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Background and Objective: Retinal ischemia-reperfusion (IR) leads to massive loss of

retinal ganglion cells (RGC) and characterizes several blind-causing ophthalmic diseases.

However, the mechanism related to retinal IR is controversial, and a drug that could

prevent the RGC loss caused by IR is still lacking. This study aimed to investigate the

role of endogenous retinal peroxisome proliferator-activated receptor (PPAR)α and the

therapeutic effect of its agonist, fenofibric acid (FA), in IR-related retinopathy.

Materials andMethods: Fenofibric acid treatment was applied to the Sprague–Dawley

rats with IR and retinal cell line 28 cells with oxygen-glucose deprivation (OGD) (an

in vitro model of IR). Western blotting, real-time PCR, and immunofluorescence were

used to examine the expression levels of PPARα, glial fibrillary acidic protein (GFAP),

and cyclooxygenase-2 (COX2). Hematoxylin and eosin (HE) staining, propidium iodide

(PI) staining, retrograde tracing, and flash visual-evoked potential (FVEP) were applied to

assess RGC injury and visual function.

Results: Retinal IR down-regulated PPARα expression in vitro and in vivo. Peroxisome

proliferator-activated receptor α activation by FA promoted survival of RGCs, mitigated

thinning of the ganglion cell complex, and decreased the latency of positive waves of

FVEPs after IR injury. Further, FA treatment enhanced the expression of endogenous

PPARα and suppressed the expression of GFAP and COX2 significantly.

Conclusion: Peroxisome proliferator-activated receptor α activation by FA is protective

against RGC loss in retinal IR condition, which may occur by restoring PPARα expression,

inhibiting activation of glial cells, and suppressing retinal inflammation. All these findings

indicate the translational potential of FA in treating IR-related retinopathy.

Keywords: peroxisome proliferator-activated receptor α, fenofibric acid, ischemia-reperfusion, neuroprotection,

retinal ganglion cell, retinal diseases

INTRODUCTION

Retinal ganglion cells (RGCs) are the only retinal neurons that directly project their axons to
the central nervous system and perform visual function (1). Many retinal diseases such as acute
angle-closure glaucoma, retinal vascular occlusions, and anterior ischemic optic neuropathy can
directly or indirectly lead to the irreversible death of RGCs and severely threaten eyesight (2–4).
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The common pathologic feature among these diseases is retinal
ischemia/reperfusion (IR). However, the precise pathways and
molecular mechanism related to retinal IR are not well-
understood and are controversial. A therapeutic drug to
prevent RGC death caused by IR is lacking (5). Accordingly,
understanding the pathological mechanism of retinal IR and
developing effective therapy are imperative.

Peroxisome proliferator-activated receptor (PPAR)α is a
ligand-activated transcription factor and member of the nuclear
receptor superfamily. It plays an important part in regulation
of lipid metabolism and has anti-inflammatory and antioxidant
effects under several pathologic conditions (6–9). In the retina,
PPARα is expressed in multiple cell types, including the retinal
pigment epithelium (RPE), outer nuclear layer (ONL), inner
nuclear layer (INL), and ganglion cell layer (GCL) (10), which
is essential for lipid metabolism and neuronal survival in the
retina (11).

Previous studies have demonstrated that PPARα expression is
down-regulated in the retinas of patients suffering from diabetes
mellitus (DM), as well as in the retinas of rodents with diabetic
retinopathy or oxygen-induced proliferative retinopathy (10, 12).
Knockout of PPARα expression aggravates retinal microvascular
damage (12), overexpression of PPARα reduces retinal vascular
leakage and retinal inflammation caused by diabetes (10), and
alleviates retinal neovascularization in diabetic retinopathy (13).
Moreover, Fenofibrate (a specific agonist of PPARα) can alleviate
retinal damage by reducing apoptosis of capillary pericytes via
amelioration of retinal inflammation and oxidative stress (14–
16). Qiu et al. showed that PPARα activation by fenofibrate
displayed therapeutic effects on age-relatedmacular degeneration
induced by lasers in rodents (17).

Taken together, these studies suggest that PPARα is a
potential therapeutic target for ophthalmic diseases. However,
the relationship between PPARα and ophthalmic diseases
characterized by retinal IR is unclear. This study investigated
whether PPARα is involved in IR-induced retinal injury (by
increasing the intraocular pressure to 110 mmHg for 1 h via
a saline-perfusion system). We also identified whether PPARα

activation has protective effects on RGCs in this condition and
explored the underlying mechanism of action.

MATERIALS AND METHODS

Ethical Approval of the Study Protocol
Experiments were undertaken in accordance with the Guide for
the Care and Use of Laboratory Animals (National Institutes of
Health, No. 80-23, Bethesda, MD, USA). The study protocol was
approved by the Animal Research Committee of the Xiangya
School of Medicine (Changsha City, China).

Animals
Female Sprague–Dawley rats (200–250 g; 8 weeks; Slaccas,
Changsha, China) were housed in an environment with free
access to food and water under a 12-h light–dark cycle. In
all procedures, rats were anesthetized with a solution of 2%
sodium pentobarbital (80mg/kg, i.p.; Sanshu, Beijing, China) and
xylazine (10 mg/kg, i.p.; Huamu, Beijing, China). Oxybuprocaine

hydrochloride (Santen Pharmaceuticals, Tokyo, Japan) was used
to anesthetize corneas and tropicamide phenylephrine (Santen
Pharmaceuticals) was used to dilate pupils.

Model of Retinal IR
Retinal IR injury was induced by increasing the pressure in the
anterior chamber via the saline-perfusion system described by
Tong et al. (18). Briefly, anesthetized animals with anesthetized
corneas and dilated pupils were fixed on a heat-preservation
countertop, and their underjaws were raised to prevent death
from aspiration of saline. Then, 31-G needles were inserted into
the anterior chamber and the intraocular pressure was increased
gradually to 110 mmHg for 1 h (Figure 1A). Eyes that underwent
needle puncture only but not perfusion were regarded as Sham
operation (SO) eyes. During and after the procedure, antibiotic
eye ointment was used to keep the eyes moist and uninfected.
Only rats without saline-leaking or lens injury were included in
our study (a total of two rats were excluded because of lens injury
and one rat was discarded because of saline-leaking).

Cell Culture and Oxygen-Glucose
Deprivation Model
Retinal cell line 28 (R28) is an adherent retinal precursor cell
line derived from neonatal Sprague-Dawley rat retina, which was
immortalized by the 12S E1A gene and commonly used to study
the function and neuroprotection of RGCs in vitro (19). In this
study, R28 cells were offered by the Department of Anatomy
and Neurobiology (Central South University, Changsha, China).
Cells were cultured in low glucose DMEM (11885084; Gibco,
Carlsbad, USA) with 10% fetal calf serum (0500; ScienCell, San
Diego, USA), 1% L-glutamine (G3126; Sigma, St. Louis, USA),
1% non-essential amino acids (M7145; Sigma, St. Louis, USA),
and 1% penicillin-streptomycin (60162ES76; Yeasen, Shanghai,
China). To establish the Oxygen-Glucose Deprivation (OGD)
model, an in vitro model of retinal IR, R28 cells were incubated
in a glucose-free DMEM (11966025; Gibco, Carlsbad, USA) with
an anoxic environment (95% N2, 5% CO2) for 2 h, then the cells
were cultured in normal medium and reoxygenated (21% O2, 5%
CO2) for 2 h before being examined (Figure 1B).

PPARα Activation
Fenofibric acid (FA) is a specific agonist of PPARα. In vivo, FA
(S4527; Selleck Chemicals, Houston, TX, USA) was dissolved
in dimethyl sulfoxide (DMSO; Solarbio, Beijing, China) at 10
mg/ml. One hour before IRmodeling, animals were injected (i.p.)
with FA at 1 ml/kg bodyweight. Treatment was administered
once a day (excluding the modeling day) until rats were sacrificed
24 or 72 h after modeling. In vitro, 25µMFAwas added to the cell
culture medium 1 h before OGD modeling and maintained until
the cells were examined.

Retina Immunofluorescence and Staining
Anesthetized rats were perfused transcardially with pre-cooled
phosphate-buffered saline. Intact eyes were enucleated and
fixed in FAS eyeball fixative solution (G1109; Servicebio,
Beijing, China) for 24 h at room temperature. After fixation,
eyeballs were dehydrated in ethanol and embedded in paraffin.
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FIGURE 1 | Expression of PPARα in IR-treated retinas (24 h post-modeling) and OGD-treated R28 cells (2 h post-modeling). (A) The diagrammatic picture of IR

modeling. (B) The diagrammatic picture of OGD modeling. (C) Representative photomicrographs of immunostained PPARα (red) and nuclei (blue; counterstained by

DAPI) in R28 cells and retinas. (D,E) Graph showing the mean fluorescence intensity (MFI) of PPARα in R28 cells and retinas. (F) The expression of PPARα and actin

detected by western blotting in R28 cells and retinas. (G,H) Average expression of PPARα semi-quantified by densitometry and normalized to actin expression in R28

cells and retinas. Data are the mean ± SEM; *p < 0.05; **p < 0.01. Scale bar = 50µm.

Sections (3µm) were made around the optic nerve for
further immunofluorescence staining and hematoxylin and eosin
(HE) staining. Dewaxed and antigen-retrieved paraffin retinal
slices were applied to immunofluorescence, as described in
our previous study (20). Three antibodies (all from Abcam,
Cambridge, UK) were used: anti-PPARα (ab215270; 1:100),
anti-glial fibrillary acidic protein (GFAP; ab33922; 1:300), and
anti-cyclooxygenase 2 (COX2; ab62331; 1:100). Retina HE
staining was performed by the Hematoxylin-Eosin/HE Staining
Kit (G1120; Servicebio, Wuhan, China) according to the
manufacturer’s instructions.

Cell Immunofluorescence and Staining
Retinal cell line 28 cells were fixed in 4% paraformaldehyde for
15min (G1101; Servicebio, Beijing, China) at room temperature
before immunofluorescence staining. The specific procedures
and antibodies applied were the same as those used for retinal

slices. Besides, propidium iodide (PI; P4170; Sigma, St. Louis,
USA) staining andHoechst staining (A3472; APExBIO, Houston,
USA) were applied to detect the survival rate of R28 cells
according to the manufacturer’s instructions.

Western Blotting
Freshly isolated retinal tissues were homogenized and lysed in
RIPA buffer (P0013; Beyotime, Beijing, China). The protein
concentration was quantified by a Bicinchoninic Acid kit (Pierce,
Rockford, IL, USA). Western blotting was done as described
in our previous study (20) with the following antibodies:
anti-PPARα (ab215270; Abcam; 1:1,000), anti-GFAP (ab33922;
Abcam; 1:1,000), anti-COX2 (ab62331; Abcam; 1:1,000), and
anti-β-actin (GB12001; Servicebio; 1:3,000). The expression
levels of PPARα, GFAP and COX2 were quantified by Image-
Pro Plus 6.0 (Media Cybernetics, Rockville, MD, USA) and
normalized by the densitometry of β-actin.
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Real-Time PCR
Total RNA was isolated from fresh retinal tissues with RNAiso
buffer (GB3013; Servicebio, Wuhan, China). Peroxisome
proliferator-activated receptor α mRNA was reverse transcribed
to cDNA with the Servicebio R©RT First Strand cDNA Synthesis
Kit (G3330; Servicebio), according to the manufacturer’s
instructions. Peroxisome proliferator-activated receptor α

mRNA expression was quantified using 2×SYBR Green qPCR
Master Mix (G3322; Servicebio). Peroxisome proliferator-
activated receptor α mRNA levels were normalized to
GAPDH mRNA levels. The following specific primers were
synthesized by Servicebio: rat PPARα primers, forward
5′-CATCGAGTGTCGAATATGTGG-3′ and reverse 5′-
GCAGTACTGGCATTTGTTCC-3′; rat GAPDH primers,
forward 5′-GGAAGCTTGTCATCAATGGAAATC-3′ and
reverse 5′-TGATGACCCTTTTGGCTCCC-3′.

Retrograde Tracing of RGCs
One week before IR modeling, 4% fluorogold (FG;
Fluorochrome, Denver, CO, USA) solution was injected
into the bilateral superior colliculi of rats (6mm posterior to the
bregma, 1.8mm lateral to the cranial midline, and 4mm deep to
the cranial surface) to retrograde label RGCs, as described in our
previous study (21).

Counting FG-Labeled RGCs
Flattened retinas were examined by a fluorescence microscope
(DM5000 B; Leica, Wetzlar, Germany). Twelve images per retina
were taken at 0.85, 2.26, and 3.68mm (approximately 1/6, 1/2,
and 5/6 retinal radius) from the optic disk in superonasal,
inferonasal, superotemporal, and inferotemporal quadrants. A
double-blind method and Image-Pro Plus 6.0 were used to count
the labeled RGCs in each photomicrograph.

Thickness of the Ganglion Cell Complex
(GCC)
The GCC consists of a retinal nerve-fiber layer, GCL and inner
plexiform layer, and corresponds to the anatomic distribution of
RGCs in the retina (22). To better represent the change in GCC
thickness, 12 points of GCC thickness per retinal slice stained
by HE were measured by Image-Pro Plus 6.0 according to the
following parameters: perpendicular to the surface of the RPE
layer as well as ±800, ±1,600, ±2,400, ±3,200, ±4,000, and
±4,800µm away from the center of the optic nerve (Figure 3F).

Flash Visual-Evoked Potentials
Flash Visual-Evoked Potentials (FVEPs) were obtained using a
multifocal electroretinography recorder (GT-2008V-VI; Gotec,
Chongqing, China) for functional evaluation of retinas 24 or 72 h
after modeling. The stimuli intensity was set to 10.0 cd•s/m2,
the flash frequency was 1Hz, and the number of flashes was
64. After light adaptation for 15min, anesthetized animals were
fixed on a special holder with one silver-plate electrode inserted
under the skin of the occipital bone (anode), anterior bregma
(cathode), and ear (ground electrode), respectively. Then, the
FVEP of right and left eyes was recorded in order by a Ganzfeld
electrodiagnostic system (Gotec, Chongqing, China). The latency

of the first positive wave (P1) and second positive wave (P2) of
FVEP was analyzed.

Statistical Analysis
SPSS 22.0 (IBM, Armonk, NY, USA) was utilized for statistical
analyses. Data are the mean± SEM. The Student’s t-test and one-
way analysis of variance followed by Tukey’s post-hoc test were
used for comparisons between two groups and more than two
groups. Statistical significance was set at p < 0.05.

RESULTS

Retinal IR Down-Regulated PPARα

Expression in vitro and in vivo
To verify whether PPARα is involved in the pathological process
of retinal IR, we delineated PPARα expression in R28 cells
and retinas after OGD/IR modeling by immunofluorescence
analyses and western blotting. Oxygen-glucose deprivation-
treated R28 cells showed significant cytoplasmic declination of
PPARα expression compared with that in the control group
(Figures 1C,D,F,G). In retinas, immunostained PPARα was
detected in the GCL, INL, ONL, and the RPE, but most PPARα

was expressed in the GCL (Figure 1C). Twenty-four hours
after IR modeling, retinal immunolabeling level of PPARα was
down-regulated, and this change was manifested mainly in the
GCL (Figures 1C,E,F,H). Taken together, these data suggested
that retinal IR procedure induced down-regulation of PPARα

expression both in vitro and in vivo; PPARα was likely to
participate in the pathological mechanism of retinal IR.

Protective Effect of PPARα Activation on
RGC Survival
To clarify the role of PPARα in retinal IR, we used FA to activate
PPARα and evaluated the effect of PPARα activation on R28
cells and RGC survival after OGD/IR modeling. As shown in
Figures 2A,B, OGD modeling led to nearly half of R28 cells
death 2 h after modeling, and FA treatment ameliorated OGD-
induced cell death significantly (p= 0.0001, n= 4 per group). In
vivo, surviving RGCs labeled by FG had a granular appearance
with clear borders and golden color, whereas dead RGCs had
a smaller volume and lighter color (white arrows, Figure 2C).
Photomicrographs identified that dead RGCs appeared only in IR
groups. The number of surviving RGCs was decreased markedly
in IR rats in comparison with SO rats 24 and 72 h after modeling
(p = 0.0001 for both, n = 6 per group). Moreover, FA treatment
was able to increase the number of surviving RGCs (p = 0.0001
at 24 h and p = 0.002 at 72 h, n = 6 per group) (Figures 2D,E;
Supplementary Table 1). These results suggested that PPARα

activation by FA had a protective effect on IR-induced RGC loss.

PPARα Activation Mitigated Thinning of the
GCC
To further determine the protective effect of PPARα activation on
retinal IR, HE staining was used to measure GCC thickness. At
72 h post-modeling, GCC thickness was decreased significantly
in IR rats when compared with SO rats (p = 0.0001, n = 7
in the IR group and n = 5 in the SO group). Fenofibric acid
treatment efficaciously attenuated GCC thinning (p = 0.014,
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FIGURE 2 | Protective effect of PPARα activation by FA on RGC survival in vitro and in vivo. (A) Representative photomicrographs of R28 cells stained by propidium

iodide (PI, dead cells) and Hoechst (total cells). (B) The survival rate of R28 cells. (C) RGCs labeled by fluorogold (FG) taken at 1/2 retinal radius distances from the

optic disk (white arrows, dead RGCs). (D,E) The average number of FG-labeled RGCs at 24 h/72 h post-IR modeling. Data are the mean ± SEM; **p < 0.01. Scale

bar = 50µm.

n = 7 per group), and all of these changes occurred in the
whole retina. However, 24 h aftermodeling, no obvious difference
was found between groups (n = 5 per group) (Figure 3;
Supplementary Table 1). In summary, FA alleviated the GCC
damage induced by IR at 72 h, suggesting that PPARα activation
by FA had a protective effect on IR-induced retinal injury.

Protective Effect of PPARα Activation on
Visual Function
Moreover, we investigated the protective effect of PPARα

activation on visual function. Flash visual-evoked potentials were

applied to assess the effect of FA on retinal electrophysiologic
activity. The latency of P1 waves and P2 waves was increased

by IR at 24 and 72 h after modeling (p = 0.0001 for

all, n = 6 per group), indicating that retinal IR severely

affected the conduction function of vision. Furthermore, FA

treatment decreased the latency of the P1 wave at 24 h (p =

0.021, n = 6 per group) and P2 wave at 24 or 72 h after

modeling in IR rats (p = 0.001 for 24 h and p = 0.008 for

72 h, n = 6 per group) (Figure 4; Supplementary Table 1),

suggesting that PPARα activation by FA ameliorated IR-induced

retinal dysfunction.
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FIGURE 3 | PPARα activation by FA mitigates GCC thinning in IR rats. (A) Representative photomicrographs of HE-stained retinal slices taken at 2,400µm away from

the optic nerve at 24 and 72 h post-IR modeling. (B,C) Mean thickness of the GCC at 24 h/72 h post-IR modeling. (D,E) At 24 and 72 h after modeling, the GCC

thickness of rats was measured ± 800, ±1,600, ±2,400, ±3,200, ±4,000, and ±4,800µm away from the optic nerve. (F) The diagrammatic picture of GCC

measured in the retina. Data are the mean ± SEM; *p < 0.05. Scale bar = 50µm.

FA Increased PPARα Expression in vitro

and in vivo
We have demonstrated that retinal IR down-regulated PPARα

expression in vitro and in vivo, and PPARα activation
by FA alleviated IR-induced injury and protected visual
function. However, the effect of FA on endogenous PPARα

expression remains unclear. The immunofluorescence results
showed that FA treatment increased PPARα expression in
R28 cells and retinas after OGD/IR modeling (Figure 5A;
Supplementary Figures 1A,B). Western blotting and Real-time
PCR showed that retinal PPARα and mRNA levels were
decreased at 24 h post-modeling, while FA treatment effectively
reversed these changes (p = 0.035 for Western blotting and p =

0.0001 for PCR, n = 3 per group) (Figures 5B–D). These results
suggested that FA as an agonist of PPARα could increase the
transcription and translation level of PPARα.

Activation of PPARα Repressed GFAP and
COX2 Expression
We wished to determine the underlying mechanism of PPARα

activation on RGCs in IR rats. Over-activation of glial cells is
one of the crucial pathogenic factors after retinal stress injury,
up-regulation of GFAP [a marker of glial cells (23)] is regarded
as a sensitive non-specific response of glial cells activation (24).
In this study, the expression of GFAP was measured in retinas
24 h after IR modeling. Retinal GFAP was expressed mainly in
the GCL, and such expression was up-regulated in the GCL
of IR rats. However, FA treatment suppressed an up-regulation
of GFAP in the GCL (Figure 6A; Supplementary Figure 1C).
Consistent with the results of immunofluorescence analyses,
western blotting showed that GFAP expression in retinas was
also increased after IR modeling (p = 0.0001, n = 3 per
group), FA decreased retinal GFAP level (p = 0.0001, n =
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FIGURE 4 | Protective effect of PPARα activation by FA on FVEPs in IR rats. (A) Representative images of FVEPs at 24 h post-IR modeling. (B) Representative images

of FVEPs at 72 h post-IR modeling. (C) The latency of the first positive wave (P1 wave) and second positive wave (P2 wave) of FVEPs in rats at 24 h post-IR modeling.

(D) The latency of the P1 wave and P2 wave of FVEPs in rats at 72 h post-IR modeling. Data are the mean ± SEM; *p < 0.05; **p < 0.01. Scale bar = 10.0 µV and

50ms.
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FIGURE 5 | Fenofibric acid increased PPARα expression in OGD-treated R28 cells (2 h post-modeling) and IR-treated retinas (24 h post-modeling). (A) Representative

photomicrographs of immunostained PPARα (red) and nuclei (blue; counterstained by DAPI) in R28 cells and retinas. (B) Retinal expression of PPARα and actin

detected by western blotting. (C) Average expression of PPARα semi-quantified by densitometry and normalized by actin levels. (D) Average expression of PPARα

mRNA detected by Real-time PCR and normalized by GAPDH mRNA levels. Data are the mean ± SEM; *p < 0.05; **p < 0.01. Scale bar = 50µm.

3 per group) and that there was no difference between rats
treated by FA and those treated by DMSO in the SO group
(Figures 6C,D).

Cyclooxygenase-2 is an important pro-inflammatory
molecule (25). To further elucidate the therapeutic mechanism
of FA on IR rats, we measured retinal level of COX2 24 h after
IR modeling. Immunostained COX2 was detected in the all
layers of the retina. Ischemia-reperfusion modeling increased
COX2 level in the GCL and inner plexiform layers significantly.

In contrast, FA treatment decreased COX2 level (Figure 6B;
Supplementary Figure 1D). Western blotting showed that
IR-induced retinopathy up-regulated COX2 level in the retina
(p = 0.001, n = 3 per group), but this level was down-regulated
by FA (p = 0.0001, n = 3 per group. Moreover, there was no
distinction between rats treated by FA and those treated by
DMSO (Figures 6C,E).

In summary, these results indicated that FA decreased GFAP
and COX2 expression in the retina significantly, suggesting that
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FIGURE 6 | Activation of PPARα by FA repressed GFAP and COX2 expression in the retinas of IR rats. (A,B) Representative photomicrographs of immunostained

GFAP/COX2 (red) and nuclei (blue; counterstained by DAPI) in retinal sections at 24 h post-modeling. (C) Retinal expression of GFAP, COX2, and actin detected by

western blotting. (D,E) Average expression of GFAP/COX2 semi-quantified by densitometry and normalized by actin levels in retinas. Data are the mean ± SEM; **p <

0.01. Scale bar = 50µm.

PPARα activation mediated the repression of glial cells activation
and suppression of retinal inflammation.

DISCUSSION

Peroxisome proliferator-activated receptor α is an important
lipid-regulating transcription factor. It has been reported

that PPARα plays an important part in ophthalmic diseases
(14–17). However, the PPARα function in retinal IR is
remained unknown. In this study, we first measured
PPARα expression in retinal IR condition, and provided
evidence that PPARα activation by FA (a PPARα agonist)
ameliorated IR-induced RGC injury in vitro and in vivo.
Our results suggested that this beneficial effect was through
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inhibition of activation of retinal glial cells and suppression of
retinal inflammation.

Studies have shown that PPARα is expressed in the retina,
kidney, intestine, heart and brain (10, 26–28). Peroxisome
proliferator-activated receptor α expression in the retina under
chronic ischemic and hypoxic conditions has been studied (10,
12), but PPARα expression under acute ischemia and hypoxia has
not. Therefore, we firstmeasured PPARα expression in the retinas
of IR rats. Consistent with down-regulation of PPARα expression
in chronic ischemic retinopathy [e.g., DM-induced retinopathy
(10), oxygen-induced proliferative retinopathy (15)] and in other
non-retinal organs injured by IR [e.g., heart (29), kidney (30), and
intestine (31)], PPARα expression in the IR retina was decreased
24 h after modeling, indicating that PPARα was involved in
the retinal pathological process of IR injury. However, unlike
the reduction of PPARα expression in the whole retina caused
by DM (10), the decrease in IR-induced PPARα expression
was manifested mainly in the GCL. One hypothesis is that IR
modeling mainly hindered the blood supply of the inner retina by
blocking the central retinal artery and central retinal vein (32). In
this case, the GCL was more susceptible to ischemia and hypoxia.
This hypothesis could be correct because the thickness of the
retinal ONL was not affected by IR (Supplementary Figure 2).

To verify the effect of PPARα in IR-induced retinopathy,
we used a specific PPARα agonist, FA, to activate PPARα and
ascertain if PPARα plays an important part in this pathologic
process. First, we used FG to retrograde-label surviving RGCs in
the retina. Retinal ganglion cell loss is a crucial feature of acute
angle-closure glaucoma, retinal vascular occlusions, and anterior
ischemic optic neuropathy. We found that IR modeling led to
a significant loss of RGCs 24 and 72 h after modeling, which is
consistent with the pathologic process of the diseases mentioned
above. Peroxisome proliferator-activated receptor α activation by
FA reduced the RGC loss caused by IR efficaciously, indicating
that PPARα had a protective role in this process. Second, we
measured retinal GCC thickness [a widely used indicator for
detection of RGC loss in clinical diagnoses (33, 34)] after FA
treatment to further demonstrate the protective effect of PPARα

on RGCs. Our results showed that GCC was thinner than the
normal group at 72 h post-modeling, and FA treatment alleviated
this structural change in the IR retina. However, a change in GCC
thickness 24 h after modeling was not found, indicating that the
change in GCC thickness occurred later than RGC death. Third,
we detected RGC function. Use of FVEPs is a sensitive method
that reflects the function of visual pathways (35). Studies have
demonstrated that RGC damage would directly affect the visual
conduction function, resulting in extension of the latency of each
peak of FVEPs (36, 37). In our study, IR-induced RGC injury also
increased the latency of the P1 wave and P2 wave of FVEPs, but
FA treatment reduced the prolongation of latency. In summary,
PPARα activation by FA alleviated IR-induced damage to the
structure and function of RGCs, actions that are consistent with
its protective effects in diabetic retinopathy or oxygen-induced
proliferative retinopathy (14–17). In addition, our results are
also consistent with the studies reported by Bulhak et al. (38)
and Ravingerova et al. (39), they both demonstrate that PPARα

activation protects myocardium from IR injury. All these results

suggest that PPARα activation had a protective role in the retina,
and PPARα itself could be a potential target for treatment of
IR-induced retinopathy.

Fenofibrate is a synthetic ligand of PPARα and has been
used as a hypolipidemic drug for >30 years (40). Fenofibrate is
safe and inexpensive, and use of fenofibrate for treating retinal
diseases was inspired by two large clinical studies (FIELD and
ACCORD) in which researchers reported its robust therapeutic
effects on retinopathy in patients with type-2 DM (41, 42).
Fenofibric acid is the active metabolite of fenofibrate (43)
and retains the function and advantage of fenofibrate while
avoiding some off-target effects caused by direct application of
fenofibrate [e.g., inhibition of cytochrome-P450 expression or
suppression of voltage-dependent K+ channels (44, 45)]. All
of these advantages might be conducive to convert FA to a
drug for clinical treatment. As for the potential time window
for FA treatment of ophthalmic clinical disease (such as acute
angle-closure glaucoma, retinal vascular occlusions, and anterior
ischemic optic neuropathy), we cannot predict the occurrence of
these diseases and administer FA in advance as in this study, so we
consider that FA should be administered as soon as these diseases
are diagnosed.

We investigated the underlying mechanism of the
neuroprotective effect of PPARα activation. Some in vitro
studies have shown that fenofibrate and FA have a stimulatory
effect on elevation of PPARa levels in osteogenic precursor
cells (46) and palmitate treated retinal precursor cells (47).
Our results demonstrated that FA also increased the expression
of PPARα in a retinal IR model, indicating that FA exerts its
neuroprotective effect partially relies on up-regulation of PPARα.
Glial cells are crucial for maintaining the blood–retinal barrier
and RGC survival (24, 48, 49). It has been reported that glial
cells may lose their physiologic functions and be activated in
disease or injury, and that over-activation of glial cells is related
to retinal neurodegeneration (24). Moran et al. demonstrated
that PPARα activation can attenuate over-activation of glial
cells in an oxygen-induced retinopathy model (15). Hence, we
conjectured that PPARα exerted its protective role in an IR
model through this mechanism. We found that expression of
GFAP (a marker of glial cells) was increased markedly in the
GCL after IR modeling, and that FA treatment reduced GFAP
expression significantly. Besides, we measured expression of
COX2 (an important proinflammatory mediator produced by
activated glial cells) because increased COX2 expression can
aggravate local inflammation and promote RGC death (50).
After IR modeling, COX2 expression increased significantly, and
FA treatment attenuated this increase markedly. These data are
in accordance with the work of Zhang et al., who also found
that activated glial cells could produce COX2 rapidly in injured
optic nerves (51). All these results suggested that the therapeutic
effect of PPARα activation was due (at least in part) to inhibition
of activation of glial cells and reduction of inflammation in
the retina. Importantly, the changes in expression of GFAP
and COX2 manifested mainly in the inner layer of the retina
(especially in the GCL), which provides further evidence that
activation of glial cells and inflammation had direct roles in
RGC injury.
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CONCLUSION

In this study, we demonstrated, for the first time, that PPARα

is involved in the pathologic process of retinal IR. Peroxisome
proliferator-activated receptor α activation by FA ameliorates
IR-induced RGC injury and protects visual function, inhibits
activation of glial cells and suppresses retinal inflammation.
Taken together, these findings suggest that PPARα could be a new
target for the treatment of retinal IR-related ophthalmic diseases.
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