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A B S T R A C T

The enzyme arginine kinase (AK), EC 2.7.3.3, catalyzes the reversible phosphorylation of arginine with aden-
osine triphosphate, forming phosphoarginine, which acts as an energy reservoir due to its high-energy phosphate 
content that can be rapidly transferred to ADP for ATP renewal. It has been proposed that AK should be asso-
ciated with some ATP biosynthesis mechanisms, such as glycolysis and oxidative phosphorylation. Arginine 
kinase is an analogue of creatine kinase found in vertebrates. A literature survey has recovered the physico-
chemical and structural characteristics of AK. This enzyme is widely distributed in invertebrates such as pro-
tozoa, bacteria, porifera, cnidaria, mollusca, and arthropods. Arginine kinase may be involved in the response to 
abiotic and biotic stresses, being up regulated in several organisms and controlling energy homeostasis during 
environmental changes. Additionally, phosphoarginine plays a role in providing energy for the transport of 
protozoa, the beating of cilia, and flagellar movement, processes that demand continuous energy. Arginine ki-
nase is also associated with allergies to shellfish and arthropods, such as shrimp, oysters, and cockroaches. 
Phenolic compounds such as resveratrol, which decrease AK activity by 50 % in Trypanosoma cruzi, inhibit the 
growth of the epimastigote and trypomastigote forms, making them a significant target for the development of 
medications for Chagas Disease treatment.

1. Background

Phosphagens are guanidino compounds that become N-phosphory-
lated upon binding to ATP through the actions of phosphagen (guani-
dine) kinase enzymes [1,2]. In vertebrate organisms, only a single 
phosphagen, phosphocreatine (CP), is known and is produced by the 
enzyme creatine kinase (CK), also known as creatine phosphokinase 
(CPK) (EC 2.7.3.2) [3,4]. Alternatively, in invertebrate organisms, in 
addition to phosphocreatine, seven other phosphagens can be found: 
phosphoarginine, phosphoglycocyamine, phosphotaurocyamine, phos-
pholombricine, phosphohypotaurocyamine, phospho-opheline, and 
phosphoethanolamine, as well as their corresponding phosphokinases 
[2].

The enzyme arginine kinase (EC 2.7.3.3) (AK) was isolated for the 
first time from crab muscle [5]. It catalyzes the reversible phosphory-
lation of arginine, accelerating the transfer of a high-energy γ-phos-
phoryl (PO− 4) group from ATP to arginine [6], forming 

phosphoarginine and ADP (adenosine diphosphate); said reaction is 
represented by ATP + arginine ⇌ ADP + phosphoarginine. Phos-
phoarginine acts as an energy reservoir, not only in the ATP stage but 
also in the inorganic phosphate (Pi) form, which is returned to the 
environment through the metabolic consumption of ATP, which can be 
renewed by phosphagen transfer [7]. Phosphagens can be considered 
reservoirs of “high-energy phosphates,” since the reaction catalyzed by 
AK remains close to equilibrium, so that ATP is easily formed in the 
reverse path of the reaction during high energy turnover. Thus, phos-
phagens are capable of buffering ATP in cells that are subjected to large 
energy flows [8]. Because the reaction catalyzed by this enzyme is 
energetically ascending, it was proposed that it should be associated 
with ATP biosynthesis mechanisms such as glycolysis and oxidative 
phosphorylation [7].
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2. Physicochemical and structural characteristics

Both Mg2+ and Mn2+ can activate AK [9]. Although the enzyme also 
has affinity for the Ca2+ ion, the extent of activation by Ca2+ is only 40 % 
compared with activation by Mg2+ [10]. The absence of a metal ion 
results in negligible enzyme activity [11].

The substrate specificity of AK has been studied extensively. The 
enzyme was initially described as being able to phosphorylate L-arginine 
and, to a lesser extent, arginine methyl ester, L-homoarginine, and L- 
canavanine, being considered inactive against D-arginine and other 
guanidino compounds such as creatine, glycocyamine, and taurocy-
amine [12]. However, in the annelid Sabellastarte indica, the arginine 
kinase 2 enzyme (AK2) showed strong activity towards D-arginine, while 
arginine kinase 1 (AK1) showed considerable activity towards lom-
bricine and taurocyamine [13]. In a previous study, it was reported that 
an AK of Spirographis spallanzanii and Sabella pavonina showed activity of 
the same nature for L-arginine and D-arginine [14].

It was proposed that a region of amino acid deletions, called guani-
dino specificity (GS), is a potential candidate for the guanidino substrate 
recognition site, since there is a correlation between the size of the 
amino acid deletion in this region and the mass of the guanidino sub-
strate [15]. It was observed that the Asp7 amino acid residue is 
conserved in every AK sequence, but not in other phosphagen kinase 
enzymes; therefore, it is possible that this negatively charged amino acid 
is related to recognition of the positive charge on the AK substrate, 
arginine [16]. The GS region overlaps with the flexible loops of mito-
chondrial creatine kinase structures of chicken (60–66 and 316–326), 
which has the role of removing water during catalysis, moving close to 
the active site [17] and the Limulus polyphemus AK [18]. After the sub-
strate binds to the enzyme and the form changes from open to closed, the 
loops undergo changes, such as considerable disorder and conforma-
tional transitions. The loop in which the most impactful change occurs 
(residues 309–319) is a highly relevant region during catalysis [19]. The 
Glu314 amino acid residue binds to the arginine guanidino substrate in 
AK, playing a key role in positioning the substrate in the correct space to 
optimize the catalysis process [18]. The Arg309 residue binds to the 
negatively charged phosphates of ATP, and as mentioned before, Glu314 

interacts with the arginine substrate, so that loop 309–319 acts on both 
substrates and may be necessary for correct positioning of these sub-
strates [19]. In L. polyphemus, there are reported interactions from the 
amino groups and the carboxylate group of the substrate with the loop 
(residues 63, 64, 65, and 68) of the enzyme. Furthermore, the carbox-
ylate group binds itself to the main chain of the amino group of residues 
63, 64, and 65 of AK by hydrogen bonds [18].

In Nautilus pompilius, it was demonstrated that the Ser63→Gly amino 
acid substitution considerably reduces the affinity of the enzyme for the 
substrate, compared to the wild-type organism, while the Ser63→Thr 
mutation results in almost complete loss of AK activity, possibly due to 
steric disruption. The Tyr68→Ser mutant showed complete loss of 
enzyme activity [20]. X-ray crystallographic analyses of L. polyphemus 
AK showed that after binding to the substrate, the side chain of the Asp62 

residue in the N-terminal domain binds to the Arg193 residue in the 
C-terminal domain through a hydrogen bond [20]. N. pompilius mutants 
for Asp62→Gly and Arg193→Gly have weak enzyme activity, due to the 
breaking of hydrogen bonds. The hypothesis is that the hydrogen bond 
stabilizes the closed state of substrate binding and/or maintains a 
unique topology, in which the two types of AK substrate (ATP, ADP or 
arginine, phosphoarginine) are accessible enough for the catalytic re-
action [20]. The interaction between the Asp62 and Arg193 residues is 
conserved in the ordinary AKs and in the considered atypical AK from 
the sea cucumber Stichopus, which is related to the CK gene [21]. In 
Stichopus, Phe63 and Leu65 residues are involved with the affinity of 
binding to the arginine substrate [21].

It was demonstrated that changes in the Glu59 or Lys16 residues 
reduce enzyme activity by a factor of ten, possibly due to the disruption 
of salt bridges. However, these residues seem to be more important in 

maintaining enzyme activity levels than in substrate binding itself [22]. 
It is evident that binding, activity, and conformational changes are 
interconnected, and mutations in this region result in damage to activ-
ity; nevertheless, this damage may not be related to substrate specificity 
[22].

ATP-guanidine phosphotransferases have a standard signature 
sequence, CP(S/T)N(I/L)GT [23,24], which is highly conserved. The 
conserved Asp61 and Arg192 residues are involved in the formation of ion 
pairs, which function in stabilization of the closed state of the protein, i. 
e., when it is bound to the substrate. The five arginine residues, Arg123, 
Arg125, Arg228, Arg279, and Arg308, are related to ADP binding [25,26]. 
Fig. 1 shows a multiple alignment performed using the ClustalW tool 
(https://www.genome.jp/tools-bin/clustalw) [27] of AK amino acid 
sequences from the species L. polyphemus, Bombyx mori, Apis mellifera, 
Musca domestica, Ctenocephalides felis (AK1 and AK2), and Caenorhabditis 
briggsae (AK1 and AK2), highlighting the conserved amino acids that are 
typical of AK, as well as the signature sequence.

The molecular mass of AK may vary considerably according to the 
taxonomic group and the tissue in which they are found. The first studies 
that carried out purification and characterization assays on these pro-
teins were performed in crustaceans, since the AK of these organisms 
comprises 10%–20 % of the extractable protein content of the muscle 
[6]. In these studies, the molecular mass was determined to be 
approximately 40 kDa [6,28]. Therefore, it was thought for a period that 
AK existed only in the ~40 kDa monomeric form [29]. By contrast, these 
gel filtration experiments showed that there are dimeric AKs of 
approximately 80 kDa in echinoderms [30,31], as well as in annelids 
[32] and cnidarians [33]. AKs of both sizes were found in mollusks, but 
their concentration differed among tissues. In siphon muscles, an AK 
with a 40 kDa molecular mass is predominant in the adductor muscle; 
both masses (40 and 80 kDa) can be found in the same proportion, while 
in the mollusk’s foot, only the 80 kDa enzyme is found [34]. Previous 
studies have identified AKs with a molecular mass of 150 kDa in annelids 
[35], and this newly discovered enzyme is biochemically and immu-
nologically different from the 80 kDa enzyme [14].

Studies using X-ray crystallography tools were conducted to under-
stand the structure of AK proteins and the conformational changes that 
occur in these proteins in both their free state and bound to substrates. 
The three-dimensional AK structures deposited in the RCSB PDB data-
base are listed in Table 1 (https://www.rcsb.org/).

3. Distribution

3.1. Unicellular organisms

Arginine kinase is widely distributed among invertebrates, being 
described in ciliates Tetrahymena pyriformis [54,55], Paramecium cau-
datum [56], and Paramecium tetraurelia [57]. There is a large formation 
of phosphoarginine in the cilia of these organisms [58], which have the 
role of providing energy for ciliary beating and, therefore, function not 
only as an energy reservoir but also as an energy donor for the transport 
of protozoa used in processes that demand continuous energy [56,57]. 
AK is also described in other unicellular organisms such as flagellated 
protozoa of the genus Trypanosoma, in which several analyzed species, 
namely Trypanosoma cruzi, Trypanosoma brucei, Trypanosoma vivax, and 
Trypanosoma congolense, present hypothetical genes of AK [59]. In 
T. cruzi, the etiological agent of Chagas Disease, a hypothetical 
actin-binding domain, “DAKTFLVWVNE,” was identified in the amino 
acid sequence of AK, suggesting a possible interaction between the 
enzyme and the cytoskeleton structure, possibly related to cellular 
movement, in this case, flagellar movement [60]. Moreover, the expo-
nential growth phase in T. cruzi in the epimastigote form is positively 
correlated with AK activity [61]. In the non-replicative trypomastigote 
form, there is no capture of L-arginine, and enzyme activity is higher 
than that in the replicative epimastigote form [62]. These data suggest a 
direct correlation between energy metabolism, mediated by 
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phosphoarginine, and the capacity for cellular replication in T. cruzi 
[62]. Additionally, a positive correlation was shown between AK over-
expression and an increased capacity to survive under conditions of 
nutritional and pH stress [63], as well as oxidative stress [64].

In T. brucei, the protozoan responsible for causing sleeping sickness, 

the three isoforms identified in this species are in different cellular 
compartments. AK1 is exclusively located in the flagellum, AK2 in the 
glycosome and AK3 in the cytosol [65]. In extracts of Phytomonas, a 
group of flagellates that infect plants, an AK very similar to the one in 
T. cruzi was found, suggesting a close relationship between these two 

Fig. 1. Multiple alignment of arginine kinase amino acid sequences of arthropods Limulus polyphemus (XP_013791403.1), Bombyx mori (NP_001037402.1), Apis 
mellifera (NP_001011603.1), Musca domestica (XP_011294391.3), Ctenocephalides felis (XP_026474404.1 and XP_026473221.1), and the roundworm Caenorhabditis 
briggsae (XP_002639545.1 and XP_045092617.1). The signature sequence is marked by the black rectangle. The amino acids involved in ion-pair formation (Asp61 

and Arg192) are indicated by black triangles. The conserved arginine residues (Arg123, Arg125, Arg228, Arg279, and Arg308) that bind to ADP are highlighted by 
black circles.
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Table 1 
List of three-dimensional structures of arginine kinase proteins published in the RCSB PDB database and their binding agents.

RCSB PDB 
code

Description of structure Species Method Compound complex Reference

1BG0 Transition state structure of AK Limulus polyphemus X-ray diffraction 
(1.86 Å)

ADP, D-Arg, Mg2+, NO3 [18].

1M15 Transition state structure of AK Limulus polyphemus X-ray diffraction 
(1.2 Å)

ADP, Arg, Mg2+, NO3 [36].

1P50 Transition state structure of an AK mutant Limulus polyphemus X-ray diffraction 
(2.8 Å)

ADP, Arg, Mg2+, NO3 [37].

1P52 Structure of AK E314D mutant Limulus polyphemus X-ray diffraction 
(1.9 Å)

ADP, D-Arg, Mg2+, NO3 [37].

1SD0 Structure of AK C271A mutant Limulus polyphemus X-ray diffraction 
(2.3 Å)

ADP, Arg, Mg2+, Cl, NO3 [38].

1RL9 Crystal structure of Creatine-ADP AK ternary 
complex

Limulus polyphemus X-ray diffraction 
(1.45 Å)

ADP, C4H11N3O2, Mg2+ [22].

2J1Q Crystal structure of AK Trypanosoma cruzi X-ray diffraction 
(1.9 Å)

(C3 H8 O3) 
Glycerol

[39].

3JU6 Crystal structure of dimeric AK in complex with 
AMPPNP and arginine

Apostichopus japonicus X-ray diffraction 
(2.45 Å)

C10H17N6O12 P3, Arg [40].

3JU5 Crystal structure of dimeric AK Apostichopus japonicus X-ray diffraction 
(1.75 Å)

Mg2+ [40].

3M10 Substrate-free form of AK Limulus polyphemus X-ray diffraction 
(1.73 Å)

SO4 [41].

4GVY Crystal structure of AK in complex with l- 
citrulline and MgADP

Limulus polyphemus X-ray diffraction 
(2.091 Å)

ADP, citrulline and Mg2+ [42].

4GVZ Crystal structure of arginine kinase in complex 
with D-arg, MgADP, and nitrate

Limulus polyphemus X-ray diffraction 
(2.96 Å)

D-Arg, Mg2+, ADP, NO3 [42].

4GW0 Crystal structure of AK in complex with imino-l- 
ornithine, MgADP, and nitrate

Limulus polyphemus X-ray diffraction 
(2.448 Å)

ADP, imino-l-ornithine, Mg2+, NO3 [42].

4GW2 Crystal structure of AK in complex with l- 
ornithine, MgADP, and nitrate

Limulus polyphemus X-ray diffraction 
(2.157 Å)

ADP, l-ornithine, Mg2+, NO3 [42].

4AM1 Crystal structure of AK in the absence of 
substrate or ligands

Penaeus vannamei X-ray diffraction 
(1.25 Å)

absent [43].

4BG4 Crystal structure of AK in a ternary analog 
complex with arginine, ADP-Mg and NO3

Penaeus vannamei X-ray diffraction 
(1.601 Å)

ADP, Arg, β-mercapto-ethanol, 
Mg2+, NO3

[44].

4BHL Crystal structure of AK in binary complex with 
arginine

Penaeus vannamei X-ray diffraction 
(1.9 Å)

Arg, β-mercapto-ethanol [44].

4RF7 Crystal structure of double-domain AK in 
complex with substrate l-arginine

Anthopleura japonica X-ray diffraction 
(2.1 Å)

Acetate ion, Arg [45].

4RF9 Crystal structure of double-domain AK in 
complex with l-arginine and ATPgS

Anthopleura japonica X-ray diffraction 
(2.35 Å)

Phospho-thiophospho-ric acid- 
adenylate ester

[45].

4RF8 Crystal structure of double-domain AK in 
complex with ADP

Anthopleura japonica X-ray diffraction 
(2.17 Å)

ADP,4-(2-hydroxyethyl)-1- 
piperazine-ethanesulfo-nic acid

[45].

4RF6 Crystal structure of double-domain AK Anthopleura japônica X-ray diffraction 
(1.95 Å)

absent [45].

5J99 Ambient temperature transition state structure 
of AK - crystal 8/Form I

Limulus polyphemus X-ray diffraction 
(1.7 Å)

ADP, Mg2+, Arg, NO3 [46].

5J9A Ambient temperature transition state structure 
of AK - crystal 11/Form II

Limulus polyphemus X-ray diffraction 
(1.997 Å)

ADP, Mg2+, Arg, NO3 [46].

5U92 Crystal structure of AK in complex with arginine Polybetes pythagoricus X-ray diffraction 
(2.0 Å)

Arg, Na+ [47].

5U8E Crystal structure of substrate-free AK Polybetes pythagoricus X-ray diffraction 
(2.18 Å)

Na+ [47].

6FH3 Protein AKMcsB in the pArg-bound state Geobacillusstearothermophilus X-ray diffraction 
(1.85 Å)

Ethylene glycol, phospho-arginine [48].

6FH2 Protein AKMcsB in the AMP-PN-bound state Geobacillusstearothermophilus X-ray diffraction 
(2.7 Å)

AMP phosphor-amidate [48].

6FH1 Protein arginine kinase McsB in the apo state Geobacillus stearothermophilus X-ray diffraction 
(1.7 Å)

Ethylene glycol, formic acid, 
imidazole

[48].

5ZHQ Crystal structure of AK Scylla paramamosain X-ray diffraction 
(3.002 Å)

SO4 [49].

6KY3 Structure of AK H284A mutant Daphnia magna X-ray diffraction 
(1.34 Å)

Arg, K+, PO4 [50].

6KY2 Crystaline structure of AK- WT Daphnia magna X-ray diffraction 
(1.87 Å)

PO4 [50].

6TV6 Octameric McsB Bacillus subtilis subsp. Subtilis str. 
168

X-ray diffraction 
(2.5 Å)

Mg2+ [51].

7RE6 Crystal Structure of the brown dog tick AK in 
absence of substrate or ligands

Rhipicephalus sanguineus X-ray diffraction 
(1.53 Å)

absent [52].

7VCJ AK H227A Daphnia magna X-ray diffraction 
(1.75 Å)

NO3, PO4 [53].

7EWS Crystal structure of AK3 Paramecium tetraurelia X-ray diffraction 
(2.0 Å)

absent To be 
published.

B.M. Vasconcellos et al.                                                                                                                                                                                                                       Biochemistry and Biophysics Reports 40 (2024) 101837 

4 



species of trypanosomatids, which have a single AK isoform, high-
lighting the fact that T. brucei has the canonical form (cytosolic) and two 
other isoforms [66].

Genes that encode proteins with unknown functions were deposited 
in the bacteria database; however, there were blocks of similarity to the 
C-terminal domain of AK in their sequences, while the N-terminal was 
absent [67]. Subsequently, genes like AK were deposited in the data-
base, containing C-terminal and N-terminal domains, the same way it 
occurs in eukaryotic organisms [68]. A few bacterial species contain a 
complete gene homologous to AK, i.e., with the C-terminal and N-ter-
minal domains present, the largest of the bacterial species carry a 
sequence homologous to the one in the C-terminal domain [69]. This 
homologous sequence was named MscB [70]. McsB has a phosphagen 
kinase-like domain, containing an adaptation in its structure that allows 
it to target protein substrates. In addition, it also has a phosphoarginine 
binding domain, providing an allosteric increase in the kinase activity of 
proteins that carry phosphoarginine [48].

After the complete sequencing of some proteobacteria, such as 
Desulfotalea psychrophila LSv54 [71], Sulfurovum sp. NBC37-1 [72], 
Myxococcus xanthus, and Moritella sp. [73], sequences like that of AK 
were found in these species, containing all the amino acid residues 
necessary for enzyme activity [74]. Phylogenetic analysis showed that 
the cluster containing the four bacterial species mentioned above are 
closer to eukaryotic AKs than to bacterial AKs related to McsB [74]. 
Andrews et al. [74] was the first to describe and characterize a bacterial 
AK in the species D. psychrophila. In the bacterium M. xanthus, AK plays a 
vital role in the formation of fruiting bodies and viable spores [75]. 
Suzuki et al. [69] discussed the evolution of AKs in bacteria, according to 
phylogenetic analyses, the AK sequences of bacteria are grouped into 
two different clusters, named cluster A, in which are grouped the species 
Oceanithermus profundus, Nitratifractor salsuginis, Moritella sp., Sulfur-
uvum sp., Sulfurovum lithotrophicum, 14 species of ciliates, and one por-
ifera, and cluster B, which includes most invertebrate species and the 
bacterial species Desulfobacterium autotrophicum, D. psychrophila, 
M. xanthus, and Ahrensia sp. Cluster A possibly diverged at an early stage 
in the evolution of AKs, and there is the hypothesis that these genes were 
inserted by horizontal transfer [69]. In a more recent study, it was 
verified that cluster B, described by Suzuki et al. [69], is subdivided into 
two clusters: B and B′, in which cluster B′ comprises species D. auto-
trophicum and D. psychrophila, and cluster B mainly encompasses species 
of the genus Myxococcus [76].

3.2. Multicellular organisms

In the phylum Porifera, the amino acid sequence of AK was deduced 
in the species Suberites domuncula. It has been observed that AK over-
expression in this species occurs as a response to exposure to exogenous 
silicic acid. Silicic acid is a spicule component in Demospongiae, whose 
synthesis and formation demand a considerable energy reserve [77]. 
According to Conejo et al. [78] AK could participate in energy transport 
within flagellated choanocytes in sponges. In the phylum Cnidaria, AK 
was isolated and characterized in the sea anemone Anthopleura japonicus 
[33]. Subsequently, the physicochemical characteristics of this enzyme 
were determined; nevertheless, the physiological role of AK in this 
phylum has not been explained.

The role of AK in arthropods has been extensively investigated, being 
found mostly in muscles [79–82], indicating a role in cellular energy 
metabolism [81]. In addition, AK is found in other organs, such as the 
middle intestine, hepatopancreas, salivary gland, hemolymph, head, 
ovaries, Malpighian tubule, and compound eyes [82–88]. The tissue 
distribution of AK and their respective genes may indicate a high energy 
demand in these compartments through the maintenance of constant 
ATP levels in the cells [89].

More recently, the role of AK in response to viral infection has been 
investigated. The cDNA derived from the shrimp Penaeus stylirostris 
showed upregulation of AK in the hepatopancreas 30–40 h after 

infection with the White Spot Virus (WSV) when compared to non- 
infected shrimp [86]. Similarly, a proteomic analysis of hemolymph of 
the crab Scylla serrata after WSV infection showed upregulation of the 
AK [85]. This response might indicate metabolic stress caused by the 
viral infection [85]. In the shrimp Litopenaeus vannamei, WSV infection 
induced high expression of AK in the muscles and hemocytes, suggesting 
an association with the immune response [81]. Further, preincubation of 
AK with WSV increases viral infection in shrimp, resulting in the pro-
motion of pathogenicity [81]. Alternatively, Wang et al. [90] showed 
that after 6 h of WSV infection in the shrimp Fenneropenaeus chinensis, 
AK and other proteins related to the cellular structure of energy meta-
bolism were downregulated. Differences in upregulation and down-
regulation of AK in the systems studied might be related to the timing of 
the viral infection and the shrimp species studied. Studies in mosquitoes 
that are disease vectors, such as Anopheles gambiae, the vector of malaria 
disease, show that silencing the ak gene promotes reduction of infection 
by the protozoa Plasmodium falciparium and Plasmodium berghei in the 
host’s middle intestine [91]. In Aedes aegypti, the main vector of dengue, 
zika, and chikungunya fevers, after infection with the dengue virus 
serotype 2, there was an upregulation of proteins related to metabolism, 
such as pyruvate carboxylase, saposin, aspartate aminotransferase, and 
AK [92].

Insecticide metabolism is a process that requires a great energy de-
mand [93]. In this context, some studies have shown a correlation be-
tween the AK and insecticides. In the Chinese bee Apis cerana cerana, the 
insecticides pyriproxifen and phoxim, as well as the herbicide paraquat, 
induced overexpression of the AK mRNA, indicating that the AK is 
induced and activated after exposure to chemical stress [94]. Over-
expression of AK protein was reported in field populations of the cotton 
bollworm Helicoverpa armigera resistant to pyrethroid insecticides 
(Adana and Mardin provinces, Turkey) when compared to susceptible 
populations [95]. Dawkar et al. [96] showed that artificial feeding of 
H. armigera containing chlorpyrifos induces up to threefold upregulation 
of AK protein in the intestine, as well as cytochrome P450 (CYP) and 
carboxyl/choline esterase, i.e., important proteins in the detoxification 
of insecticides [97,98], accompanied by an increase in enzyme activity 
and transcriptional levels of AK, which were superior to those in the 
control groups. In the beetle Tribolium castaneum, exposure to delta-
methrin insecticide resulted in an increase in the transcriptional levels of 
AK1 and AK2 from 2 to 4 h after treatment. Additionally, silencing of 
genes ak1 and ak2 of T. castaneum triggered a decrease in the survival of 
beetles treated with deltamethrin [93]. These results indicate that AK 
may be involved in the response to chemical stress, being capable of 
aiding the metabolism of insecticide molecules [96]. On the other hand, 
in the mosquito Culex quinquefasciatus, vector of lymphatic filariasis, the 
treatment with temephos insecticide reduced AK expression in the 
midgut, suggesting a possible decrease in energy metabolism as a result 
of cellular stress caused by exposure to the insecticide [99].

Some studies have shown that AK responds to different types of stress 
in arthropods. In the shrimp Marsupenaeus japonicus, the AK enzyme was 
upregulated under hypoxic conditions [100]. In A. cerana cerana, 
exposure to several abiotic stresses, such as cadmium chloride, hydrogen 
peroxide, vitamin C, and extreme temperatures (4 ◦C and 42 ◦C), as well 
as biotic stresses induced by the ecdysone hormone and fungus Ascos-
phaera apis, resulted in upregulation of AK [94]. In T. castaneum, stresses 
caused by low and high temperatures (4 ◦C and 45 ◦C, respectively) and 
by the herbicide paraquat also increased gene expression levels of AK1 
and AK2. Moreover, silencing genes ak1 and ak2 drastically reduces the 
tolerance of these individuals to such stress conditions [87]. In a more 
recent study, it was observed that exposure of the mosquito A. aegypti to 
gamma radiation promotes upregulation of the AK protein [101].

To investigate the biological function of AK, some authors used the 
molecular tool RNA interference (RNAi). Phenotypes such as the 
decrease in the survival rate [26,82,88,102–104]; morphological 
changes such as darkening of the integument [26] and malformation of 
the wings and cuticle [87]; and deleterious effects on development such 
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as reduced pupation rates [82,87,105], oviposition [87,102], and 
hatching rates were observed [87,88,102]. This set of results suggests 
that the ak gene is essential for survival, development, and fecundity in 
insects.

Due to the success of ak gene silencing, this gene is considered a high- 
potential molecular target for effective insect control based on RNAi 
technology [106]. Supporting this hypothesis, transgenic Arabidopsis 
plants expressing dsRNA directed at the ak gene were tested against the 
H. armigera species. As a result, it was observed that caterpillars eat less 
transgenic plants. Alternatively, caterpillars that atethe transgenic 
plants showed high mortality rates and delayed development compared 
to the caterpillars who were only fed wild plants [103]. Ai et al. [107] 
conducted similar tests using two types of transgenic tobacco plants 
expressing dsRNA-ak on the aforementioned species. The silencing 
molecules were able to reduce the size and body mass of the caterpillars, 
in addition to promoting repellent behavior. Camargo et al. [108] used 
two different dsRNA-ak delivery approaches to the tomato pest Tuta 
absoluta through in vitro uptake of dsRNA by the petiole and by Agro-
bacterium-mediated transformation. In both approaches, mortality, 
developmental delays, smaller body size and reduced herbivory were 
observed, the latter being more intense in transgenic plants.

In the phylum Nematoda, AK has been characterized in some species. 
In the model organism Caenorhabditis elegans, five AK isoforms were 
found, one of which (ARGK-2) was possibly located in the mitochondria. 
All these identified AKs have kinetic constants typical of AKs observed in 
other species [8]. In the species Toxocara canis, Toxocara vitulorum, and 
Ascaris lubricoides, immunofluorescence tests detected the presence of 
AK in the muscles, epidermis, intestine, oviduct, and uterus, i.e., meta-
bolically active compartments [109]. Experiments with cultures of goat 
peripheral blood mononuclear cells (PBMC) treated with different con-
centrations of recombinant AK from Haemonchus contortus induced an 
increase in the cytokines IL-4, IL-10, IL-17, and IFN-γ; suppressed cell 
proliferation; reduced cell migration; and increased nitric oxide pro-
duction and apoptosis [110]. These results show the participation of AK 
in the parasite-host interaction, regulating the host’s immune functions 
[111]. Alternately, Xu et al. [111] showed a different result, in which 
rabbit PBMC stimulated by two recombinant AKs from the parasitic 
arthropod Sarcoptes scabiei resulted in a significant increase in cell 
proliferation, decreased apoptosis, upregulation of the genes Bcl-2, 
Bcl-xl, and NF-kB (p65), downregulation of Bax genes; an increased 
rate of cell migration, and promotion of interleukin (IL-4 and IL-17) 
secretion; and inhibition of IL-2, IFN-g, and IL-10 secretion. A possible 
application of AK in the immunodetection of T. canis infection in 
humans was tested, however, the antigen shows cross-reactivity with 
Toxoplasma gondii, Plasmodium vivax, and Entamoeba histolytica [112].

In the phylum Mollusca, specifically in the species Patinopecten yes-
soensis, four AK protein-coding genes were identified. In acidic pH 
conditions, the genes ak2, ak3, and ak4 were upregulated in the mantle, 
gills, and striated muscle [113]. In the species Sepia pharaonis, the 
transcriptional levels of AK in the muscles and liver were increased 
under low-salinity conditions [114]. The AK response to stress confirms 
the results obtained by other authors in other models, suggesting a 
relationship between these proteins and their respective genes and en-
ergy homeostasis control during environmental changes.

4. Allergens

Allergic diseases represent an important cause of morbidity in the 
world, strongly impacting health systems and the economy [115]. It is 
estimated that 30%–40 % of the population worldwide is affected by 
some type of allergy [116], and the prevalence of these diseases, as well 
as their complexity and severity, tend to increase, especially in young 
adult patients and children [117]. Allergies include rhinitis, dermatitis, 
asthma, drug allergy, hives (urticaria), insect allergy, anaphylaxis, 
angioedema, and food allergy [118].

Food allergy corresponds to a pathological reaction of the immune 

system, which occurs after ingestion of a food protein antigen [119]. 
Shellfish allergy (mollusks and crustaceans) is one of the most common 
food allergies in the world [120]. In the last 20 years, several allergens 
have been sequenced and identified in molluscan and crustacean spe-
cies. In general, these allergens are proteins of low molecular weight, 
with acidic isoelectric points, that are soluble in water, and have high 
thermal stability [121]. Tropomyosin was the first allergen found in 
shellfish. Subsequently, other proteins were reported, such as myosin 
light chain (MLC), sarcoplasmic calcium-binding protein (SCP), and AK 
[122]. The latter was reported in crab [123,124], shrimp [125,126], 
moth, cockroach, lobster, and mussel [127].

Binder et al. [127] were the first to describe AK as an allergen, 
showing IgE reactivity in serum samples from patients with a history of 
type 1 allergy to recombinant AK from Plodia interpunctella. Further-
more, experiments with basophils from two patients sensitive to re-
combinant AK from P. interpunctella resulted in the release of histamine 
[127], a molecule with a relevant function in allergic responses [128]. 
Later, a ~40 kDa protein was found that binds to IgE, very common in 
sera from shrimp-allergic patients, and it was designated as Pen m 2, 
with the amino acid sequence of this protein being very similar (90 %) to 
the AK sequences of the crustaceans M. japonicus, Homarus gammarus, 
and Procambarus clarkii [125]. An antibody to this protein (Pen m 2) was 
synthesized for immunoblotting assay. The results showed reactivity to 
purified AKs of other crustacean species, as well as sera from 
shrimp-allergic patients, confirming the identity of AK protein as a 
common crustacean allergen [125]. A monoclonal antibody (MAb38G6) 
specific for the Periplaneta americana allergen, secreted by hybridoma 
clone 38G6 [129] and a heptapeptide phage to recognize it was tested 
[130]. The two-dimensional electrophoresis analysis showed eight 
reactive spots for MAb38G6, and all of the proteins were found to be 
homologous to AK. All the serum samples from cockroach-allergic pa-
tients contained IgE bound to a protein purified by affinity to MAb38G6, 
i.e., AK, unlike non-allergic patients, whose sera were not reactive 
[130].

Due to the antigenicity of AK observed in mammals, this protein has 
been considered as a candidate for vaccines [131]. AK vaccines were 
analyzed in mice that were previously sensitized to crude cockroach 
extract (P. americana) containing AK. There was an increase in the 
amount of IgG1 specific to the crude cockroach extract in the group that 
received the AK vaccine [132]. Additionally, inflammatory cells such as 
neutrophils, eosinophils, and lymphocytes were reduced in bron-
choalveolar lavage fluid, with a decrease in the degrees of histopatho-
logical damage and lower expression of the cytokines IL-4, IL-5, IL-13, 
and TNF-α in the lungs, compared to the results before vaccination 
[132]. A more recent study obtained similar results, in which the AK 
vaccine in allergic mice resulted in a decrease in the degree of histo-
pathological damage, as well as the degree of goblet cells, reduced 
collagen and fibrosis deposition in lung tissue, and lower gene expres-
sion of cytokines, compared to the group that received the placebo 
vaccine [133].

5. Inhibitory molecules

In the past few years, some AK protein inhibitor molecules have been 
found, most of them being phenolic compounds [134]. It was reported 
that two Camellia sinensis catechins inhibit the enzyme activity of re-
combinant AK from T. cruzi by 50 % nanomolar concentrations [135]. It 
was observed that rutin inhibits around 80 % of AK activity (at con-
centrations of 20–60 μM), being a non-competitive inhibitor. Moreover, 
the thermodynamic properties found indicate that rutin spontaneously 
binds to AK, and hydrophobic interactions are involved in this binding 
[136]. The inhibitory effects of quercetin and luteolin were tested 
against the enzyme activity of AK from Locusta migratoria manilensis. 
These compounds were able to inhibit 50 % of AK activity at concen-
trations of 12 and 24 μM, respectively [137]. Predictions of molecular 
interaction by the docking technique demonstrated that the compounds 
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rutin, quercetin, and luteolin are located within the hydrophobic pocket 
of the enzyme, forming hydrogen bonds with amino acids present in the 
active site region, possibly constituting the principal mechanism of in-
hibition [136,137]. Resveratrol is located within the hydrophobic 
pocket of the enzyme, along with the other compounds mentioned 
above, however, there are no hydrogen bonds with the protein. To 
inhibit 50 % of the AK activity of T. cruzi, a concentration of 325 μM was 
needed. Furthermore, the compound was able to inhibit the growth of 
the epimastigote and trypomastigote forms of T. cruzi (IC50 of 98 and 77 
μM, respectively) [138]. More recently, it was reported that the poly-
phenolic pigment delphinidin also has trypanocidal activity against the 
trypomastigote form of T. cruzi, in addition to interacting with the AK 
protein, showing inhibitory effects [139]. Molecular docking simula-
tions demonstrated that delphinidin docks onto the ATP/ADP-binding 
site, specifically where ribose-phosphate binding occurs [139].

It is important to highlight that phenolic compounds are safe for 
human health, as they are currently used in the treatment of diseases 
such as hypertension, metabolic disorders, and neurodegenerative dis-
eases [140]. The trypanocidal activity of resveratrol documented by 
Valera-Vera et al. [138,139] encourages novel research on the devel-
opment of medications for Chagas Disease treatment.
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