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Abstract.
Background: Composite scores have been increasingly used in trials for Alzheimer’s disease (AD) to detect disease
progression, such as the AD Composite Score (ADCOMS) in the lecanemab trial.
Objective: To develop a new composite score to improve the prediction of outcome change.
Methods: We proposed to develop a new composite score based on the statistical model in the ADCOMS, by removing
duplicated sub-scales and adding the model selection in the partial least squares (PLS) regression.
Results: The new AD composite Score with variable Selection (ADSS) includes 7 cognitive sub-scales. ADSS can increase
the sensitivity to detect disease progression as compared to the existing total scores, which leads to smaller sample sizes
using the ADSS in trial designs.
Conclusions: ADSS can be utilized in AD trials to improve the success rate of drug development with a high sensitivity to
detect disease progression in early stages.
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INTRODUCTION

In Alzheimer’s disease (AD) trials, the primary
endpoint is often chosen as change from baseline on
cognitive measures in the treatment group compared
to the placebo group at the end of the double-blind
period [1, 2]. Cognitive outcome measures are used to
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assess the severity of dementia and disease progres-
sion for mild cognitive impairment (MCI) and AD
patients. Frequently used cognitive outcome mea-
sures include the Clinical Dementia Rating – Sum
of Boxes (CDR-SB), Alzheimer’s Disease Assess-
ment Scale – Cognitive Subscale (ADAS-Cog), and
Mini-Mental State Examination (MMSE). In addition
to these individual cognitive and global assessment
measures, several composite scores were developed
to increase the sensitivity to detect score change
from baseline, such as the AD Composite Score
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(ADCOMS), and the Integrated Alzheimer’s Dis-
ease Rating Scale (iADRS) [3–5]. Such composite
scores were calculated from the sub-scales or the
total scores of instruments used in the trials. The
ADCOMS was one of the secondary outcomes in the
most recent FDA approved AD drug, lecanamab [6,
7]. The primary outcome of that phase 3 trial was
the CDR-SB. With a large sample size in phase 3
trials, the pre-specified clinically meaningful change
in the CDR-SB can be detected. In early phase tri-
als (e.g., proof of concept trials), sample size is often
small and an outcome measure that is sensitive to
detect outcome change is needed to identify poten-
tially effective treatments.

For a composite score developed from a repeated-
measure study, linear mixed-effect models may be
used to develop optimal composite scores [8]. Unfor-
tunately, composite scores based on mixed-effect
models may decrease the statistical power [8] for the
following two reasons: 1) multicollinearity among
sub-scales; and 2) positive or negative association
between cognitive measures and disease progression.
Several statistical models were developed to over-
come these challenges, including the nonlinear mixed
model with constraints on the range of the parameters,
and the partial least squares (PLS) regression.

Variable selection methods are commonly used in
data analysis to reduce the number of predictors in
the final model. The three classical methods are for-
ward selection, backward elimination, and stepwise
selection. Traditionally, these methods depend on one
criterion, such as the p-value of a model. However,
in the variable selection procedure for the compos-
ite score development, two criteria are considered:
the relationship between cognitive outcome measures
and time since baseline, and the variable importance
(VIP). In practice, we would expect a monotonic rela-
tionship between time since baseline and cognitive
outcome measures. Variable importance is referred
to be as the importance index of a variable in the
model prediction. We built the AD composite Score
with variable Selection (ADSS) to account for many
of these issues based on the statistical model in the
ADCOMS [3].

Sample size calculation is a key aspect of AD trial
planning. Reducing the sample size of a trial will
decrease the time required for recruitment and accel-
erate the ability to assess putative therapies in trials.
The subtraction method is traditionally used to calcu-
late sample size based on the two-sample z test with
the score change as the outcome [9]. This method has
a closed formula which is relatively easy to imple-

ment [10–12], but it has several limitations [13]. This
method could under- or over-estimate sample size
when a new study’s follow-up is longer or shorter
than the pilot study’s follow-up time [13]. In addi-
tion, the correlation between the cognitive outcome
measure at the follow-up and that at baseline could
be utilized to improve designing AD trials [14, 15].

METHODS

Data sets

Two data sets were used to develop and validate
new composite scores to detect clinical progression
in early stages of AD. First, in the development of
the new ADSS, we included data of MCI patients
from the ADNI database (downloaded on the date of
November 29, 2022) [16, 17]. The total number of
MCI patients was 1096 with n = 396 from ADNI-1,
n = 129 from ADNI-Go, n = 342 from ADNI-2, and
n = 229 from ADNI-3. Among them, there were over
800 participants having visits at the 6-month follow-
up, 788 participants having year 1 visit, and 676
participants completed year 2 visit. Among 676 par-
ticipants with year 2 follow-up, 624 participants had
complete sub-scales for the outcomes of our interest,
and they are MCI patients in building the model. Out
of these 624 MCI patients, 173 patients progressed to
dementia due to AD at the year 2 follow-up with the
estimated conversion rate of 27.7%.

Second, in validating the ADSS, we utilized data of
the MCI participants from the Alzheimer’s Disease
Cooperative Study (ADCS) to evaluate the efficacy
of vitamin E and donepezil for the treatment of MCI
in a randomized placebo-controlled three-arm study.
That study enrolled a total of 769 MCI patients.

Baseline characteristics of these two cohorts are
presented in Table 1. The proportion of female in the
ADCS study is slightly higher than that in the ADNI
MCI cohort. Other than that, these two studies have
similar study populations.

Models for longitudinal data

Wang et al. [3] developed a statistical model to
detect clinical decline with the outcome as the time
from baseline. Let t be the time at the follow-up
and t0 be the time at baseline. For a study with K
outcome measures (e.g., CDR-SB, ADAS-cog, their
sub-scales), their proposed model is presented as

t − t0 =
∑k

i=1
wi�xi(t), (1)
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Table 1
Baseline characteristics of the ADNI MCI cohort and the ADCS study

Measures ADNI MCI (n = 624) ADCS (n = 769)

Age, mean (SD) 73.04 (7.42) 72.98 (7.29)
Female, n (%) 254 (40.7%) 352 (45.77%)
CDR-SB, mean (SD) 1.51 (0.88) 1.82 (0.79)
ADAS-Cog-13, mean (SD) 16.50 (6.61) 17.69 (6.11)
MMSE, mean (SD) 27.63 (1.76) 27.27 (1.85)

ADNI, Alzheimer’s Disease Neuroimaging Initiative; MCI, mild cognitive impairment;
ADCS, Alzheimer’s Disease Cooperative Study; CDR-SB, Clinical Dementia Rating – Sum
of Boxes; ADAS-Cog, Alzheimer’s Disease Assessment Scale – Cognitive Subscale; MMSE,
Mini-Mental State Examination.

where �Xi(t) is the score change of the i-th cognitive
score at time t from baseline (t0), and wi is its asso-
ciated weight. The model was derived by using the
linear item of the score change from the Taylor series
[3]. In the ADNI data used to construct the ADSS,
we used the exam date of the MMSE test to calcu-
late the month t and t0. The scheduled visit often
does not occur exactly as scheduled. In the ADNI
MCI patients, the average time for the 1-year follow-
up was estimated as 13.73 months with the standard
deviation of 1.5 months. For that reason, we used the
exact months from baseline in this model to calculate
t − t0 [18–21]. For example, one participant has the
visit time of t = 13.2 months. Then, �X1(t = 13.2) is
the difference of CDR-SB (the first cognitive test) at
t = 13.2 and CDR-SB at baseline.

Outcome measures

We included the commonly used clinical trial total
score measures: (I) CDR-SB, (II) the 13-item ADAS-
cog, and (III) MMSE. Their sub-scales were included
in the model. The CDR-SB has 6 domains: 1) mem-
ory, 2) orientation, 3) judgment and problem solving,
4) community, 5) home and hobbies, and 6) per-
sonal care. The ADAS-cog-13 include 13 domain
areas: word recall, commands, constructional Praxis,
delayed recall, naming, ideational praxis, orienta-
tion, word recognition, recall instructions, spoken
language, word finding, comprehension, and num-
ber cancellation. The MMSE has 7 domain areas:
orientation to time, orientation to place, language,
attention and calculation, registration, recall, and con-
structional praxis [3, 22].

We also investigated the additional prediction
power gain by adding other measures, such as
Functional Activities Questionnaire (FAQ) and Neu-
ropsychiatric Inventory (NPI) [23]. The FAQ includes
10 domain areas: manage finances, complete forms,
shop, perform games of skill or hobbies, prepare hot

beverages, prepare a balanced meal, follow current
events, attend to television programs, books or mag-
azines, remember appointments, and travel out of the
neighborhood. Each domain has the score from 0 to
5, with the maximum total score of 50. The FAQ
scores were used in predicting the disease progres-
sion [24]. NPI consists of 12 sub-scales to assess
neuro-psychiatric symptoms [23].

Partial least square regression and model
selection

The statistical model in Equation (1) was used in
the PLS regression to derive the ADSS using the
ADNI MCI data. PLS regression is used to find inde-
pendent components from the existing variables. The
first component was used as the composite score in
this research. This component represents the eigen-
vector (e.g., the weights) for the largest eigenvalue
of the covariance matrix between time (t − t0) and
cognitive scores. It is possible that the weight for
each cognitive score may be negative although a pos-
itive correlation coefficient between time and each
cognitive score is assumed. The backward variable
selection approach was utilized to remove cognitive
measures whose parameter estimates are negative in
the fitted statistical model. The following steps were
used to derive the final composite score based on the
PLS and the backward variable selection approach.

� Step 1: Select the clinical scores that have a
positive correlation with time t − t0. These Xis
are the initial set of the outcome measures which
is a subset of {Xi : i = 1, 2, . . . , K}.

� Step 2: Run a PLS regression with the identified
set of outcome measures from Step 1.

� Step 3: The backward selection approach was
used in the PLS regression model to delete out-
come measures with negative parameters.

� Step 4: Among the remaining outcome mea-
sures, the ones with low VIP values were
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then removed by using the backward selec-
tion approach. During this step, any cognitive
outcome measure with a negative parameter
estimate was removed first by using the method
in Step 3.

This can be viewed as an iterative approach as
Step 3 could be used multiple times. The backward
selection approach was used in removing cognitive
outcome measures with negative parameter estimates
or low VIP values.

To avoid including similar orientation sub-scales
from the three cognitive measures, we run this model
selection approach three times by including the ori-
entation sub-scale from one of the three measures in
Step 1.

Comparison with other measures

We first compared the sensitivity of the developed
ADSS with the existing measures by using the mean
to standard deviation ratio (MSDR). We calculated
the bias-corrected MSDR by using 10,000 bootstrap
samples. The existing cognitive scores include three
widely used total score outcome measures (CDR-SB,
ADAS-Cog, and MMSE), and the composite score
ADCOMS [3]). A larger MSDR value represents a
larger effect size, which leads to greater sensitivity.
In addition to the MCI population, we also compared
the MSDR between the new composite scores and
the existing scores in some enriched population (e.g.,
Apolipoprotein E �4 (APOE4) carries and Amyloid-
� positive patients assessed with positron emission
tomography (PET)).

We then compared the sample sizes required for a
parallel randomization study by using the ADNI MCI
patients as the control group. The sample size for a
randomized study was calculated by assuming a 25%
slowing of cognitive decline as the observed benefit
in a new treatment group as compared to the con-
trol group. In addition to the traditional subtraction
method for sample size calculation, we considered the
approach based on analysis of covariance (ANCOVA)
where the baseline measure is the only covariate in
the sample size calculation [15]. After analysis of the
ADNI MCI data, we used the SMC cohort from the
ADNI to validate the newly derived ADSS.

In a two-arm randomized trial, suppose μG0 and
μG1 are the mean of the outcome measure at baseline
and that at the follow-up for the group G, G = c for the
control group and G = t for the treatment group. Then,
μt = μt1 − μt0 (color blue in Fig. 1) and μc = μc1 −

Fig. 1. A randomized two-arm study. Higher scores indicate worse
cognitive performance.

Fig. 2. The selected cognitive outcome measures in the new ADSS
composite score.

μc0 (color red in Fig. 1) are the change of the outcome
at the follow-up from baseline in the treatment group
and the control group, respectively. Their difference
δ = μc − μt is the parameter of interest (green line
in Fig. 1). The statistical hypothesis is:

H0 : δ = 0 VS Ha : δ /= 0.

The traditional subtraction method calculates the
sample size by using the estimated value of δ̂ and its
variance estimate [9, 15]. Suppose S2

0 and S2
1 are the

variance estimate of outcome at baseline and that at
the follow-up. Then, the variance estimate of the score
change (S2

d ) is calculated as S2
d = S2

0 + S2
1 − 2ρS0S1,
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Table 2
Weights for the new ADSS

Cognitive measure Sub-scales Weights

ADAS-Cog Delayed word recall 0.0601
ADAS-Cog Word finding 0.2037
MMSE Orientation to time 0.1134
CDR-SB Personal care 0.2542
CDR-SB Community 0.4787
CDR-SB Home and hobbies 0.2510
CDR-SB Judgment and problem solving 0.2853

ADSS, AD composite Score with variable Selection; ADAS-Cog, Alzheimer’s
Disease Assessment Scale – Cognitive Subscale; MMSE, Mini-Mental State Exam-
ination; CDR-SB, Clinical Dementia Rating – Sum of Boxes.

where ρ is the correlation coefficient of outcome at
baseline and outcome at the follow-up. The tradi-
tional approach is the one based on the two-sample
z test [25, 26]. Suppose δd is the clinically mean-
ingful improvement of the treatment as compared to
the control group (e.g., 25% benefit in the treatment
as compared to the control group with μc − μt =
0.25μc). The required sample size per arm for a two-
arm study based on the subtraction method is

ns = 2(zα/2 + zβ)s2
d

δ2
d

(2)

where zc is the 100(1 − c)th percentile of the standard
normal distribution. The subtraction method is easy to
implement with a closed formula, but it has several
limitations including the assumption of population
homogeneity and consequent under- or over-estimate
of sample sizes [13]. When the baseline outcome
measure affects the disease progression, the subtrac-
tion method may lose statistical power substantially
[27]. When the baseline cognitive measure is con-
sidered as a covariate in the ANCOVA sample size
calculation, the required sample size per arm is pre-
sented as [14, 15]

nc = (ns + 1)(1 − ρ2), (3)

where ns is the sample size using the subtraction
method in Equation (2), and one additional partici-
pant is added to maintain the statistical power level
[14]. The sample size nc goes down as the correlation
coefficient increases. In addition to nc, another exact
approach based on the ratio of mean squares could
be utilized, but the exact approach does not have a
closed formula. For a study with a large sample size,
their results are very close to each other [15].

RESULTS

We first used the sub-scales from CDR-SB,
MMSE, ADAS-cog-13 to derive the ADSS by using
the method described above, by using the ADNI MCI
patients having baseline, 6 month, 1-year, and 2-year
follow-up data. The threshold value of VIP could
affect the model performance. For that reason, we run
the model with VIP threshold value from 0.3 to 0.8
by 0.05, and found that the model with the threshold
value of 0.75 with MMSE orientation sub-scales has
a high MSDR. That final model includes 7 sub-scales:
4 sub-scales from CDR-SB (memory, community,
home and hobbies, and judgment and problem solv-
ing), 1 sub-scale from ADAS-cog (delayed word
recall), and 2 sub-scales from MMSE (orientation
to time, and memory recall). Their weights are pre-
sented in Table 2. The VIP results are shown in Fig. 2.

We compared the MSDR of the new ADSS with
the existing cognitive scores including the composite
score ADCOMS in Table 3. In the MSDR calculation,
the score change at 2-year follow-up from baseline
was used to calculate the mean and the standard devia-
tion of score change in 2 years. The estimated MSDR
for the new composite score was 0.5726, and the
bias-corrected MSDR estimated using the bootstrap
approach was 0.5508. The range of MSDR is from
0.4026 to 0.5726 for these five scores. ADCOMS
has similar MSDR as the proposed new composite
score (0.5535 versus 0.5726). Orientation sub-scales
from the three cognitive tests were all included in the
ADCOMS. The duplicated effects from orientation
sub-scales may increase the difficulty in interpreta-
tion. The proposed ADSS has a larger MSDR than the
commonly used total score CDR-SB (0.4556). The
MSDR ratio between the new ADSS and the existing
scores is at least 1.03 as compared to the commonly
used scores including ADCOMS. In the subgroups
of APOE4 carries or amyloid-� positive patients, the
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Table 3
Sensitivity comparison between the new ADSS with the existing scores by using the MSDR

in MCI group and two enriched subgroups

Measures Mean SD MSDR
MCI MCI MCI subgroups

APOE4 carriers Amyloid-� positive

CDR-SB 0.3942 1.1113 0.3548 0.4688 0.3403
ADAS-cog 0.6464 5.2423 0.1233 0.2015 0.0639
MMSE 0.5654 2.2682 0.2493 0.3580 0.3218
ADCOMS 0.0509 0.1191 0.4277 0.5071 0.4248
new ADSS 0.1534 0.3716 0.4129 0.4856 0.3979

ADSS, AD composite Score with variable Selection; MSDR, mean to standard deviation ratio;
MCI, mild cognitive impairment; CDR-SB, Clinical Dementia Rating – Sum of Boxes; ADAS-Cog,
Alzheimer’s Disease Assessment Scale – Cognitive Subscale; MMSE, Mini-Mental State Examination;
ADCOMS, AD Composite Score.

Table 4
Sample size comparison between the new ADSS with the existing scores by using the MSDR in MCI

group and two enriched subgroups, to detect a 25% benefit in a new treatment as compared to the
control group. Two methods were used for sample size calculation: the subtraction

method and the ANCOVA method

Measures MCI MCI subgroups
APOE4 carries Amyloid-� positive

ns: Sample size using the subtraction approach
ns Ratio ns Ratio ns Ratio

CDR-SB 1996 1.35 1143 1.07 2169 1.37
ADAS-cog 16521 11.21 6186 5.80 61512 38.76
MMSE 4042 2.74 1960 1.84 2426 1.53
ADCOMS 1374 0.93 977 0.92 1392 0.88
new ADSS 1474 1066 1587

nc: ANCOVA Sample size
CDR-SB 1210 1.54 677 1.30 1206 1.56
ADAS-cog 6041 7.70 2253 4.34 24695 31.95
MMSE 2897 3.69 1437 2.77 1760 2.28
ADCOMS 719 0.92 439 0.85 716 0.80
new ADSS 785 519 773

ADSS, AD composite Score with variable Selection; MSDR, mean to standard deviation ratio; MCI, mild
cognitive impairment; CDR-SB, Clinical Dementia Rating – Sum of Boxes; ADAS-Cog, Alzheimer’s Disease
Assessment Scale – Cognitive Subscale; MMSE, Mini-Mental State Examination; ADCOMS, AD Composite
Score.

ADSS has a larger MSDR than the existing scores,
and the difference is similar to that in the overall MCI
population.

In Table 4, we presented sample sizes for a study
to detect a 25% reduction in clinical decline at 2-year
follow-up from baseline by using the existing 4 scores
and the new ADSS. When a study was designed by
using the subtraction method, the required sample
size is a function of the MSDR. For that reason, the
new composite score requires the smaller sample size
as compared to the existing total scores as shown in
Table 3 comparing MSDR values. The ratio of the
required sample sizes between the existing cognitive
measure and the new composite score is the square of
the MSDR ratio between them. ADCOMS requires

similar sample sizes as the ADSS. The individual total
scores require at least 59% more participants than the
ADSS in MCI patients.

When the ANCOVA approach is used in sample
size calculation with baseline cognitive score being
adjusted in the outcome, the sample size formula in
Equation (3) can be used to calculate the required
trial sample sizes. As compared to the sample size ns

based on the subtraction method, the sample size nc is
often much smaller, especially when the correlation
ρ is high. For these measures, the range of ρ is from
0.45 to 0.78. ADAS-cog has the highest correlation,
followed by ADSS, and ADCOMS. The new score
reduces sample sizes at least 77% as compared to
CDR-SB.
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Validation

The developed ADSS was validated by using MCI
patients’ data from the ADCS [28]. We identified 536
MCI participants having complete CDR-SB, ADAS-
cog, MMSE, and their sub-scales at 18 months. At
the 18-month follow-up visit, the donepezil treatment
group (n = 168) had the lowest MCI-to-AD conver-
sion rate of 14% as compared to the AD onset rate
of 24% and 22% in the vitamin E arm (n = 184) and
the placebo arm (n = 184), respectively. When com-
bining data from all the three arms, the new ADSS
has the highest MSDR of 0.405, followed by CDR-
SB (0.383), MMSE (0.270), and ADAS-cog (0.231).
In this example, the ADCOMS has a slightly higher
MSDR than the ADSS. Within each arm, the new
ADSS and the CDR-SB often have larger MSDR val-
ues than others. The ADSS has similar MSDR values
as the CDR-SB in the donepezil arm and the vitamin
E arm, but the ADSS has 15% higher MSDR than
CDR-SB in the placebo arm.

We calculated the predictive validity of the ADSS
by using the 624 MCI patients from the ADNI
[29]. They can be separated into two subgroups: 173
patients progressed to dementia due to AD at the year
2 follow-up visit, and the remaining 451 patients who
remained MCI status. In these 2 years, MCI patients
who remained stable in that 2 years had very slight
decline of the ADSS (mean change of 0.35 with SD
of 1.41), while the ADSS was increased by 3.56
(SD = 2.07) in the 173 patients progressed to demen-
tia due to AD. These results indicate high predictive
validity of the proposed ADSS.

DISCUSSION

Our goal in developing the ADSS was to create
a valid score that will allow sample size reductions
for clinical trials. The slowest aspect of clinical trial
conduct is recruitment of patients; the recruitment
time usually exceeds the period of drug exposure in
the trial [30]. Reducing sample size can decrease the
recruitment time and accelerate assessment of candi-
date treatments in trials. To overcome the challenge
of multicollinearity, we first calculated the Pearson
correlation coefficients between each cognitive total
score or sub-scale and the outcome. We included only
the cognitive outcome measures with outcomes mea-
sures in the expected direction of correlation in the
statistical model to derive a new composite score.
Different cognitive tests may have similar domains
(e.g., orientation) [10], leading to highly correlated

measures [31, 32]. The PLS regression was used in
this project to compute independent components.

The threshold value of VIP in the model selec-
tion was chosen to be as 0.75. The model prediction
could be affected by the VIP threshold value [33].
When the VIP threshold value is too low, many
cognitive outcome measures will be selected, which
could increase the complexity of model interpreta-
tion. Meanwhile, a high VIP threshold value reduces
the number of predictors in the final model. In this
case, the model prediction may be affected. The com-
monly used threshold value of 0.8 for VIP [34] did
not perform as well as the lower threshold values.
The threshold value of 0.75 was used to select enough
cognitive outcome measures in the ADSS.

We investigated the improvement of the final com-
posite score by adding additional predictors from
the FAQ for measuring impairment in instrumental
activities of daily living [24] and the NPI for assess-
ing neuropsychiatric symptoms [23]. The estimated
MSDR of change from baseline can be increased
when the following 7 sub-scales from the FAQ were
added to the final composite score: finances, paper-
work, preparing a meal, events, travel, game, and
shopping. But not all AD trials collect FAQ data
which limits the usage of the model with FAQ sub-
scales. For the NPI sub-scales, given the significant
amount of missing data, we did not observe improve-
ment in the prediction power.

We only utilized the natural history data (the
ADNI study) in developing the model, which could
be considered as a limitation as compared to the
ADCOMS developed by using the ADNI and the con-
trol group data from AD trials. ADSS was developed
to avoid including multiple highly correlated orienta-
tion sub-scales. As ADSS was developed by using the
statistical model in the ADCOMS, we would expect
them have similar prediction performance in some
applications. In general, the ADSS has similar per-
formance as the ADCOMS. It should be noted that
the ADNI data is an observational dataset [35]. MCI
patients in the ADNI study may have different disease
progression rates as compared to the MCI patients
who are assigned to the control group in AD trials.

In addition to the commonly used cognitive out-
come measures (e.g., ADAS-cog), more sensitive
outcome measures are in great need to detect cog-
nitive change. One example would be the digital
cognitive testing, which can be assessed remotely
[36]. The PLS method provides the parameter esti-
mates that can be used directly in computing the
composite score. The statistical model is used to
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select the sub-scales, which may not lead to bet-
ter interpretation of clinical meaningfulness of the
composite scores. Alternatively, machine learning
methods that can provide parameter estimates may be
considered in the future to further improve the pre-
diction of disease progression. We consider utilizing
machine learning methods to develop new composite
scores as future work.
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