–RFE
SVM–PCA

93.79 100.00 89.96 N/A N/A

[15]
70% training

and 30%
testing

Deep Learning
(stacked

autoencoder and
softmax)

96.70 N/A N/A N/A N/A

[24] 10-fold cross-
validation

PCA, SMOTE with
voting on

LR, RF, DT
96.73 96.50 97.69 NA 96.85

[22] 10-fold cross-
validation

SMOTE–RF
SMOTE–RF–RFE
SMOTE–RF–PCA

97.60 96.65 98.54 N/A N/A

[23]
58% training

and 42%
testing

SMOTE with RF,
SVM, and XGBoost 97.39 95.14 99.49 N/A 96.50

[5] 5-fold cross-
validation

ACO and
Ant-Miner data

classification rule
95.45 N/A N/A N/A N/A

5.2. Target Variable: Schiller

The performance measures of GA–MLP and other algorithms in diagnosing Schiller
are summarized in Table 7. When applying PCA as a feature selection method, PCA–
GA–MLP achieves the highest accuracy, sensitivity, specificity, precision, and F1-score of
96.78%, 100.00%, 93.61%, 93.97%, and 96.87%, respectively. PCA–CD-KNN is the second-
best method, with an accuracy of 87.52%, a sensitivity of 99.15%, a specificity of 75.88%, a
precision of 80.50%, and an F1-score of 88.83%.

When using all 30 factors to diagnose Schiller, GA–MLP has the best accuracy, preci-
sion, and F1-score (94.13%, 89.82%, and 94.45%, respectively), followed by CD-KNN and
KNN. When using the best 18 factors to diagnose Schiller, GA–MLP provides the best
results across all five performance measures. In selecting the best 10 factors to diagnose
Schiller, GA–MLP performs better than all other classifiers, in terms of accuracy, sensitivity,
precision, and F1-score (93.39%, 99.17%, 88.98%, and 93.79%, respectively).

Figure 4 illustrates the performance of the hybrid system of PCA–GA–MLP and the
GA–MLPs that incorporated the top 10 factors, the top 18 factors, and all 30 factors to
diagnose Schiller. The hybrid system of PCA–GA–MLP outperforms all three GA–MLPs
across all performance measures (with 2–3% improvement in accuracy, 4–6% improvement
in specificity, 3–5% improvement in precision, and 2–3% improvement in F1-score). The
GA–MLPs that used the top 10 factors, the top 18 factors, and all 30 factors to diagnose
Schiller all have similar performance, regardless of the number of factors included in the
GA–MLP.
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Table 7. Comparison of the proposed method using four feature selection methods with nine other
classification algorithms in diagnosing Schiller.

Feature Selection:
PCA/Method

Performance Measures

Accuracy Sensitivity Specificity Precision F1-Score

PCA–GA–MLP 96.78 100.00 93.61 93.97 96.87

PCA–RF 86.03 81.99 90.05 89.22 85.42

PCA–LDA 65.04 52.38 77.61 69.92 59.74

PCA–SVM 70.50 54.18 86.74 80.11 64.25

PCA–LR 63.88 51.62 76.13 68.17 58.70

PCA–NB 51.32 95.35 7.32 50.73 66.20

PCA–KNN 76.69 94.00 59.31 69.96 80.08

PCA–DT 75.04 68.31 81.65 80.68 72.60

PCA–AdaBoost 86.53 90.27 82.84 83.98 86.98

PCA–CD-KNN 87.52 99.15 75.88 80.50 88.83

Feature Selection:
All 30 Factors/Method

Performance Measures

Accuracy Sensitivity Specificity Precision F1-Score

GA–MLP 94.13 99.67 88.68 89.82 94.45

RF 71.07 54.37 87.68 81.65 65.11

LDA 64.71 51.08 78.25 70.13 58.98

SVM 69.75 50.20 89.16 82.59 62.16

LR 63.80 51.08 76.45 68.32 58.36

NB 51.16 100.00 2.33 50.59 67.18

KNN 75.37 93.32 57.34 68.69 79.08

DT 67.69 55.13 80.49 75.45 62.17

AdaBoost 72.64 68.42 76.82 74.58 71.29

CD-KNN 85.29 95.86 74.70 79.19 86.72

Feature Selection:
Top 18 Factors/Method

Performance Measures

Accuracy Sensitivity Specificity Precision F1-Score

GA–MLP 94.30 98.97 89.56 90.50 94.53

RF 71.40 54.18 88.48 82.92 65.35

LDA 64.79 51.08 78.44 70.19 59.02

SVM 68.60 51.33 85.70 78.34 61.79

LR 63.47 50.93 75.94 67.79 58.06

NB 50.41 97.03 3.84 50.22 66.17

KNN 75.37 93.32 57.33 68.71 79.08

DT 67.60 55.13 80.32 75.27 62.10

AdaBoost 85.74 92.13 79.15 81.58 86.43

CD-KNN 85.70 96.68 74.69 79.32 87.13
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Table 7. Cont.

Feature Selection:
Top 10 Factors/Method

Performance Measures

Accuracy Sensitivity Specificity Precision F1-Score

GA–MLP 93.39 99.17 87.53 88.98 93.79

RF 73.06 56.29 89.85 84.67 67.49

LDA 62.81 52.27 73.39 66.02 58.25

SVM 65.87 45.68 86.08 76.78 56.96

LR 62.40 52.58 72.21 65.33 58.20

NB 61.90 45.32 78.44 67.68 54.18

KNN 75.29 93.98 56.50 68.41 79.14

DT 69.01 63.72 74.52 72.03 66.89

AdaBoost 71.74 69.62 73.86 72.80 71.12

CD-KNN 86.28 96.68 75.83 80.09 87.60

Figure 4. Comparison of the proposed method using four feature selection methods to diag-
nose Schiller.

The proposed method, PCA–GA–MLP, is compared with the best approaches in
the literature in the diagnosis of Schiller, using the same benchmark dataset from UCI.
As shown in Table 8, PCA–GA–MLP performs better than the methods reported by Wu
and Zhou [4], Abdoh et al. [22], Deng et al. [23], and Wahid and Al-Mazini [5] in terms
of accuracy, sensitivity, and F1-score. The PCA–GA–MLP method achieves the highest
sensitivity when compared with all other approaches. However, the method of Alsmariy
et al. [24] has slightly better accuracy, specificity, and F1-score than the proposed PCA–GA–
MLP method.

Table 8. Comparison of the proposed method with the best results in the literature in diagnosing
Schiller.

Study Validation Method Accuracy Sensitivity Specificity Precision F1-Score

Proposed
Method

5-Fold
Cross-Validation PCA–GA–MLP 96.78 100.00 93.61 93.97 96.87

[4] 5-fold
cross-validation

SVM
SVM–RFE
SVM–PCA

90.81 98.99 84.63 N/A N/A
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Table 8. Cont.

Study Validation Method Accuracy Sensitivity Specificity Precision F1-Score

[15] 70% training and
30% testing

Deep Learning
(stacked autoencoder

and softmax)
97.90 N/A N/A N/A N/A

[24] 10-fold
cross-validation

PCA, SMOTE with
voting on

LR, RF, DT
98.49 98.60 98.60 N/A 98.37

[22] 10-fold
cross-validation

SMOTE–RF
SMOTE–RF–RFE
SMOTE–RF–PCA

95.01 93.24 96.68 N/A N/A

[23] 58% training and
42% testing

SMOTE with RF, SVM,
and XGBoost 95.59 93.92 97.25 N/A 96.00

[5] 5-fold
cross-validation

ACO and Ant-Miner
data classification rule 90.56 N/A N/A N/A N/A

5.3. Target Variable: Cytology

Table 9 compares the performance of GA–MLPs with other algorithms in diagnosing
Cytology. When implementing PCA as a dimensional reduction technique, PCA–GA–
MLP achieves the highest accuracy, specificity, precision, and F1-score of 97.54%, 95.15%,
95.27%, and 97.56%, respectively. The next best method is PCA–RF, which has an accuracy
of 91.58%, a sensitivity of 95.30%, a specificity of 88.06%, a precision of 88.73%, and an
F1-score of 91.83%.

When using all available (30) factors, only the top 18 factors, or only the top 10 factors
to diagnose Cytology, GA–MLP outperforms all other methods across all performance
measures, followed by KNN and CD-KNN.

Figure 5 compares the performance of the hybrid system of PCA–GA–MLP and the
GA–MLPs that used the top 10 factors, the top 18 factors, and all 30 factors to diagnose
Cytology. As shown in Figure 5, the hybrid system of PCA–GA–MLP outperforms all
three GA–MLPs across all but one performance indicator. Comparing the performance of
GA–MLPs that used the top 10 factors, the top 18 factors, and all 30 factors to diagnose
Cytology, some improvement in model performance is observed when a larger number of
factors is used in the GA–MLP.

Table 9. Comparison of the proposed method using four feature selection methods with nine other
classification algorithms in diagnosing Cytology.

Feature Selection:
PCA/Method

Performance Measures

Accuracy Sensitivity Specificity Precision F1-Score

PCA–GA–MLP 97.54 96.78 95.15 95.27 97.56

PCA–RF 91.58 95.30 88.06 88.73 91.83

PCA–LDA 62.04 47.56 76.89 67.69 55.24

PCA–SVM 71.01 64.86 77.01 73.83 69.01

PCA–LR 61.88 51.00 73.21 65.93 56.81

PCA–NB 53.53 94.93 12.18 51.99 67.10

PCA–KNN 83.56 100.00 67.08 75.33 85.87

PCA–DT 80.54 92.77 68.41 74.46 82.55

PCA–AdaBoost 89.83 96.25 83.50 85.36 90.41

PCA–CD-KNN 87.06 99.70 74.45 79.70 88.51
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Table 9. Cont.

Feature Selection:
All 30 Factors/Method

Performance Measures

Accuracy Sensitivity Specificity Precision F1-Score

GA–MLP 95.39 100.00 92.02 92.38 95.61

RF 74.27 66.32 82.61 79.20 71.96

LDA 63.62 56.07 71.10 66.06 60.47

SVM 65.05 60.61 69.06 68.31 62.72

LR 63.31 58.30 68.28 64.74 61.22

NB 52.90 100.00 5.74 51.52 67.94

KNN 83.24 100.00 66.43 74.89 85.61

DT 70.62 58.50 82.80 77.29 66.51

AdaBoost 77.05 84.33 70.07 73.65 78.45

CD-KNN 86.10 100.00 72.29 78.33 87.77

Feature Selection:
Top 18 Factors/Method

Performance Measures

Accuracy Sensitivity Specificity Precision F1-Score

GA–MLP 94.92 100.00 89.92 90.75 95.12

RF 74.98 68.67 81.55 78.77 73.25

LDA 63.46 55.64 71.33 66.17 60.21

SVM 66.09 64.40 67.20 66.45 65.25

LR 63.15 57.27 69.08 64.99 60.68

NB 53.53 97.37 9.57 51.88 67.64

KNN 83.16 100.00 66.25 74.79 85.55

DT 70.54 58.50 82.63 77.17 66.46

AdaBoost 76.73 84.61 69.16 73.18 78.31

CD-KNN 85.94 100.00 71.88 78.11 87.65

Feature Selection:
Top 10 Factors/Method

Performance Measures

Accuracy Sensitivity Specificity Precision F1-Score

GA–MLP 94.04 100.00 88.00 89.36 93.32

RF 80.06 82.03 78.12 78.78 80.30

LDA 60.61 55.31 66.68 62.63 58.14

SVM 68.79 72.79 65.08 67.58 69.95

LR 62.59 62.06 63.81 63.35 62.30

NB 55.76 77.63 34.24 54.37 63.71

KNN 82.76 100.00 65.57 74.34 85.24

DT 65.85 52.98 79.01 73.60 60.06

AdaBoost 74.82 80.97 68.85 72.12 76.13

CD-KNN 86.02 100.00 71.99 78.12 87.69

Table 10 compares PCA–GA–MLP with other approaches from the literature in diag-
nosing Cytology. PCA–GA–MLP achieves better accuracy and F1-score than all reported
approaches. In terms of sensitivity, PCA–GA–MLP ranks second, next to the method
reported by Wu and Zhou [4]. In terms of specificity, PCA–GA–MLP performs better than
the methods reported by Wu and Zhou [4] and Alsmariy et al. [24].
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Figure 5. Comparison of the proposed method using four feature selection methods to diagnose
Cytology.

Table 10. Comparison of the proposed method with the best results in the literature in diagnosing
Cytology.

Study Validation Method Accuracy Sensitivity Specificity Precision F1-Score

Proposed
Method

5-Fold
Cross-Validation PCA–GA–MLP 97.54 96.78 95.15 95.27 97.56

[4] 5-fold
cross-validation

SVM
SVM–RFE
SVM–PCA

92.75 100.00 87.92 N/A N/A

[15] 70% training and
30% testing

Deep Learning
(stacked autoencoder

and softmax)
97.50 N/A N/A N/A N/A

[24] 10-fold
cross-validation

PCA, SMOTE with
voting on

LR, RF, DT
92.89 93.12 94.59 N/A 93.35

[22] 10-fold
cross-validation

SMOTE–RF
SMOTE–RF–RFE
SMOTE–RF–PCA

96.94 94.82 99.01 N/A N/A

[23] 58% training and
42% testing

SMOTE with RF, SVM,
and XGBoost 96.56 94.32 98.51 N/A 97.00

[5] 5-fold
cross-validation

ACO and Ant-Miner
data classification rule 94.64 N/A N/A N/A N/A

5.4. Target Variable: Biopsy

Table 11 compares the performance measures of GA–MLP with other classifiers to
diagnose Biopsy. When adopting PCA as a dimensional reduction tool, PCA–GA–MLP
achieves the highest accuracy, specificity, precision, and F1-score of 97.75%, 95.54%, 95.63%,
and 97.76%, respectively. PCA–AdaBoost is the second-best method with an accuracy
of 90.93%, a sensitivity of 94.24%, a specificity of 87.90%, a precision of 88.47%, and an
F1-score of 91.19%.
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Table 11. Comparison of the proposed method using four feature selection methods with nine other
classification algorithms in diagnosing Biopsy.

Feature Selection:
PCA/Method

Performance Measures

Accuracy Sensitivity Specificity Precision F1-Score

PCA–GA–MLP 97.75 96.78 95.54 95.63 97.76

PCA–RF 89.00 87.59 90.27 90.02 88.77

PCA–LDA 69.42 56.40 82.72 76.48 64.69

PCA–SVM 74.23 60.60 88.20 83.56 70.07

PCA–LR 67.82 55.73 80.26 73.84 63.20

PCA–NB 54.34 92.31 16.28 52.49 66.81

PCA–KNN 85.07 100.00 70.11 76.87 86.89

PCA–DT 84.75 98.50 71.10 77.33 86.51

PCA–AdaBoost 90.93 94.24 87.90 88.47 91.19

PCA–CD-KNN 88.60 100.00 77.22 81.31 89.66

Feature Selection:
All 30 Factors/Method

Performance Measures

Accuracy Sensitivity Specificity Precision F1-Score

GA–MLP 96.39 100.00 92.90 93.19 96.45

RF 76.00 61.31 90.97 87.04 71.73

LDA 69.66 58.41 81.24 75.66 65.60

SVM 74.80 59.85 90.01 85.47 70.20

LR 69.98 59.41 80.86 75.60 66.27

NB 52.25 100.00 4.44 51.14 67.56

KNN 84.51 100.00 69.09 76.25 86.46

DT 73.11 57.51 89.35 84.84 68.05

AdaBoost 80.09 78.16 82.24 81.19 79.46

CD-KNN 89.49 100.00 79.21 82.54 90.35

Feature Selection:
Top 18 Factors/Method

Performance Measures

Accuracy Sensitivity Specificity Precision F1-Score

GA–MLP 96.23 100.00 92.48 92.92 96.32

RF 77.69 62.99 92.58 89.35 73.74

LDA 69.02 57.36 81.07 75.00 64.72

SVM 71.11 58.97 83.76 78.18 66.95

LR 68.46 58.07 79.17 73.49 64.62

NB 51.61 99.14 4.17 50.85 67.09

KNN 83.87 100.00 67.77 75.52 85.99

DT 72.87 57.51 88.84 84.18 67.85

AdaBoost 81.62 81.05 82.10 81.90 81.39

CD-KNN 88.36 98.25 78.70 81.92 89.27
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Table 11. Cont.

Feature Selection:
Top 10 Factors/Method

Performance Measures

Accuracy Sensitivity Specificity Precision F1-Score

GA–MLP 96.23 100.00 92.59 92.86 96.28

RF 79.85 67.30 92.57 89.97 76.83

LDA 68.38 57.98 78.95 73.13 64.54

SVM 72.39 58.12 86.78 81.32 67.63

LR 68.22 58.15 78.47 72.77 64.49

NB 67.57 53.62 81.74 74.42 62.16

KNN 83.95 100.00 67.94 75.66 86.07

DT 73.11 61.81 83.45 81.37 69.48

AdaBoost 79.93 80.18 79.82 79.94 79.93

CD-KNN 89.97 100.00 79.95 83.17 90.78

When using all 30 factors or the top 10 factors to diagnose Biopsy, GA–MLP outper-
forms all other approaches in all performance measures. In the case of using the top 18
factors to diagnose Biopsy, GA–MLP outperforms all other approaches in terms of accuracy,
sensitivity, precision, and F1-score.

Figure 6 compares the performance of the hybrid system of PCA–GA–MLP, and the
three GA–MLPs that used the top 10 factors, the top 18 factors, and all 30 factors to diagnose
Biopsy. As shown in Figure 6, the hybrid system of PCA–GA–MLP outperforms all three
GA–MLPs across all but one performance indicators. All three GA–MLPs have similar
performance regardless of the number of factors included in the GA–MLP models.

Figure 6. Comparison of the proposed method using four feature selection methods to diag-
nose Biopsy.

Table 12 compares the performance of PCA–GA–MLP with other approaches from
the literature in diagnosing Biopsy. PCA–GA–MLP achieves better accuracy and F1-score
than all reported approaches. In terms of sensitivity, PCA–GA–MLP ranks third, next to
the methods reported by Wu and Zhou [4] and Alsmariy et al. [24].
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Table 12. Comparison of the proposed method with the best results in the literature in diagnosing
Biopsy.

Study Validation Method Accuracy Sensitivity Specificity Precision F1-Score

Proposed
method

5-fold
cross-validation PCA–GA–MLP 97.75 96.78 95.54 95.63 97.76

[4] 5-fold
cross-validation

SVM
SVM–RFE
SVM–PCA

94.13 100.00 90.21 N/A N/A

[15] 70% training and
30% testing

Deep Learning
(stacked autoencoder

and softmax)
96.60 N/A N/A N/A N/A

[24] 10-fold
cross-validation

PCA, SMOTE with
voting on

LR, RF, DT
97.44 97.79 98.01 N/A 97.44

[22] 10-fold
cross-validation

SMOTE–RF
SMOTE–RF–RFE
SMOTE–RF–PCA

96.06 94.55 97.51 N/A N/A

[23] 58% training and
42% testing

SMOTE with RF, SVM,
and XGBoost 97.06 95.50 98.85 N/A 97.00

[5] 5-fold
cross-validation

ACO and Ant-Miner
data classification rule 94.76 N/A N/A N/A N/A

5.5. Four Target Variables

This section compares the classification accuracy of the proposed PCA–GA–MLP
method with reported studies from the literature for all four target variables of cervical
cancer (HSCB) on the same dataset from UCI. The classification accuracy is the only
performance measure that is reported in the six relevant studies from the literature.

As shown in Figure 7, PCA–GA–MLP achieves the highest classification accuracy
in diagnosing Hinselmann, Cytology, and Biopsy. In diagnosing Schiller, PCA–GA–MLP
ranks third, next to the methods reported by Alsmariy et al. [24] and Adem et al. [15].

Figure 7. Comparison of classification accuracy of PCA–GA–MLP with the best methods in the
literature in diagnosing cervical cancer using the benchmark dataset from UCI.



Healthcare 2022, 10, 2002 21 of 23

6. Conclusions and Future Work

This research proposed an integrated system of PCA, GA, and MLP for diagnosing
cervical cancer cases using the benchmark dataset from UCI. There are four target variables
of cervical cancer in the dataset: Hinselmann, Schiller, Cytology, and Biopsy. Four feature
selection approaches were explored; dimensional reduction was performed using the PCA
method, and different subsets of the original factors were selected based on Random
Forest Importance.

Experimental results show that the hybrid system of PCA–GA–MLP outperforms all
other classification algorithms and the three GA–MLP versions on all four target variables.
In comparison with the existing approaches in the literature that were implemented on the
same cervical cancer dataset, the PCA–GA–MLP model achieves the highest classification
accuracy in Hinselmann, Cytology, and Biopsy (98.20%, 97.54%, and 97.75%, respectively).

Given the growing interest in cervical cancer research using ML algorithms, this
research developed a robust predictive tool for cervical cancer. Physicians and healthcare
providers can use the proposed model to identify patients with cervical cancer in its early
stages. For the identified cases, the medical team can focus their effort on preventive actions
and plans to improve women’s care and ultimately reduce cervical cancer rates and the
associated costs.

The proposed research has a few limitations. The current approach did not consider
RFE as a tool for selecting the best risk factors. Furthermore, the random oversampling tech-
nique was used to balance the unbalanced dataset. For future work, feature selection using
RFE and advanced data balancing techniques such as SMOTE and cost-sensitive learning
can be explored in the proposed method to further improve the overall performance.
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