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Abstract

This review summarizes published findings of the beneficial and harmful effects on the heart, lungs, immune system, kidney,
liver, and central nervous system of 47 drugs that have been proposed to treat COVID-19. Many of the repurposed drugs were
chosen for their benefits to the pulmonary system, as well as immunosuppressive and anti-inflammatory effects. However, these
drugs have mixed effects on the heart, liver, kidney, and central nervous system. Drug treatments are critical in the fight against
COVID-19, along with vaccines and public health protocols. Drug treatments are particularly needed as variants of the SARS-
Cov-2 virus emerge with some mutations that could diminish the efficacy of the vaccines. Patients with comorbidities are more
likely to require hospitalization and greater interventions. The combination of treating severe COVID-19 symptoms in the
presence of comorbidities underscores the importance of understanding the effects of potential COVID-19 treatments on other
organs.
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Key Points

* Repositioned drugs aim to ameliorate the disease by attenuating the
immune response and enhance lung function.

« They are not equally beneficial on the other organs (heart, kidney, liver,
and central nervous system).

e As a first drug with emergency use authorization and approval for
COVID-19, how remdesivir affects the heart is unclear and evidence
exists of possible negative effects.
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Introduction

Infection with the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), an enveloped RNA virus and the
cause of the coronavirus (CoV) disease 2019 (COVID-19)
pandemic, manifests in a range of symptoms, predominant-
ly fever, dry cough, and breathing difficulties, as well as
fatigue, pneumonia, dizziness, and gastrointestinal tract
(GD) symptoms [1, 2]. There is an overrepresentation of
patients with severe COVID-19 illness who have underly-
ing medical conditions, such as hypertension, cardiovascu-
lar disease, and diabetes [3—5]. COVID-19 can lead to
acute respiratory distress syndrome (ARDS), acute respira-
tory failure, and significant rise in cytokine and chemokine
levels, including cytokine storm syndrome [6], septic
shock, and multiple organ dysfunction (MOD) [7-12].
These conditions are involved in the higher mortality of
the most severe cases of COVID-19 and this increased risk
of mortality is greater in older patients and patients with
comorbidities, i.e., hypertension, diabetes, chronic ob-
structive pulmonary disease (COPD), cardiovascular dis-
ease, and cerebrovascular disease [7, 8, 13—15].

Beyond pneumonia, there are heart, liver, kidney, and neu-
rological complications [1, 16]. With many patients, COVID-
19 manifests functional damage to several organs, including
acute kidney injury, cardiac and myocardial injury, liver dys-
function, and neurological disorders [7, 17]. Patients with pre-
existing kidney, heart, or liver disease are more likely to suffer
severe kidney, cardiac, or liver symptoms and complications.
The involvement of these organs in COVID-19 is multiface-
ted, related to direct effects of the virus [17, 18] or to host
immune response (inflammatory infiltrates), and in particular
with the liver where there is also the potential of drug -induced
liver injury [19].

The rapid growth of COVID-19 into an extraordinary
pandemic has forced physicians and other health care pro-
viders to improvise in treating the most severe symptoms.
This has included the off-label use of many drugs. While
much is being learned about the unexpected effects of
COVID-19, including uncommon effects, there has been
the real time need to treat patients. These efforts have led
to decreased morbidity in those presenting with COVID-
19. Yet, as the pandemic continues, there is need for a
review of the available drugs and their beneficial and ad-
verse effects on systems in the body.

Additionally, we examine some of the effects of
remdesivir (RDV) and chloroquine (CQ) on cardiac re-
sponse in induced pluripotent stem cell (iPSC)—derived
human heart organoids. Similarly, a recent study assessed
the cardiotoxicity and QT prolongation of CQ-treated and
RDV-treated human iPSC-derived cardiomyocytes [20]
and found that RDV is associated with both cardiotoxicity
and arrhythmogenic risk.

SARS-CoV-2 Susceptibility and Disease
Manifestation

Viral Susceptibility

To assess the viral susceptibility of the various organs, re-
searchers have measured the expression levels of the SARS-
CoV-2, ACE2, and type II transmembrane serine protease 2
(TMPRSS2). SARS-CoV-2 spike (S) protein binds
angiotensin-converting enzyme 2 (ACE2), which is an en-
zyme attached to the cell membranes of many cell types, and
along with TMPRSS2, which primes the S protein by proteo-
lytic cleavage of the S protein, promotes entry of the virus into
host cells [21]. ACE2 and TMPRSS2 are expressed at varying
degrees in numerous tissues, including the lungs, kidney, liv-
er, heart, and brain [22-26] (https://www.proteinatlas.org/).
Interestingly, ACE2 and TMPRSS2 have lower expression
in airways of children as compared to adults [27, 28], while
they are upregulated in cardiomyocytes of older adults [29].
This could contribute to the milder manifestation of the
disease in children, but nonetheless the children show
complement-mediated thrombotic microangiopathy levels in-
dicative of blood vessel damage [30]. ACE2 is abundantly
expressed in the lungs, small intestines [31], kidney, liver,
and brain-endothelium and brain-vascular smooth muscle
cells [31, 32]. ACE2 and TMPRSS2 are co-expressed in the
respiratory tract (oral cavity and lungs) and highly co-
expressed in the GI tract [27, 33-36]. They are also both
expressed in the kidney [37] and were found in kidneys of
patients with COVID-19 [38, 39]. ACE2 and TMPRSS2
levels were found to be expressed in liver progenitors cells
with a cholangiocyte fate bias [40], which has been posited to
compromise the regenerative capabilities of the liver [41].
While ACE2 is highly expressed in human heart, TMPRSS2
is less expressed there, although other proteases (e.g., cathep-
sin L and furin) are more highly expressed in the heart [42].

Viral Infection

SARS-CoV-2 infection has been reported in the lungs [43—46]
and other organs, including the kidneys, heart, liver, and brain
[38, 39, 45, 47-49]. The viral load detected in the respiratory
tract of COVID-19 patients has been positively associated
with severity of the lung disease [50]. This is less clear with
the other organs. SARS-CoV-2 has been found to directly
infect engineered human kidney organoids, human-induced
pluripotent stem cell-derived cardiomyocytes, cholangiocytes
in human liver ductal organoids, and neuronal cells in human
brain organoids (with a concomitant increase in cell death)
[51-55]. However, the mechanism of viral entry is unclear.
There is evidence of direct viral infection of endothelial
cells, including viral particles in the endothelial cells of the
glomerular capillary loops of kidney tissues [18]; however, it
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is unclear whether SARS-CoV-2 infection of the kidneys
leads to acute kidney injury (AKI) [56]. Nonetheless, AKI is
observed frequently in COVID-19 patients and is associated
with respiratory failure and poor prognosis [57]. A high prev-
alence of kidney disease on admission and development of
AKI in hospitalized patients with COVID-19 were associated
with in-hospital mortality [58].

The SAR-CoV-2 virus has been isolated from
mycocardial and liver tissues [38, 49, 59], and SAR-
CoV-2 infection has been detected in endomyocardial bi-
opsies (EMBs) from a few patients [60]. Cardiac injury is a
common condition among hospitalized COVID-19 patients
and underlying cardiovascular disease (CVD) with myo-
cardial injury is linked to increase mortality with
COVID-19 [61, 62]. Whether viral entry into the heart
leads to the cardiac complications and dysfunction ob-
served in COVID-19 is actively being studied. A study of
iPSC-derived cardiac cells exposed to SARS-CoV-2 virus
led to cytopathic changes in the cells supporting that viral
infection could lead to cardiac damage [63].

Likewise with the liver, hypoalbuminemia and abnor-
mal liver biochemistries are associated with higher rates
of complications and mortality and worse recovery [64,
65]. It also has been suggested that injury to the liver could
be due more to the immune response than virus itself [66].
However, an ultrastructural analysis of livers of COVID-
19 patients with abnormal liver enzymes suggests that the
SARS-CoV-2 infection contributes to cytopathic lesions,
lending support that infection in the liver contributes to
hepatic impairment [67].

Understanding viral infection of the brain by SARS-
CoV-2 is actively being investigated. Meningitis, enceph-
alitis, encephalopathy, loss of smell, altered taste, head-
ache, and dizziness are all suggestive of potential neural
involvement and have been reported in COVID-19 patients
[68—70]. The SARS-CoV-2 virus has been detected in neu-
ral and capillary endothelial cells in the frontal lobe tissue
[71] and in the cerebrospinal fluid (CSF) of some COVID-
19 patients [69], albeit not necessarily in the cases with
severe neurological complications [72]. Evidence of
neuroinvasion was found with SARS-COV and MERS-
CoV lending support to a potential of viral entry into the
brain in contributing the neurological manifestations of
COVID-19 [73]. Along these lines, a study found that the
spike protein of SARS-CoV-2 can cross the blood brain
barrier [74]. Given that the loss of taste and smell is one
of the common first symptoms of COVID-19, it is unsur-
prising that SARS-CoV-2 has been found to enter the CNS
via the olfactory system, which is likely due to the prox-
imity of neurons to the thin submucosal lining [75].
Indeed, a recent study found evidence of neuroinvasion
of SARS-CoV-2 in brains of humans and mice and admin-
istering ACE2 antibody mitigated neuronal infection [76].
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Role of Inflammation

In addition to viral infection, host inflammatory responses
contribute to the disease manifestation of COVID-19.
Accumulation of inflammatory cells has been found in the
lungs, heart, kidneys, and liver [18, 39]. The lungs are targeted
by SARS-CoV-2, with both immediate and potentially lasting
consequences. COVID-19 is characterized by respiratory
symptoms that can lead to respiratory failure [77]. ARDS is
a common cause of death in critically ill COVID-19 patients
[78]. ARDS, sepsis, and MOD all contribute to lung compli-
cations in COVID-19 patients. SARS-CoV-2 infection could
have both direct cardiovascular and indirect cardiovascular
consequences, including myocardial injury, acute coronary
syndromes, cardiomyopathy, arrhythmias, and inflammation
[17, 79]. Additionally, inflammation is a potential contributor
to myocarditis in COVID-19 [80, 81]. Patients with COVID-
19 are known to have increased inflammatory responses [82].
In the heart, this increase in cytokines modifies K channels,
which can disrupt cardiac action potentials, resulting in lethal
cardiac arrhythmias [79, 83]. Older patients with cardiovascu-
lar comorbidities and diabetes that contract COVID-19 are at
higher risk of myocardial injury and mortality [61, 62].
Athletes are not immune to cardiovascular manifestation of
COVID-19, with evidence by reports of myocardial injury
(including myocarditis) [84]. Additionally, previously infect-
ed individuals can have ongoing myocardial inflammation
after recovering from COVID-19 [85]. It has not been conclu-
sively determined if kidney injury in COVID-19 patients are
from direct viral involvement in the tissue or the accumulation
of inflammatory cells and the host inflammatory response
(cytokine storm). Factors that contribute to AKI include sys-
temic hypoxia, infiltration of inflammatory cells, abnormal
coagulation, and possible drug effects [39]. Similarly, it re-
mains unclear if liver damage is caused by direct viral infec-
tion or immune system activation and the resulting cytokine
storm or drug effects [86]. The effects on liver observed in
patients include elevated enzyme levels, hepatocellular necro-
sis, and moderate microvesicular steatosis [86, 87].
Additionally, in a retrospective patient study, therapeutic use
of lopinavir/ritonavir for COVID-19 was associated with liver
damage [87]. Increases in systemic cytokine levels due to
SARS-CoV-2 infection could contribute to central nervous
system (CNS) dysfunction [88, 89]. Neurological damage
resulting from COVID-19 infection includes anosmia, en-
cephalopathy, inflammatory CNS syndromes, ischemic
strokes, and peripheral neurological disorders. In particular,
there was a high incidence of acute disseminated encephalo-
myelitis with hemorrhagic change, which was not associated
with severity of the disease [88, 90]. Therefore, both the viral
infection and host inflammatory responses could contribute to
the lung-, heart-, liver-, and kidney-related complications in
COVID-19.
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Drug Repositioning

Although innovations in care have improved survival rates of
severe cases, there remains no definitive treatment or cure for
COVID-19. Given the urgency of this pandemic, multiple
pharmaceutical treatment modalities are being pursued in the
form of vaccine and repurposing of existing drug therapies.
Given the lengthy process involved in vaccine development,
drug therapies are vital in mitigating the more severe re-
sponses of COVID-19, thereby necessitating viable strategies
to search for new classes of medicines. Repositioning or
repurposing FDA-approved drugs is a feasible approach to
discover new therapies to respond quickly to COVID-19 than
de novo drug development which takes many years. Drug
repositioning offers shorter route to the clinic and have well-
known safety concerns since they have been through several
stages of clinical development [91]. The range of drugs that
have been proposed for treating COVID-19 includes (1) anti-
virals that interfere with viral entry, synthesis, or replication

(including protease inhibitors), (2) immunomodulatory agents
that affect cytokine levels and host inflammatory responses
(e.g., antibiotics, antihistamines, steroids, and monoclonal an-
tibodies) that could affect respiratory distress syndrome or
cytokine storm, (3) antiparasitic drugs (antihelmintic), and
(4) vasodilators. Table 1 summarizes this range of drugs and
Supplementary Table 1 provides their classification. Most of
the drugs are beneficial to the immune system, reducing in-
flammation and attenuating viral infection in the lungs, while
their effects across the other organs (heart, kidneys, liver, and
CNS) are not uniformly beneficial.

The Effects of Drugs on Various Organs

In light of the manifestation of COVID-19 on various organs,
it is important that the drugs used to treat COVID-19 patients
do not exacerbate symptoms associated with the disease. This
suggested the benefit of gathering a list of drugs that are being
used off-label or in clinical trials for COVID-19 and searched

Table 1 Summary of drugs’ effects on diverse organs
Class Drug (# of Clinical Trials) Lungs Heart Kidney Liver CNS
Antibiotics Azithromycin (122) Positive ( +) Positive ( +) Negative ( - ) No effect * Mixed Positive (+) *
Ivermectin (50) Positive ( +) Positive ( +) Negative (- ) Positive ( +) Negative ( -) Negative (-)
Antihelmintics Niclosamide (10) Mixed Positive (+) | Limited Information Positive ( +) Positive ( +) Positive ( +)
Nitazoxanide (24) Positive ( +) Positive ( +) No effect Positive ( +)* Positive (+) * Positive ( +)
Dociparstat Sodium (ODSH, DSTAT) (1) Positive ( +) Positive ( +) Mixed Limited information | Limited information Positive ( +)
Anti-inflammatory Famotidine (8) Positive ( +) Positive (+) * Negative (- ) No effect Positive (+) * Negative (-) *
1C14 (2) Positive ( +) Positive (+) |Limited Information | Limited information | Limited information Positive ( +)
Antimalarials Chloroquine (88) Positive ( +) Mixed Negative ( - ) Negative ( -) Mixed Mixed
Hydroxychloroquine (267) Positive ( +) Positive ( +) * Mixed Positive ( +) Positive (+) * Mixed
Abacavir (0) Negative ( -) Mixed Negative (- ) Negative ( -) Negative ( -) Mixed
Emtricitabine (6) Positive ( +) Mixed Mixed Positive ( +)* Negative ( - ) Negative (- )
NRTls Entecavir (0) Mixed Positive ( +) * | Limited Information No effect Mixed Negative (- )
Stavudine (0) Mixed Negative ( -) Mixed Negative ( -) Negative ( -) Mixed
[Tenofovir Alefenomide/Tenofovir Disoproxil (6) Mixed Positive ( +) Mixed Negative ( - ) Mixed Negative (-)
Zidovudine (0) Negative ( -) Negative ( -) Negative (- ) * Mixed Negative ( - ) Positive ( +) *
. . Brincidofovir/ Cidofovir (0) Positive ( +) Positive (+) | Limited Information Mixed Positive ( +) Positive ( +)
Antivirals Nucleoside — . . - A =
Analogs Remdesivir (78) Positive ( +) Positive ( +) Mixed Mixed Positive (+) * No effect
Valganciclovir/Ganciclovir (0) Mixed Positive ( +) Positive ( +) Negative ( - ) Mixed Positive (+) *
Baloxavir (0) Positive ( +) Positive ( +) * No effect Limited information | Limited information No effect
Favipiravir (45) Positive ( +) * Positive ( +) Negative ( -) No effect * Positive ( +) Positive ( +)
Miscellaneous Leronlimab (PRO 140) (3) Positive ( +) Mixed Limited Information | Limited information | Limited information | Limited Information
Sofosbuvir (9) Positive ( +) Mixed Negative (- ) Negative ( -) Negative ( - ) Mixed
Umifenovir (Arbidol hydrochloride) (11) Positive ( +) Positive ( +) Positive ( +) Limited information Negative ( -) Positive ( +)
Calcium Channel Blocker Tetrandrine (1) Positive ( +) Mixed Positive ( +) Positive (+) Mixed Positive (+) *
Cytokine IFN-a (26) Mixed Mixed Mixed Mixed Mixed Negative (- )
Anakinra (32) Positive ( +) Positive ( +) Positive ( +) Mixed Positive (+) * Positive ( +)
Cytokine Inhibitor / Antibody Sarilumab (17) Mixed Mixed Limited Information | Limited information Mixed Positive (+)
Tocilizumab (73) Mixed Positive (+) * Positive (+) * Positive ( +) Mixed Positive (+) *
Colchicine (27) Positive ( +) Positive ( +) Mixed Positive ( +) * Positive (+) * Positive ( +)*
Immunosuppressants / Sirolimus (Rapamycin) (7) Positive ( +) Mixed Mixed Mixed Mixed Positive ( +)
Immunomodulators Statins (15) Positive ( +) Mixed Positive ( +) Mixed Mixed Positive ( +)
Thalidomide (6) Mixed Mixed Mixed Mixed Mixed Negative (- )
Barictinib (2) Mixed Positive ( +) * Mixed Positive ( +) No effect Positive ( +)
Kinase Inhibitors Idelalisib (0) Negative ( -) Negative (-) |Limited Information Mixed Negative (- ) No effect *
Ruxolitinib (21) Positive ( +) Mixed Positive (+) * Mixed Positive (+) Positive (+)
Camostat Mesylate (20) Positive ( +) Positive ( +) * | Limited Information Positive ( +) Positive (+) * Positive ( +)
Protease Inhibitors Lopinavir/Ritonavir (90) Negative ( -) Positive ( +) Negative ( - ) Negative ( - ) Mixed Negative (- )
Nafamostat (6) Positive ( +) Positive ( +) Mixed Mixed Positive ( +) Positive ( +)
Proteasome Inhibitor Disulfiram (2) Positive ( +) Positive ( +) Negative (- ) Positive ( +) Mixed Negative (-)
Recombinant ACE2 APNO1 (rhACE2) (2) Positive ( +) Positive ( +) Positive ( +) Positive ( +) Positive ( +) Positive ( +)
Corticosteroids (85) Positive ( +) Mixed Mixed Negative ( -) Positive (+) * Positive ( +)*
Steroids Dexamethasone (45) Positive ( +) Positive ( +) Mixed Positive (+) Positive (+) * Mixed
Methyl Prednisalone (43) Positive ( +) Mixed Mixed Mixed Mixed Positive ( +)
Vasodilators Epoprostenol (Prostacyclin) (4) Mixed Positive ( +) Mixed Mixed Positive ( +) Positive ( +)
Nitric Oxide (36) Mixed Positive ( +) Mixed Mixed Mixed Negative (-)
Vitamin C Ascorbic Acid (51) Positive ( +) Positive ( +) Positive ( +) Mixed Positive (+) Positive ( +)

*A case study, instance, or minor effect that is opposite as noted. When indicated with “No effect”, it denotes a case study or instance of either positive or
negative results. Drugs in purple do not have (only) negative results but mixed ratings of both positive and negative results reported for the organ. Red

indicates positive results across all the organs for the drug
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for potential beneficial and harmful effects of these drugs on
the immune system, lungs, heart, kidneys, liver, and CNS,
when used to treat specific conditions or diseases. Search of
PubMed, Google Scholar, Google, bioRxiv, and medRxiv,
using the organ and name of the drug(s) and disease(s) as
keywords, revealed multiple aspects of the drug interactions
with various organs and systems. The goal is to provide an
extensive depiction of how the drugs could have differential
effects on the various organs, beneficial to some while harm-
ful to other organs. To a lesser extent, this analysis could

suggest situations in which specific drugs could be counter-
indicated under certain conditions. The goal was to identify
any positive or negative effects on these organs from the treat-
ment of these drugs for any disease, including COVID-19, and
potentially future infectious diseases. Table 1 provides a sum-
mary of each drug’s effects on these organs. Supplementary
Tables 2-7 show in greater detail the effects of the drugs on the
(1) immune system, (2) lungs, (3) heart, (4) kidneys, (5) liver,
and (6) CNS. Several observations are apparent. First, many
of the repositioned drugs are beneficial to the immune system

Generally Positive:
Almost all drug classes

Of the drugs investigated, a large !

Generally Negative:
NRTIs

Of the few drugs that had adverse

y

majority of them had positive effects “e % effects, most of these were

There were very few adverse effects < ¢ ~ . y  observed in patients with

observed ¥ “' weakened immune systems.
@ ' -

Many of the drugs have ¥ Treatment with stavudine,

immunomodulatory effects and are
beneficial, for example, tocilizumab
has been found to be effective for

treating cytokine release syndrome

4

Sirolimus has immunosuppressive !
activity on CD4+ effector T-cells, as ,,
well as regulating the innate immune

response and stimulating the adaptive

immune response.

\

~

zidovudine, or abacavir was found
to increase cytokine production,
including IL-1, IL-6, and TNFa.

In pateints treated for chronic
lymphocytic leukemia, treatment
with idelalisib resulted in
impairment of T-cell-mediated
immunity.

Created in BioRender.com bio

Generally Positive: Generally Negative:
Immunosupressants NRTIs
Vasodilators Protease Inhibitors
Antihelmintics

Some drugs have positive effects on the
heart, like anakinra and tocilizumab which
inhibit cytokines.

IL-1, a part of the innate immue response to
COVID-19, plays a central role in the
pathogenesis of myocarditis and anakinra is
effective in treating this condition

Tocilizumab may be beneficial to coronary
heart disease by inhibiting IL-6 receptor
signaling

Statins have been shown to slow the
progression of atherosclerosis. In addition,
statins have anti-inflammatory effects and
have been shown to reduce mortallity in
COVID-19 patients

Many of the drugs have negative
effects.

Drugs such as chloroquine, disulfiram,
and sofusbuvir were observed to have
commonn adverse effects including
arrhythmia, hypertrophy, and heart
failure. .

Several drugs such as favipiravir and
nitric oxide observed instances of
adverse effects (QTc interval
prolongation and progression of
myocardial damage in rats
respectively), although they were
generally positive

Created in BioRender.com bio

Results
Generally Positive Generally Negative
Antimalarials NRTIs

Serine protease inhibitors

Most of the drugs that were
investigated seemed to have
amixed effect on the liver.
This is most likely because all
drugs must be metabolized
by the liver. However, some

Antivirals (misc.)

Common side effects include
increased levels of the enzymes
ALT and AST, fatty liver, and
drug-induced liver injury.

Many of the negative effects

classes of drugs were induced by the drugs were
generally positive, such as reported when used to treat
statins, and some were patients who had comorbidities,

generally negative, such as
certain NRTIs.

Favipiravir and ruxolitinib
appear to have beneficial
effects on the liver.

such as hepatitis C or HIV.

Negative effects usually appeared
immediately upon administration
of the drug, and ceased with
discontinuation of the drug.

Created in BioRender.com bio

Generally Positive:
Anti-inflammatory
Vasodilators
Serine Protease Inhibitors

Certain serine protease inhibitors, e.g
camostat mesylate can inhibit or interfere
with SARS-CoV-2 viral entry. Certain
classes of antiviral drugs, e.g. sofosbuvir
and remdesivir can inhibit replication of
SARS-CoV-2, and umifenovir (arbidol)
inhibited while baloxavir partially inhibited
SARS-CoV-2 infection

Anti-inflammatory drugs ODSH and IC14 reduce
inflammation while famotidine was found also to
reduce pulmonary symptom of COVID-19.
Immunosuppressants, such as cytokine inhibitors
anakinra and tocilizumab, reduced mortality and
lung opacities among severe COVID-19 patients,
respectively.

Results
Generally Positive

Antihelmintics
Cytokine inhibitors

Several drugs investigated had
limited information about the kidney.
However, research on the classes of
drugs indicate that some have a
beneficial effect on the kidney.

Certain drugs that inhibit cytokines,
such as anakinra and tocilizumab,
were beneficial to renal function.
Certain JAX inhibitors such as
baricitinib have potential for treating
diabetic kidney disease. However
several drugs appear generally to have
a negative effect, which is
compounded when patients had
preexisting conditions.

Generally Positive:
Immunosuppressants
Anti-inflammatories
Antimalarials
Kinase Inhibitors

Ascorbic acid and sirolimus both
have anti-eplipetic properties
which could be useful in patients
who present with seizures.

The benefits of chloroquine,
hydroxychloroquine, tocilizumab,
anakinra, IC14, ruxolitinib,

and are
due in part to reduction of
pro-inflammatory cytokine levels.

Drugs with positive effects, including
chlorquine and zidovudine, can still be
harmful dependent on pre-existing
conditions.

Generally Negative:

NRTIs

A couple of the NRTIs had
negative effects on the
lungs. In contrast,
nucleoside analogs (e.g
remdesivir) were positive.

Even though drugs like
sofosbuvir can inhibit
the entry of the virus, it
can have negative
effects such as
worsening of pulmonary
arterial hypertension in
HCV infected patients.

Created in BioRender.com bio

Generally Negative

Antivirals
Steroids

Negative effects of the drugs
tended to appear with short
term use.

Chloroquine, had a negative
effect on the kidney, as
opposed to its metabolite,
hydroxychloroquine.

Common side effects are
increased creatinine levels, acute
kidney injury, and renal fibrosis.

Created in BioRender.com bio

Generally Negative:
NRTIs

Nitric Oxide
Disulfram

Negative effects of drugs like
IFN-alpha, zidovudine, and
corticosteroids often emerge
after a longer period of treatment
than would be required for
treatment of COVID-19.

Favipiravir and tenofovir do not
penetrate well into the CNS, so
require high doses to have a
chance of affecting the CNS.

Common neurological adverse
effects include neuropathies and
psychiatric conditions.

Created in BioRender.com bio

Fig. 1 The effects of certain drugs on the immune system and individual organs (lungs, heart, kidneys, liver, and CNS)
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and the lungs, but have mixed effects across the other organs.
This is unsurprising as the drugs are predominantly immuno-
modulators or anti-virals and breathing difficulty and cytokine
storm are major manifestations of COVID-19 that are targeted
by the drugs. Second, few of these drugs are beneficial across
all vital organs. Of the drugs evaluated in this study, APNO1, a
recombinant human ACE2, appears to have positive effects
reported across the organs evaluated in this study. Third, pa-
tients with comorbidities are often more vulnerable to
COVID-19 infection. These patients are most likely to show
severe symptoms requiring hospitalization and treatment,
underscoring the importance on being aware of the effect that
the repositioned drugs have on various organs. For each of the
organs, a summary of the findings is depicted in Fig. 1. For the
immune system, most of the drugs have a beneficial effect.
The drugs are generally immunosuppressive and function by
reducing the cytokines released by both the innate and adap-
tive immune systems that contribute to COVID-19 pathology.
These immune systems play an integral part in combatting
cytokine release syndrome (CRS) of COVID-19. The few
drugs with negative effects on the immune system were typ-
ically immunostimulatory, and adverse effects were most of-
ten observed in individuals with impaired immune systems
(Supplementary Table 2). For the lungs, most of the drugs in
this study had beneficial effects, nonetheless about a third of
the drugs reviewed reported both positive and negative effects
on the lungs. Anti-inflammatories, vasodilators, and serine
protease inhibitors generally were helpful. In contrast, a cou-
ple of the nucleoside/nucleotide reverse transcriptase inhibi-
tors (NRTIs) primarily affected the lungs negatively
(Supplementary Table 3). For the heart, several drugs had
reported favorable effects on the cardiac system. Most of these
benefits related to improving the cardiovascular system or
indicate limited risk of cardiac injury for COVID-19 patients.
For example, statins reduced the progression of atherosclero-
sis, and in hospitalized COVID-19 patients, statins did not
increase risk of cardiac injury. However, a majority of the
drugs reported both positive and negative effects or primarily
negative effects on the heart. In fact, many of the drugs have
not been thoroughly investigated for their cardiovascular ef-
fects. Of these drugs, some of the more common adverse
effects were hypertension, congestive heart failure (CHF),
myocarditis, and QT interval prolongation. For example,
AZM was associated with myocarditis and QT interval pro-
longation (Supplementary Table 4). For the kidneys, the drugs
that report both positive and negative impact on the kidney or
predominantly negative effects tend to appear in patients with
autoimmune conditions such as HIV, hepatitis, or rheumatoid
arthritis (RA). In healthy patients, these drugs may be less
deleterious (Supplementary Table 5). For the liver, most of
the drugs reported negative or both positive and negative ef-
fects due to its role in drug metabolism. Considering the fre-
quency of liver dysfunction in COVID-19 patients, attributing

hepatotoxicity to the drug vs. the underlying disease can be
difficult. Most adverse effects were not severe, and resolved
upon ceasing treatment. The most common negative effects
were increases in liver enzymes and drug-induced liver injury
(Supplementary Table 6). For the CNS, of the drugs studied,
most had a positive effect on the CNS, particularly the immu-
nosuppressant drugs and cytokine inhibitors. The only drugs
as a class that were primarily negative to the CNS were
NRTIs. The most common neurological side effects were
headaches, dizziness, and fatigue, which in most cases were
not severe enough to discontinue treatment (Supplementary
Table 7).

Long-term Effects of the Drugs

Studies on the long-term outcomes of the 2003 SARS indi-
cate that there are consequences of the infection and of the
drugs used to treat them, ranging from metabolic to pulmo-
nary fibrosis to femoral head necrosis to neurological
[92-98]. Although it is too early to know whether some of
the symptoms that persist in recovered COVID-19 patients
will be long lasting, it does raise concerns on the potential
of not only the virus itself but of the treatments, including
certain drugs currently being used off-label or in clinical
trials to treat COVID-19, that could contribute to exacer-
bating these symptoms [99]. For example, the use of corti-
costeroid could help suppress lung inflammation but there
is a concern that it could inhibit host immune response. In a
15-year follow-up of SARS patients treated with high-dose
steroid pulse therapy, the femoral head necrosis was found
not to be progressive and to show some recovery [94]. The
existing evidence based on past experiences with SARS
and MERS suggest that the use of steroids is inconclusive
and caution is recommended as a routine treatment [100,
101]. Nonetheless, in cases of hyperinflammation, immu-
nosuppression (including interleukin antagonists) could be
beneficial without increased adverse effects [6]. As with
any drug, there is the potential for drug-induced liver injury
[102]. Drugs that could increase the risk of liver injury
based on the medical condition of the individual
[103-106]. Long-term damage of the viral infection could
lead to chronic illness that impact not only the lungs but
also the heart, immune system, brain (mental), and other
organs. Therefore, we search in the literature to find if any
of the drugs on our list (Table 1) have been associated with
inducing chronic effects or have negative effects upon long-
term administration of the drug (Table 2). The most com-
mon persistent effects after COVID-19 are fatigue and dys-
pnea [99, 130, 131]. Therefore, we searched in the literature
to identify drugs that affect chronic fatigue syndrome (CFS)
and indicate possible drugs that could either exacerbate or
mitigate CFS (Table 3).
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Table 2  Potential long-term effects of drugs

Drug

Long-term effect

Brincidofovir/cidofovir
DEX

Prolonged use can cause severe nephrotoxicity in a monkey study [107].

Prolonged use can cause fatty liver and diabetes in mouse models [108], as well as microvesicular steatosis [109].
May induce long-term negative effects on neuromotor function and somatic development in male infants [110].

A case study of a patient with MF-associated pulmonary hypertension (PH) developed left ventricular systolic dysfunction after

Long-term use of statins is associated with inhibiting the progression of aortic stenosis and aortic stiffness [120, 121].
Stavudine was found to reduce N-acetylaspartate (a marker of mitochondrial function) in the frontal lobe of HIV patients.

Long-term treatment (>1 year) with THD of multiple myeloma patients has shown to have toxicity including neurotoxicity

When used to treat dermatologic disorders (prurigo nodularis and aphthous stomatitis), long-term use led to peripheral neu-

DS Several sources indicate that DS can cause neuropathies in patients if used at high doses or for long periods.
While the long period may not be an issue for COVID treatment, this is still something to consider.
The symptoms do resolve after treatment is discontinued [111].
EVT While uncommon, neuropathy is a potential side effect of EVT if given for long periods, at high dosages,
or to patients with other risk factors for neuropathies [112].
EPO Intravenous EPO improves long-term survival in primary pulmonary hypertension [113].
HQ/CQ Increased risk of retinopathy was observed with high-dose and long-term (5+ years) use of HCQ [114].
These drugs interact with lysosome activities which may contribute to retinopathy and cardiotoxicity [115-117].
MP Possible long-term bone metabolism effects in patients with MS [118].
RUX
long-term (5 years) treatment with RUX [119].
Statins
Stavudine
Stavudine has a mitochondrial toxicity in the brain, which worsens the longer the drug is administered [122].
THD
[123].
ropathy. Thus, only short-term use is recommended due to neurotoxic effects [124].
In lupus patients, THD neuropathies are potentially irreversible after discontinuing treatment [125].
AZT

Long-term treatment with AZT may induce mitochondrial toxicity in HIV patients [126]. They may also induce in HIV patients

anemia [127], myalgia, muscle weakness, and increased serum creatine kinase levels [126].
Adverse neurological effects of AZT are rare but can be serious, including seizures, dose-reduction encephalopathy,

and myopathy. The likelihood of these adverse effects occurring increases the longer the drug is administered [128].
Long-term monotherapy with AZT has been reported to induce fatal lactic acidosis and hepatotoxicity in case reports [129].

Clinical Trial Results

Many of these drugs have undergone or are undergoing clin-
ical trials. Some drugs have few published results. Clinical
trials of each drug for treatment of COVIDI19 listed
clinicaltrials.gov included available, not yet recruiting,
recruiting or enrolling by invitation, active-not yet recruiting,
recruiting, suspended, terminated, withdrawn, and completed
for the drugs listed in Table 1 as of January 11, 2021. A search
for trials with publications of the results was performed. For
each peer-reviewed publication, we searched for the NCT
number and confirmed the publication contains controlled
and randomized results from the trial. Table 4 collates the
current results of COVID-19 clinical trials that are completed
for drugs that report results in peer-reviewed publication.

Emergency Use Authorization for HCQ/CQ and RDV

Early in the pandemic, hydroxychloroquine (HCQ) was given
Emergency Use Authorization (EUA) for COVID-19 in April
2020 [195] (https://www.fda.gov/media/136537/download)
which was subsequently revoked due to serious adverse
cardiac events (https://www.fda.gov/media/136784/
download) (https://www.fda.gov/media/138945/download).
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Indeed, both chloroquine (CQ) and HCQ, still undergoing
clinical trials for COVID-19, had some studies that assessed
for adverse cardiovascular complications or cardiac toxicity
by monitoring QT interval prolongation or torsades de
pointes. Subsequently, RDV was approved for EUA for
COVID-19 in May 2020 (https://www.fda.gov/media/
137564/download). Based on studies that RDV lowers viral
load in animals [196, 197] and inhibits SARS-CoV-2 infec-
tion in cells [197], and a clinical trial (NCT04280705) found
RDV was superior to placebo in shortening recovery time of
hospitalized adult COVID-19 patients [189], there is ample
support for the use of RDV for COVID-19. Nonetheless, an-
other clinical trial (NCT04257656) found hospital patients
with severe COVID-19 treated with RDV was not associated
with statistically significant clinical benefits [190]. In addi-
tion, search for the effect of these drugs on the various organs
identified an instance of torsades de pointes in a COVID-19
patient treated with RDV and requiring resuscitation [198],
although it is unclear if this was due directly to RDV. Many
clinical trials use QT interval threshold as part of the exclusion
criteria, and while a number of drugs (e.g., AZM, baricitinib,
CM, colchicine, corticosteroid, HCQ, ivermectin, LPV/RTV,
sarilumab, TCZ) monitor for QT prolongation or cardiac ar-
rhythmia as a secondary measure (NCT04381936,


http://clinicaltrials.gov
https://www.fda.gov/media/136537/download
https://www.fda.gov/media/136784/download
https://www.fda.gov/media/136784/download
https://www.fda.gov/media/138945/download
https://www.fda.gov/media/137564/download
https://www.fda.gov/media/137564/download
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NCT04366206, NCT04382625, NCT04374019), trials with
RDV to date do not appear to. In light of the comorbidities
of COVID-19 patients, it would be beneficial to measure QT
interval or other cardiac function as part of the measures and
outcomes in the clinical trials of drugs for COVID-19.

The Effect of CQ and RDV on 3D Human Heart
Organoids

A retrospective study that analyzed electrocardiograms from
524 COVID-19 patients showed approximately 20% showed
QT prolongation [199]. Therefore, it is critical that the drugs
used to treat COVID-19 do not enhance the potential of QT
prolongation. Although it is known that CQ has a potential for
QT interval prolongation and was found to prolong QT inter-
val in COVID-19 patients [200], less is known about RDV. Of
the 78 clinical trials in Clinicaltrial.gov with RDV, none are
explicitly monitoring for QT prolongation or torsades des
pointes. While we were performing this study, another group
assessed for cardiotoxicity and QT prolongation of CQ-treated
and RDV-treated human iPSC-derived cardiomyocytes [20]
and found that RDV is associated with both cardiotoxicity and
arrhythmogenic risk. Although iPSC-derived cardiomyocytes
constitute an excellent model for human cardiotoxicity studies
[201-203], recent advances in stem cell technologies have
facilitated the emergence of human stem cell-derived organ-
like model systems (organoids) which allow for higher degree
of precision and physiological relevance [204, 205].
Organoids recapitulate many organ properties, structure, and
physiology to a significant extent, thus arguably constituting a
better model than traditional 2D cell cultures containing a
single cell type and no microenvironment [206]. In contrast,
organoids have multiple cell types that interact with
cardiomyocytes, along with matrix native to the heart, provid-
ing physicochemical properties that are better able to mimic
the heart in vivo. Organoids are particularly useful to study
unapproachable disease states in humans and have been used
to model a wide range of tissues and disease conditions with
great success [206, 207], including SARS-CoV-2 infection of
human lungs and intestine [51, 205, 208]. Using a recently
developed protocol for the generation of highly sophisticated
human heart organoids (hHOs) from hiPSCs [209], the cardi-
ac effects of CQ and RDV were explored with hHOs. Given
the higher complexity in the organoids, including different
cell types, morphology, and extracellular matrix, we expected
the organoids will be more robust than cardiac monolayer
cultures.

Experiments were performed on hHOs derived from hu-
man iPSCs treated with CQ (known to have adverse cardiac
effects) or RDV at two different concentrations to assess a
potential of RDV for adverse cardiac effect. CQ and RDV
were prepared as described in the methods (see supplementary
file). At 96-h post-treatment with control media, CQ-
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Fig. 2 Chloroquine (CQ) and remdesivir (RDV) influence human heart
organoid beat rate. Beat rate (per minute) was assessed following 96 h of
treatment. Heart organoids were treated with either a CQ (n = 3, control; n
=4, 10 pM and 100 uM) or b RDV (n = 4 for all conditions) at concen-
trations of 10 uM or 100 uM for 96 h. Beats per min (BPM) in the
treatment conditions were normalized to BPM in the pre-treatment con-
dition for each individual organoid in each condition. (Value = mean +
s.d., two-way ANOVA multiple comparison test; *p = 0.0571, **p <
0.01, ***%p < 0.0001)
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Fig. 3 CQ and RDV induce QT interval prolongation in human heart
organoids.Using the electrophysiological data obtained with the MEA
system, QT intervals were measured in organoids with or without
treatment of a CQ or b RDV. (value = mean + SEM, one-way
ANOVA multiple comparison test, compared to control; *p < 0.05, **
p <0.005)
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containing media, or RDV-containing media, all organoids
treated with control media or 10 M of CQ were beating while
25% of the hHOs treated with 10 uM of RDV were beating.
None of the heart organoids treated at the higher concentration
(100 uM) of either CQ or RDV were beating (Fig. 2).

To assess for QT interval abnormalities in the hHOs, an in-
house microelectrode array (MEA) system was used to record
electrical activity of individual organoids. The QT interval in
the control condition was 306 + 4.70 ms. The QT intervals
were heightened for both the 10 uM CQ and 10 uM RDV-
treated hHOs, albeit non-significantly (444 + 30.5 ms and 344
+ 24.2 ms, respectively) (Fig. 3). Notably, both 100 uM CQ
and 100 uM RDV induced significant QT prolongation in the
hHOs (527 = 35.2 ms and 501 + 52.5 ms, respectively). CQ
was shown to exhibit an increased effect on QT prolongation
as compared to RDV. Thus, the electrophysiological abnor-
malities arising from CQ and RDV treatment indicate a
cardiotoxic mechanism in both CQ and RDV.

CQ and RDV both exhibit a pathological phenotype in
the treatment of hHOs. While CQ induced cessation of
visible beating at 100 uM, RDV exerted a similar effect
at both 10 uM and 100 uM, suggestive of cardiotoxicity.
These data suggest that further studies are needed to deter-
mine the safety and efficacy of RDV on the heart in the
treatment of COVID-19.

Limitations of Study

Therapies not covered in this review include stem cell therapy
[210, 211], transfusion of convalescent plasma [212], and
engineered decoys for neutralizing pathogens (including
hACE2 for SARS-CoV-2) [213]. Although pilot studies
[214-217] suggest that convalescent plasma could be benefi-
cial, a randomized controlled study and an open-label, multi-
center, randomized clinical trial did not find it to be associated
with a reduction in the progression to severe COVID-19 or
result in a statistically significant reduction in time to clinical
improvement [218, 219], while early results of a clinical trial
suggests it is safe and efficacious [220, 221]. This present
study does not evaluate pharmacogenetics or how the genetic
makeup of an individual contributes to their differential im-
mune response to SARS-CoV-2 [222] or their differential re-
sponse to a drug [223], which could aid in predicting which
drugs affect an individual adversely while being beneficial to
another.

Conclusion

Even as vaccines are becoming available for COVID-19, var-
iants of the SARS-Cov-2 virus are proliferating, leading to
concerns that some mutations may reduce the efficacy of the
vaccines to stem the broader pandemic [224, 225]. Therefore,

treatments will continue to be an essential aspect in the fight
against COVID-19 and its variants. Innovative repurposing of
drugs, such as recent reports of the use of sarilumab and TCZ,
are showing promise in the treatment of patients with severe
COVID-19 [191]. Still, clinical trials are needed to assess the
effects of these drugs on non-targeted organs and systems,
such as the cardiovascular system. This study has compiled
an extensive report of the many drugs proposed to treat
COVID-19 and improve lung performance, along with exam-
ination of the effects of these drugs on other systems.
Furthermore, the findings of this study are relevant to diseases
other than COVID-19 by providing indications of how these
drugs affect various organs. This could assist in guiding the
implementation of these drugs in their repositioning for
established and emerging diseases.

AcronymsDrugs: AA, Ascorbic acid; AZM, Azithromycin; CM,
Camostat mesilate; CQ, Chloroquine; DEX, Dexamethasone; DS,
Disulfiram; DSTAT, Dociparstat sodium aka 2-0, 3-0 Desulfated
Heparin (ODSH); EVT, Entecavir; EPO, Epoprostenol; HCQ,
Hydroxychloroquine; LPV, Lopinavir; MP, Methylprednisolone; NM,
Nafamostat; NTZ, Nitazoxanide; NO, Nitric oxide; thACE2,
Recombinant human angiotensin-converting enzyme 2; RDV,
Remdesivir; RTV, Ritonavir; RUX, Ruxolitinib; TAF, Tenofovir
alafenamide; TDF, Tenofovir disoproxil fumarate; TET, Tetrandrine;
THD, Thalidomide; TCZ, Tocilizumab; AZT, ZidovudineOther
acronyms: ARDS, Acute respiratory distress syndrome; ANG,
Angiotensin; ANP, Atrial natriuretic peptide; CCCR#, C-C chemokine
receptor #; CRP, C-reactive protein; CKD, Chronic kidney disease; CLL,
Chronic lymphocytic leukemia; COPD, Chronic obstructive pulmonary;
CHF, Congestive heart failure; CRS/CSS, Cytokine release syndrome/
cytokine storm syndrome; CMV, Cytomegalovirus; ER, Endoplasmic
reticulum; eNOS, Endothelial nitric oxide synthase; EMT, Epithelial-
mesenchymal transition; HBV, Hepatitis B virus; HCV, Hepatitis C virus;
HDL, High-density lipoproteins; HMGB1, High-mobility group box 1;
HIV, Human immunodeficiency virus; iPSC, Induced pluripotent stem
cell; iNOS, Inducible nitric oxide synthase; IFN, Interferon; IRF,
Interferon regulatory factor; IL#, Interleukin #; JAK, Janus kinase;
LPD, Lipopolysaccharide; LDL, Low-density lipoproteins; mTOR,
Mammalian target of rapamycin; MAP 2, Microtubule-associated protein
2; MNC, Mononuclear cells; MS, Multiple sclerosis; MF, Myelofibrosis;
NF-kB, Nuclear factor kB; NTP, Nucleoside triphosphate; NRTIs,
Nucleoside/nucleotide reverse transcriptase inhibitors; PGI2,
Prostacyclin; ROS, Reactive oxygen species; RA, Rheumatoid arthritis;
SARS, Severe acute respiratory syndrome; SBECD, Sulfobutylether-[3-
cyclodextrin; SLE, Systemic lupus erythematosus; TLRs, Toll-like recep-
tors; TGF-3, Transforming growth factor beta; TNF-o, Tumor necrosis
factor alpha
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