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Abstract: A water-soluble cyclophane dimer having two disulfide groups as a reduction-responsive
cleavable bond as well as several acidic and basic functional groups as a pH-responsive ionizable
group 1 was successfully synthesized. It was found that 1 showed pH-dependent guest-binding
behavior. That is, 1 strongly bound an anionic guest, 6-p-toluidinonaphthalene-2-sulfonate (TNS) with
binding constant (K/M−1) for 1:1 host-guest complexes of 9.6 × 104 M−1 at pH 3.8, which was larger
than those at pH 7.4 and 10.7 (6.0 × 104 and 2.4 × 104 M−1, respectively), indicating a favorable
electrostatic interaction between anionic guest and net cationic 1. What is more, release of the
entrapped guest molecules by 1 was easily controlled by pH stimulus. Large favorable enthalpies (∆H)
for formation of host-guest complexes were obtained under the pH conditions employed, suggesting
that electrostatic interaction between anionic TNS and 1 was the most important driving force for
host-guest complexation. Such contributions of ∆H for formation of host-guest complexes decreased
along with increased pH values from acidic to basic solutions. Upon addition of dithiothreitol (DTT)
as a reducing reagent to an aqueous PBS buffer (pH 7.4) containing 1 and TNS, the fluorescence
intensity originating from the bound guest molecules decreased gradually. A treatment of 1 with
DTT gave 2, having less guest-binding affinity by the cleavage of disulfide bonds of 1. Consequently,
almost all entrapped guest molecules by 1 were released from the host. Moreover, such reduction-
responsive cleavage of 1 and release of bound guest molecules was performed more rapidly in
aqueous buffer at pH 10.7.

Keywords: cyclophane dimer; host-guest complexation; pH-dependent guest-binding; reduction-
responsive guest release

1. Introduction

Synthetic macrocyclic hosts play a crucial role in supramolecular chemistry and
nanoscience [1–4]. Currently, the development of a stimuli-responsive supramolecular sys-
tem [5,6] has been attracting much attention for the purpose of bio-molecular sensing [7–10]
and drug delivery systems [11,12]. Particularly, water-soluble macrocyclic hosts based on
cucurbit[n]urils [13–15], calix[n]arenes [16–19], pillar[n]arenes [20,21], cyclophanes [22–26],
and others have been frequently used for such purposes and numerous applications. For
instance, Isaacs et al. reported that the cucurbit[n]uril family acted as synthetic hosts to
give rise to a controlled guest binding and release in response to a change in pH [27].
Lee et al. developed attractive approaches to produce stimuli-responsive supramolecular
nanocapsules based on amphiphilic calix[n]arenes to trigger a release of the encapsulated
hydrophobic guest molecules [28]. Recently, stimuli-responsive nano-sized assemblies
based on water-soluble pillar[n]arene in the potential applications of drug delivery systems
were reviewed by Wang et al. [29].

Among these hosts, azacyclophanes have an advantage from the view point of their
modifications by attaching various functional moieties on the nitrogen atoms of the macro-
cyclic skeleton [30–32]. Our effort has been paid to functionalize the tetraaza [6.1.6.1]para-
cyclophane skeleton, which can act as a guest-binding site [33,34]. As is well known, a
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disulfide bond is a reduction-responsive and cleavable connector [35–37]. In the preced-
ing paper, we reported a reduction-responsive water-soluble cyclophane dimer having a
disulfide linkage [38]. The guest-binding affinity of the cyclophane dimer was found to be
increased relative to that by the corresponding monocyclic cyclophane [38]. Reduction of
the disulfide bond of the cyclophane dimer by reducing reagents gave monocyclic cyclo-
phanes having less guest-binding affinity to release the entrapped guest molecules [38].
Recently, we also developed reduction-responsive supramolecular host-guest aggrega-
tion/disaggregation systems based on disulfide linkages [39]. In the next strategy of our
research on the stimuli-responsible water-soluble cyclophane dimers, we became interested
in developing pH/reduction dual-responsive hosts to increase the responsivity to external
stimuli for the guest capture and release systems. Here, we now report the design and
synthesis of water-soluble cyclophane dimer bearing different moieties responsive to two
different external stimuli 1 (Figure 1). The former is reduction-responsive cleavable disul-
fide bonds while the latter is several acidic and basic functional groups as a pH-responsive
ionizable group. Total net charges of 1 are designed to decrease by changing pH from acidic
to basic aqueous solutions, which reflect differences in their guest capture and release
abilities (Figure 2). Host 1 having disulfide bonds is expected to be broken down into the
corresponding monomeric cyclophanes 2 by reductants, such as dithiothreitol (DTT). In ad-
dition, we demonstrated pH-dependent guest-binding behavior and reduction-responsive
cleavage of 1, with a concomitant enhanced release of bound guest molecules.
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2. Results and Discussion
2.1. Design and Synthesis of pH/Reduction-Responsive Cyclophane Dimer

We designed a water-soluble cyclophane dimer bearing two disulfide groups as a
reduction-responsive cleavable bond as well as several acidic and basic functional groups
as a pH-responsive ionizable group 1 (Figure 1). Cyclophane dimer 1 was constructed with
two tetraaza[6.1.6.1]-paracyclophanes [40] and a zwitterionic ionizable linker connected
with disulfide bonds. Each former cyclophane skeleton has a hydrophobic cavity for guest
binding and three hydrophilic polar side chains with an ammonium group. The latter linker
originating from ethylenediaminetetraacetic dianhydride (EDTAD) affords deprotonatable
carboxylic acids and protonatable amino groups. The carboxylic acid is uncharged below
its pKa, while it is deprotonated and thus the charged form is above the pKa [41]. Similarly,
the peripheral primary and central tertiary ammonium groups also act as pH-responsive
ionizable groups depending on their pKa [41]. That is, compound 1 is expected to act as
a water-soluble host in aqueous buffer over a wide pH range due to the ionizable polar
side chains and linker. In addition, the net cationic charge of compound 1 is expected to
decrease by changing pH from acidic to basic aqueous solutions, as shown in Figure 2.

Cyclophane dimer 1 was synthesized as shown in Scheme 1. In the previous study,
we reported a synthesis of a succinimidyl ester derivative of cyclophane having three Boc-
protected β-alanine residues 3 [42]. A cyclophane derivative tethered with cystamine 4 was
prepared by a reaction of 3 with cystamine dihydrochloride in the presence of triethylamine.
A precursor (5) of 1 was synthesized by aminolysis of 4 with EDTAD. A treatment with
trifluoroacetic acid (TFA) gave water-soluble cyclophane dimer 1 from 5 by removal of
the protecting groups in a fairly good yield. All the new obtained compounds were fully
assigned by 1H and 13C NMR spectroscopy, matrix-assisted laser desorption time of flight
mass spectrometry (MALDI-TOF MS), and elemental analysis (see the Supplementary
Materials). Despite the presence of a hydrophobic macrocyclic skeleton, compound 1 has
high solubility in a wide pH range of aqueous media owing to the ionizable polar side
chains and linker.
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Scheme 1. Preparation of pH/reduction-responsive cyclophane dimer 1.

2.2. pH-Responsive Guest-Binding Behavior of 1

pH-dependent guest-binding ability of 1 toward 6-p-toluidinonaphthalene-2-sulfonate
(TNS) as an anionic fluorescent guest, whose emission is extremely sensitive in the intensity
to change in microenvironmental polarity surrounded by the molecule, was examined by
fluorescence titration experiments at 298 K. First, we executed the fluorescence titration
experiments of 1 with TNS at three pH levels: 3.8 (acidic), 7.4 (neutral), and 10.7 (basic).
Upon addition of 1 in a large excess amount to each of the aqueous buffers containing
TNS, the fluorescence intensity originated from the entrapped guest increased, showing
saturation behavior, as shown in Figure 3. The extent of saturated changes in the emission
intensity of TNS by the complexation with 1 increased in the following sequence of pH:
3.8 > 7.4 > 10.7 (Figure 3). The binding constant (K/M−1) for 1:1 host-guest complexes
was calculated on the basis of the Benesi–Hildebrand method [43] for the titration data.
It was found that 1 showed pH-dependent guest-binding behavior. That is, the K value
of 1 with TNS at pH 3.8 (9.6 × 104 M−1) and was larger than those at pH 7.4 and 10.7
(6.0 × 104 and 2.4 × 104 M−1, respectively), suggesting a favorable electrostatic interaction
between anionic guest and net cationic 1. Then, in order to investigate the pH-dependent
guest-binding behavior, we tried to evaluate the binding behavior of 1 with TNS in detail
at a pH ranging between 4.0 and 5.6 by the identical method. A plot of the correlation
of the Gibbs free energy (∆G) for formation of host-guest complexes with pH values is
shown in Figure 4, indicating an equivalence point, which was equal to pKa of carboxylic
acids of 1. The pKa value of the carboxylic acids of 1 was estimated to be ca. 4.5, which
was generally close to the values of acetic acid (pKa, 4.76) [41] or propanoic acid (pKa,
4.87) [41]. Because the carboxylic acids are uncharged below the pKa, compound 1 has the
net cationic charge (+8), as shown in Figure 2. On the other hand, the carboxylic acids are
deprotonated and thus the charged form above the pKa, compound 1, has the net cationic
charge (+6), as shown in Figure 2. Therefore, the electrostatic interaction between anionic
TNS and 1 below the pKa was more favored than the corresponding interaction above the
pKa. It was found that 1 showed pH-dependent guest-binding behavior, indicating the net
cationic charge of compound 1 is the most important for host–guest interaction. Despite
host 1 being in its anionic form at pH 10.7, which causes electrostatic repulsion with the
anionic guest, it still binds anionic TNS in aqueous media. Hence, hydrophobic interaction
between 1 and TNS is considered to be one of the important driving forces.
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Then, we investigated reversible changes of the fluorescence spectra in the intensity of
TNS in the presence of 1 at different pH tuned by NaOH and HCl. Upon addition of NaOH
to aqueous buffers containing 1 and TNS, the fluorescence intensity originated from TNS
decreased, as shown in Figure 5. Moreover, the fluorescence intensity recovered, followed
by addition of HCl to the alkaline solution (Figure 5). These fluorescence spectral changes
induced by pH stimulus were reversible and can be repeated several times (Figure 5), even
though the extent of change in fluorescence intensity tended to be smaller, owing to the
diluted solution and formation of NaCl during the acid-base circle. These results indicate
that the binding and release of the guest by 1 was easily controlled by pH stimulus.

2.3. Thermodynamically Characterization of Guest-Binding Behavior of 1

pH-responsible cyclophane dimer 1 binds TNS through electrostatic and hydrophobic
interactions, as mentioned above. In order to consider the host–guest interactions in all, we
tried to evaluate thermodynamic parameters from temperature-dependent K values for
1 with TNS. Consequently, we executed the fluorescence titration experiments of 1 with
TNS at 288, 298, 308, and 318 K at three pH levels: 3.8 (acidic), 7.4 (neutral), and 10.7 (basic)
(Figure S5). The obtained K values are summarized in Table 1. In addition, Gibbs free
energy (∆G), enthalpies (∆H), and entropies (∆S) for the formation of host-guest complexes,
which were evaluated from Van’t Hoff analysis (Figure S6), are summarized in Table 2.
As is obvious from the data in Table 2, large favorable ∆H values were obtained under
the pH conditions employed. These results suggest that electrostatic interaction between
anionic TNS and 1 was the most important driving force for host-guest complexation. Such
contributions of ∆H values on the host-guest complexation decreased along with increased
pH values from acidic to basic solutions (Table 2).
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Figure 3. Fluorescence spectra of TNS (1.0 µM) in aqueous buffer at pH 3.8 (a), 7.4 (b), and 10.7 (c) upon addition of 1 at
298 K. [1] = 0, 5, 10, 15, 20, 25, 30, 35, 40, and 45 µM. Ex. 326 nm.
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Figure 4. Correlation of Gibbs free energy (∆G) for formation of host-guest complexes with pH
values.
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Table 1. The binding constant (K/M−1) of 1 with TNS at 288, 298, 308, and 318 K at three pH levels:
3.8, 7.4, and 10.7.

T/K
pH 288 298 308 318

3.8 1.6 × 105 9.6 × 104 4.9 × 104 2.4 × 104

7.4 1.0 × 105 6.0 × 104 4.0 × 104 2.3 × 104

10.7 3.3 × 104 2.4 × 104 1.7 × 104 1.2 × 104

Table 2. Free energy change (∆G, kJ mol−1) and thermodynamic parameters of enthalpies (∆H, kJ
mol−1) and entropies (∆S, kJ mol−1 K−1) for formation of host-guest complexes at 298 K at pH of 3.8,
7.4, and 10.7.

pH ∆G, kJ mol−1 ∆H, kJ mol−1 T∆S, kJ mol−1

3.8 −28.4 −75.2 −46.8
7.4 −27.2 −64.3 −37.1

10.7 −25.0 −49.9 −24.9

2.4. Reduction-Responsive Guest-Binding Behavior of 1

Prior to the reduction-responsive guest binding/releasing behavior of 1, multivalent
effects on the guest-binding in macrocycles were examined. Herein, we compared control
compound 6 [38] as a monocyclic cyclophane having a thiol group (Figure 6). We reported
previously that the K value of 6 with TNS [38], which was obtained by fluorescence titration
experiments in the presence of DTT in an aqueous buffer (pH 7.4) at 298 K, was relatively
small (K = 9.6 × 103 M−1). Therefore, the K value of cyclophane dimer 1 with the identical
guest was enhanced about 6-fold relative to those of 6, reflecting multivalent effects in
macrocycles.

Controlled binding/releasing of guest molecules by stimuli-responsive hosts is an
attractive research topic. In regard to the reduction-responsive host-guest chemistry, the
present cyclophane dimer has two disulfide moieties that are cleavable to thiols by a treat-
ment with reductants. Actually, 1 was easily transformed to the corresponding monocyclic
cyclophane thiol 2 by reducing reagents, such as DTT. In a proof-of-principal experiment,
degradation of 1 to thiols by DTT was verified by MALDI-TOF MS spectrometry. That is,
upon addition of DTT to aqueous PBS buffer (pH7.4) of 1, a peak originating from a reduced
form of 1, a thiol derivative of cyclophane 2, was observed, i.e., m/z, 899.7 was assigned
to [M + Na]+, where M stands for the corresponding thiol of cyclophane, C49H64N8O5S
(Figure S7).
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Figure 6. Monocyclic cyclophane having a thiol group.

Then, the controlled release of guest molecules by 1 was studied by fluorescence
spectroscopy. Upon addition of DTT to a PBS buffer (pH 7.4) containing 1 and TNS at
298 K, the fluorescence intensity originating from the bound guest molecules decreased
gradually, as shown in Figure 7a. A treatment of 1 with DTT gave 2 with less guest-binding
affinity by the cleavage of disulfide bonds of 1. Accordingly, almost all entrapped guest
molecules by 1 were released to the bulk aqueous phase. Moreover, reduction-responsive
cleavage of 1, accompanying the release of entrapped guest molecules, was performed
more rapidly in aqueous buffer at pH 10.7, as shown in Figure 7b. These results indicate
that the nucleophilic reactivity of DTT with a disulfide group increases at an alkaline pH.
On the other hand, such release of the entrapped guest hardly occurred at acidic pH, due
to the poor nucleophilic reactivity of DTT. Similarly, upon addition of glutathione (GSH)
to a PBS buffer solution containing host-guest complexes of 1 with TNS, the fluorescence
intensity decreased, indicating the release of the entrapped guest molecules (Figure S8).
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Figure 7. Time course of the fluorescence intensity change of entrapped TNS (1.0 µM) in the presence of 1 (25 µM) upon
addition of DTT (50 µM) in aqueous buffer at pH 7.4 (a) and 10.7 (b).

3. Experimental Section
3.1. Materials

Succinimidyl ester derivative of tetraaza[6.1.6.1]paracyclophane bearing Boc-protected
β-alanine residues (3) was prepared according to the literature reported previously [42].
6-p-toluidinonaphthalene-2-sulfonate (TNS) was obtained from a commercial source from
Sigma-Aldrich (St. Louis, MO, USA) and used without further purification. Acetate buffer (pH
3.8–4.8), phosphate buffer (pH 5.0–7.0), 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic
acid (HEPES) buffer (pH 7.4), and carbonate buffer (pH 10.7) were used for fluorescence
experiments.

3.2. Cyclophane Derivative Tethered with Cystamine (4)

A solution of succinimidyl ester derivative of cyclophane (3) [42] (0.20 g, 0.15 mmol)
in dry dichloromethane (DCM, 15 mL) was added dropwise to a solution of cystamine
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dihydrochloride (0.70 g, 3.1 mmol) and triethylamine (2.0 mL) in dry DCM (10 mL), and
the mixture was stirred for 12 h at room temperature. The solvent was evaporated on a
rotatory evaporator to give a white solid. The crude product was purified on a column
of Sephadex LH-20 (methanol) for purification. The main fraction was evaporated on
a rotatory evaporator and dried under reduced pressure to give a white solid (190 mg,
92%): 1H NMR (400 MHz, CDCl3, 298 K) δ 1.44 (m, 35H), 2.19 (m, 6H), 2.36 (t, 2H), 2.55
(t, 2H), 3.02 (t, 2H), 3.23 (t, 2H), 3.29 (m, 6H), 3.53 (m, 2H), 3.64 (m, 10H), 3.97 (s 4H), 5.35
(s, 3H), 7.00 (m, 8H), and 7.22 (m, 8H). 13C NMR (100 MHz, CDCl3, 298 K): δ 24.8, 25.4,
26.1, 28.4, 29.5, 30.5, 30.6, 32.3, 33.2, 34.8, 36.4, 41.1, 48.8, 48.9, 70.0, 128.3, 130.2, 140.3, 140.5,
154.4, 155.9, 170.6, and 171.9. IR: 1635, 1701 cm−1 (C=O). Found: C, 58.10; H, 7.76; N, 9.21.
Calcd for C66H93N9O11S2•6H2O: C, 58.26; H, 7.78; N, 9.26. MALDI-TOF MS m/z: 1274.9
[M + Na]+, where M shows C66H93N9O11S2.

3.3. Cyclophane Dimer 1

Ethylenediaminetetraacetic dianhydride (EDTAD, 11 mg, 0.04 mmol) was added to
a solution of 4 (140 mg, 0.11 mmol) in dry N, N-dimethylformamide (DMF, 3 mL), and
the resulting mixture was stirred for 5 days at 60 ◦C. Chloroform (100 mL) was added to
the residue, and the mixture was then washed with saturated aqueous sodium chloride
(20 mL). After being dried (Na2SO4), the solution was evaporated to dryness under reduced
pressure to give a white solid. The crude product was purified on a column of Sephadex
LH-20 (methanol) as an eluent for purification. Evaporation of the main fraction on a
rotatory evaporator gave a white solid (5, 70 mg, 48%). Subsequently, trifluoroacetic acid
(1.3 mL) was added to a solution of 5 (60 mg, 0.027 mmol) in dry DCM (4 mL), and the
mixture was stirred for 3 h at room temperature. Evaporation of the solvent under reduced
pressure gave a white solid. The crude product was purified on a column of Sephadex
LH-20 (methanol) as an eluant. The product fraction was evaporated and dried in vacio to
give a white solid. (40 mg, 85%): 1H NMR (400 MHz, CD3OD, 298 K) δ 1.44 (m, 16H), 2.05
(m, 4H), 2.15 (m, 4H), 2.35 (m, 4H), 2.44 (m, 8H), 2.82 (m, 4H), 2.89 (m, 4H), 3.07 (m, 4H),
3.12 (m, 8H), 3.20 (m, 4H), 3.45 (m, 4H), 3.58 (m, 8H), 3.69 (m, 20H), 4.04 (s, 8H), 6.92 (m,
8H), 7.18 (m, 8H), and 7.40 (m, 16H). 13C NMR (100 MHz, CD3OD, 298 K) δ 22.3, 22.4, 25.6,
28.7, 31.0, 34.5, 35.7, 40.3, 42.0, 47.6, 55.1, 121.8, 128.2, 130.2, 139.4, 141.5, 160.1, and 170.1.
Found: C, 49.32; H, 6.16; N, 9.38. Calcd for C124H156F18N20O28S4•10H2O: C, 49.23; H, 5.86;
N, 9.26. MALDI-TOF MS: m/z 2162.3 [M + H]+ and 2184.3 [M + Na]+, where M denotes
cyclophane derivative as a free base and carboxylic acid (C112H150N20O16S4).

3.4. Binding Constants of Cyclophane with TNS

To each solution of TNS (1.0 µM), HEPES buffer (0.01 M, pH 7.4, 0.15 M with NaCl)
were added increasing amounts of 1, and the fluorescence intensity originating fron the
guest was monitored after each addition. The K values were calculated by using the
Benesi–Hildebrand method for titration data.

3.5. General Measurements

Elemental analyses were measured using an elemental analyzer J-Science Lab JM11
(Kyoto, Japan). Fluorescence spectra, IR spectra, MALDI-TOF MS, and NMR spectra were
recorded on a JASCO FP-750 (Tokyo, Japan), Perkin-Elmer spectrum one spectrometer
(Waltham, MA, USA), Bruker autoflex speed (Billerica, MA, USA), and Bruker Avance III
400 (Billerica, MA, USA), respectively.

4. Conclusions

We synthesized a water-soluble cyclophane dimer with two disulfide groups as a
reduction-responsive cleavable bond as well as several acidic and basic functional groups as
a pH-responsive ionizable group 1. Host 1 was found to show pH-dependent guest-binding
behavior. The bind and release of TNS as an anionic guest by 1 was easily controlled by pH
stimulus. Large favorable ∆H values were obtained under the pH conditions employed,
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suggesting that electrostatic interaction between anionic TNS and 1 was the most effective
driving force for host-guest complexation. In addition, 1 was found to show reduction-
responsive guest-binding behavior. Monomeric cyclophane 2 with less guest-binding
affinity formed by the cleavage of disulfide bonds of 1 by DTT. Consequently, almost all
entrapped guest molecules were released from 1. Moreover, release of entrapped guest
molecules proceeded more rapidly through reduction-responsive cleavage of 1 at basic pH.
Finally, guest-binding and releasing abilities of 1 are controlled by pH stimulus as well as
reducing reagents, such as DTT.

Supplementary Materials: The following are available online, Figure S1: 1H NMR spectrum of
compound 4. Figure S2: 13C NMR spectrum of compound 4. Figure S3: 1H NMR spectrum of
compound 1. Figure S4: 13C NMR spectrum of compound 1. Figure S5: Fluorescence titration spectra
at 288, 298, 308, 318K. Figure S6: Van’t Hoff analysis. Figure S7: MALDI-TOF MS spectra of 1 in the
presence of DTT. Figure S8: Time course for changes fluorescence upon addition of GSH.
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