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Abstract

UBC9, the only known E2-conjugating enzyme involved in SUMOylation, is a key regulator

in fibrosis. However, the roles of UBC9 in liver fibrosis remain unclear. Therefore, in this

study, we investigated the roles of UBC9 in HSC apoptosis and liver fibrogenesis. Our

results showed that the UBC9 levels in activated LX-2 cells, HepG2 and SMMC-7721 were

increased compared with LO2, and the expression of UBC9 in activated LX-2 cells, HepG2

and SMMC-7721 were no significant differences. The expression of UBC9 was effectively

down-regulated by the UBC9-shRNA plasmid, and this effect was accompanied by the

attenuated expression of the myofibroblast markers smooth muscle actin (α-SMA) and Col-

lagen I. Downregulation of UBC9 also promotes activated HSCs apoptosis by up-regulating

cell apoptosis-related proteins. Further, knockdown of UBC9 in activated HSCs inhibited

cell viability and caused cell cycle arrest in the G2 phase. Moreover, knockdown of UBC9

suppressed the activation of NF-κB signaling pathways. In conclusion, these results demon-

strated that down-regulation of UBC9 expression induced activated LX-2 cell apoptosis and

promoted cells to return to a quiescent state by inhibiting the NF-κB signaling pathway.

These results provide novel mechanistic insights for the anti-fibrotic effect of UBC9.

Introduction

Hepatic fibrosis is an integral component in the progression of chronic inflammatory liver dis-

ease, which features excessive accumulation of extracellular matrix (ECM) proteins. With pro-

longed liver damage, fibrosis may progress to cirrhosis and primary liver cancer [1]. Unlike

irreversible cirrhosis, hepatic fibrosis is a reversible disease, and an effective treatment can pre-

vent or reverse the fibrotic process [2]. Hepatic stellate cells (HSCs) play a key role in liver

fibrogenesis [3]. HSCs are quiescent in the normal liver but are activated in response to liver

damage [4]. After activation, HSCs are converted to myofibroblasts, a rich source of Collagen I
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and a-SMA, which are proliferative, fibrotic and contractile. Activated HSCs secrete several

factors, including transforming growth factor β (TGF-β), platelet-derived growth factor

(PDGF) and other factors that promote the development and progression of liver fibrosis[5].

In addition, these activated HSCs also secrete tumor necrosis factor α (TNF-α), IL-6, human

growth factor (HGF), fibroblast growth factor (FGF) and other cytokines[6]. This network of

autocrine and paracrine cytokines regulates the development and progression of hepatic fibro-

sis. Therefore, restraining HSC activation and promoting HSC apoptosis are important mea-

sures for the prevention and treatment of liver fibrosis.

SUMOylation is a post-translational modification mediated by Small Ubiquitin-like Modi-

fier (SUMO). This process controls a diverse array of cellular functions, such as the cell cycle,

apoptosis, signal transduction pathways [7–9], production of reactive oxygen species and the

inflammatory response [10]. UBC9 is the only known E2-conjugating enzyme involved in

SUMOylation [11]. Therefore, UBC9 is a key regulator of fibrosis through SUMOylation. For

example, knockdown of UBC9 prevents bleomycin-induced fibrosis[12]. Scholars have also

demonstrated that inhibition of SUMOylation by knockdown of UBC9 almost completely pre-

vented the development of fibrosis and inhibited the canonical TGF-β/Smad signaling path-

way in the pathogenesis of SSc [13]. Therefore, we hypothesized that UBC9 may play a critical

role in the occurrence and development of liver fibrosis.

The transcription factor nuclear factor-kappa B (NF-κB) is essential for liver cell survival

and liver homeostasis[14]. Regulation of cell death, inflammation, and wound healing by NF-

κB not only emphasizes the role of this transcription factor in the progression of liver diseases

but also highlights the mechanistic links among liver injury, inflammation, fibrosis, and hepa-

tocellular carcinoma[15]. Several studies have indicated that NF-κB inhibition is a potential

mechanism for the induction of HSC apoptosis[16,17]. Hence, when NF-κB activation is pre-

vented or inhibited, apoptosis of activated HSCs is enhanced.

Interestingly, a growing body of evidence has emphasized a potential role for UBC9 in

organ fibrosis. For example, knockdown of UBC9 prevents bleomycin-induced fibrosis[12]. In

addition, SUMO-1 and UBC9 overexpression decreases NOS2 (iNOS) promoter activity and

suppresses the proinflammatory response in astrocytes[13]. To date, the mechanism of UBC9

in hepatic fibrosis remains unknown. In this study, these results demonstrated that down-reg-

ulation of UBC9 expression induced activated LX-2 cell apoptosis and promoted cells to return

to a quiescent state by inhibiting the NF-κB signaling pathway.

Materials and methods

Cell culture

Two human hepatocellular carcinoma (HCC) cell lines, HepG2 and SMMC-7721, and liver

cell lines, LO2 and LX-2, were obtained from the China Center for Type Culture Collection

(CCTC, China) and cultured in a humidified incubator at 37˚C with 5% CO2. HepG2 was

cultured in minimum essential medium (DMEM, Gibco, USA). SMMC-7721, L02 and LX-2

were cultured in RPMI-1640 (Gibco, USA). The culture media described above were supple-

mented with 10% fetal bovine serum (FBS, Gibco, USA) 100 U/mL penicillin and 100 mg/mL

streptomycin.

Transfection

The cDNA sequence of UBC9 was obtained from GenBank. UBC9 shRNA: F, TGC TGT TAT
GAG GGC GCA AAC TTC TTG TTT TGG CCA CGA CTG AC; R, CCT GTT ATG AGG GCG AAC
TTC TTG TCA GTC AGT GGC CAA AAC AA, Negative control: F, tgctg AAA TGT ACT GCG
CGT GGA GAC GTT TTG GCC ACT GAC TGA CGT CTC; R, cctg AAA TGT ACT GCG TGG AGA
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CGT CAG TCA GTG GCC AAA ACG TCT CCA. Both plasmids, which were fluorescently labeled,

were provided by Invitrogen (Shanghai, China). The transfection of UBC9 shRNA was per-

formed with Lipofectamine 2000 (Invitrogen, Shanghai, China) according to the manufactur-

er’s instructions. Untreated activated LX-2 cells served as the control (non-treated cells).

Semi-quantitative RT–PCR

Total RNAs were extracted with Trizol (Invitrogen, Shanghai, China) from activated LX-2

cells. The concentration of RNA was determined by absorption measurements at 260 nm

using a UV–visible spectrophotometer (Bio-Rad, USA). The reaction mixture was incubated

for 10 min at 70˚C and cooled rapidly on ice water for 5 min. Next, 1 μl of M-MLV reverse

transcriptase (Promega, Shanghai, China), 1 μl of Rnase inhibitor (Promega, Shanghai,

China), 1 μl of dNTP (Generay Biotech, China), 4 μl of M-MLV RT 59 buffer (Promega,

Shanghai, China), and Rnase-free water were added to each reaction mixture for a final volume

of 20 μl. The reaction mixture was incubated at room temperature for 10 min at RT followed

by 42˚C for 60 min. Finally, the mixture was incubated at 95˚C for 5 min to terminate the reac-

tion. For amplification of specific cDNAs, oligomer primers were designed for the following

genes: UBC9 (Sense: 5-CAG GAA AGA AAG GGA CTC-3; Antisense: 5-TTC GGG TGA AAT
AAT GG-3), β-actin: (Sense: 5-GCA TCC TGC ACC ACC AAC T-3; Antisense: 5-GCA GTG
ATG GCA TGG ACT GT-3). The above primers were synthesized by Invitrogen (Shanghai,

China). PCR was performed in a reaction mixture containing 1 μl of sense primer, 1 μl of anti-

sense primer, 500 ng of cDNA, 12.5 μl of 2×Reaction Mix (Tiangen, China) and ddH2O, giving

a final volume of 25 μl. Thirty cycles of denaturation (30 s at 94˚C), annealing (30 s, at 55˚C

for UBC9 and β-actin), and extension (30 s at 72˚C) were performed followed by a final exten-

sion at 72˚C for 7 min in a PCR thermal cycler (GeneAmp@ PCR System 9600). PCR products

were electrophoresed on a 2.5% agarose gel containing ethidium bromide and visualized with

UV light. Quantification of band intensity was performed using the GeneGenius Match system

(Syngene, USA).

Western blot analysis

Total protein was extracted from cell pellets. The protein concentrations were determined

using the BCA protein assay (Thermo Fisher Scientific, Rockford, USA). Then, thirty micro-

grams of each sample was separated by 10% SDS–polyacrylamide gel electrophoresis and

transferred to a PVDF membrane (0.22 micrometer, Bio-Rad). The membrane was then

blocked with 5% skim milk at room temperature. Rabbit polyclonal anti-α-SMA, Collagen I,

p65, P-p65 and UBC9 (Abcam, USA)) were diluted 1:1000. Bax and Bcl-2 (Proteintech,

Wuhan, China) were diluted 1:200. Rabbit monoclonal antibodies against Caspase 3 and

cleaved-Caspase3 (cell Signaling, USA) were diluted 1:1000, and a mouse monoclonal antibody

directed against β-actin (Proteintech, Wuhan, China) was used at 1:1000. The membrane was

incubated with these antibodies overnight at 4˚C. The membranes were washed three times

with TBS/Tween 20 (0.075%) containing 3% Marvel for 15 min each before incubation with

HRP-conjugated secondary antibodies (1:10,000) at 37˚C for 1 h. The PVDF membrane was

washed in TBST three times (10 min each time). The proteins were visualized using the Amer-

sham™ ECL Plus Western Blotting Detection System (GE Healthcare, UK).

MTT assay

To assess cell viability following treatment with an efficient transfection with the UBC9

shRNA duplex, 5×103 activated LX-2 cells were plated in each well of a 96-well plate and

treated with UBC9 shRNA. The cells were treated with a negative control or Lipofectamine
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alone, and non-treated cells served as control groups. The cells were treated in triplicate for

each group. After incubation for 12 h at 37˚C, cells were transfected according to the manufac-

turer’s instructions. Following 24 h, 48 h, and 72 h treatment with various reagents, 20 ml of a

MTT (Sigma,USA) solution (5.0 mg/ml) was added to each well, and the cells were incubated

again for 4 h in a humidified incubator at 37˚C with 5% CO2. Then, 200 μl of a dimethylforma-

mide solution was added to each well, and cells were incubated for 20 min at 37˚C with 5%

CO2. The absorbance at 450 nm was measured by an ELISA plate reader (DENLEY DRAGON

MK2).

Flow cytometry assay

Cells were seeded at a density of 5 × 105 cells per well in 6-well plates. After treatment with

UBC9 shRNA, the cells were trypsinized and collected by centrifugation. After washing twice

with PBS and fixing in ice cold 70% ethanol, the cell cycle distribution was analyzed using the

Cell Cycle Analysis Kit (MultiSciences, China), and apoptosis was detected using the Annexin

V/PI Apoptosis Detection Kit I (BD BioSciences, USA) according to the manufacturer’s

instruction. Data were collected and analyzed with BD FACSCalibur System.

ELSA assay

Activated LX-2 cells were incubated in 6 cm plates for 12 h at 37˚C with 5% CO2 before trans-

fection of the UBC9 shRNA duplex according to the manufacturer’s instructions. Cells trans-

fected with the negative control or treated with Lipofectamine alone served as controls. After

incubation for 24 h, supernatants were collected by centrifugation. Then, 100 μL dilutions of

standard, blanks and samples were added into the appropriate wells and incubated for 2 hours

at 37˚C. After removing the liquid from each well, 100 μL of Detection Reagent A working

solution was added to each well. After incubating for 1 h at 37˚C, the solution was aspirated

and each well was washed with 350 μL of a 1× Wash Solution. The remaining liquid was

removed from all wells, and each well was washed three times. Then, 100 μL of Detection

Reagent B working solution was added to each well, and the plate was incubated for 30 minutes

at 37˚C. The aspiration/wash process was repeated 5 times. Next, 90 μL of Substrate Solution

was added to each well. The plate was incubated for 15 to 25 minutes at 37˚C, and 50 μL of

Stop Solution was added to each well to stop the reaction. A microplate reader was immedi-

ately used to measure absorbance at 450 nm.

Immunofluorescence

Cells were washed, fixed in 4% paraformaldehyde, washed twice in PBS, and then permeabi-

lized with 0.2% Triton X-100 for 15 min before blocking with Immunol Staining Fix Solution

(Beyotime, Shanghai, China) for 30 min. After incubation with the primary antibody at 4˚C

overnight (mouse anti-p65), the cells were then washed and incubated with Goat anti-Mouse

IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 and DAPI (0.1 mg/

mL) at 37˚C for 1 h. The cells were visualized using a confocal laser scanning microscope

(SP-II; Leica Microsystems, Wetzlar, Germany).

Statistical analysis

All experiments were performed at least in triplicate. Data were presented as the mean±SD,

and statistical significances were analyzed by a paired-samples t-test or one-way analysis of

variance (ANOVA). The least significant difference method (LSD) was used to compare each
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of the treatment groups and the control group. P-values less than 0.05 were considered to be

statistically significant.

Results

1. The level of UBC9 expression in HCC cell lines, LO2 and the activated

LX-2 cells

To observe the expression level of UBC9 in activated LX-2 cells, we employed RT–PCR and

Western blot analyses to measure the expression of UBC9 in the normal liver cell line LO2,

hepatic stellate cell line LX-2, and HCC cells lines HepG2 and SMMC-7721. The UBC9 levels

in activated LX-2 cells, HepG2 and SMMC-7721 were increased compared with LO2, and the

expression of UBC9 in activated LX-2 cells HepG2 and SMMC-7721 were no significant differ-

ences(Fig 1A and 1B).

2. Efficiency of UBC9 induced by UBC9 shRNA in activated LX-2

To investigate the effect of UBC9 shRNA transfection on the UBC9 expression level in acti-

vated LX-2 cells, the level of UBC9 was measured by RT-PCR and Western blot after transfec-

tion. RT-PCR revealed that the UBC9 levels significantly declined in activated LX-2 cells as a

result of transfection with UBC9 shRNA. The Western blot results were identical with RT–

PCR. These results suggested that UBC9 shRNA could effectively down-regulate UBC9 expres-

sion in activated LX-2 cells (Fig 2A and 2B).

3. Knockdown of UBC9 inhibited ECM expression in activated LX-2 cells

Activated HSC express α-SMA and Procollagen I protein, which are markers for the activation

of HSC. Activated HSCs secrete TNF-α, IL-6, HGF, fibroblast growth factor and other cyto-

kines[6]. To observe whether down-regulation of UBC9 affected the activation of LX-2 cells,

Fig 1. UBC9 expression levels in the normal liver cell line LO2, hepatic stellate cell line LX-2 and

hepatoma cell lines HepG2 and SMMC-7721. (A) Top: UBC9 mRNA was examined in LO2, LX-2, HepG2

and SMMC-7721 cells by RT-PCR. Bottom: Graph of relative ratios of UBC9 mRNA to β-actin in each cell line.

(B) Top: UBC9 protein expression was examined in LO2, LX-2, HepG2 and SMMC-7721 cells by Western

blot. Bottom: Graph of the relative ratio of UBC9 protein to β-actin in each cell line. *P < 0.05 compared with

LO2, n = 4.

https://doi.org/10.1371/journal.pone.0174374.g001
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activated LX-2 cells were transfected with UBC9 shRNA. Both α-SMA and Collagen I protein

expression were reduced in activated LX-2 cells (Fig 3A and 3B). We also found that TNF-α
and IL-6 secretion were significantly reduced in transfected cells compared with the control

(Fig 3C). These results suggested that down-regulation of UBC9 expression inhibits the activa-

tion of LX-2 cells (S1 Table).

Fig 2. RT-PCR and Western blot analyses of UBC9 expression in activated LX-2 cells. (A) Top: UBC9

mRNA was examined in the Normal, Lipo2000, shNC, and sh-UBC9 groups by RT-PCR. Bottom: Graph of

the relative ratios of UBC9 mRNA to β-actin in each group. (B) Top: UBC9 protein expression was examined

in the Normal, Lipo2000, shNC, and sh-UBC9 groups by Western blot. Bottom: Graph of the relative ratios of

the UBC9 protein to β-actin in each group. *P < 0.01, compared with NC shRNA group, n = 4.

https://doi.org/10.1371/journal.pone.0174374.g002

Fig 3. UBC9 knockdown influences ECM expression. (A) Representative images of 3 independent

experiments with similar results are presented. Down-regulation of UBC9 reduced α-SMA and Collagen I

protein. (B) Graph of the relative ratios of both α-SMA and Collagen I protein to β-actin in each group.

*P < 0.05 compared with NC shRNA group, n = 4. (C) IL-6 and TNF-α concentrations in the supernatant of

activated LX-2 cells was examined in the Normal, Lipo2000, shNC, and sh-UBC9 groups. #P <0.05

and*P < 0.001 compared with NC shRNA group, n = 4.

https://doi.org/10.1371/journal.pone.0174374.g003
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4. Knockdown of UBC9 inhibited activated LX-2 cell proliferation

To study the role of UBC9 in the growth of activated LX-2 cells, UBC9 shRNA was transfected

into activated LX-2 cells, and cell growth was detected using an MTT assay. As shown in Fig 4,

after transfection, the growth of activated LX-2 cells was significantly inhibited compared with

negative control, Lipo2000 and non-treated cells. These results suggested that down-regulation

of UBC9 strongly suppresses the growth of activated LX-2 cells.

5. The effect of UBC9 on apoptosis-related protein expression in

activated LX-2 cells

As an anti-apoptotic gene, the main physiological function of Bcl-2 is to inhibit cell apoptosis

[18]; however, Bax and Caspase3 promote apoptosis[19]. Therefore, we hypothesized that

UBC9 may promote apoptosis in activated LX-2 cells by reducing the expression of Bcl-2.

After transfection with UBC9 shRNA, Western blot analysis showed that down-regulation of

UBC9 significantly increased the Bax/Bcl-2 and cleaved-capase3/pro-capase3 ratio in activated

LX-2 cells (Fig 5A and 5B). These results suggested that down-regulation UBC9 may be a

major contributing factor for the high rate of apoptosis in activated LX-2 cells.

6. Knockdown of UBC9 promotes activated LX-2 cell apoptosis

To determine the influence of UBC9 shRNA on apoptosis in activated LX-2 cells, apoptosis

was assessed by flow cytometry. Compared with cells treated with the negative control,

Lipo2000 and non-treated cells, apoptosis was significantly promoted (Fig 6A and 6B).

(S2 Table)

7. Effect on cell cycle progression after transfection with UBC9 shRNA in

activated LX-2 cells

To determine the effect on cell cycle progression after transfection with UBC9 shRNA in acti-

vated LX-2 cells, cell cycle progression was examined by flow cytometry. Cell cycle analysis

revealed that suppression of UBC9 expression caused significant inhibition of cell cycle pro-

gression, leading to the selective accumulation of cells in the G2 phase compared with negative

control cells (Fig 7A and 7B). (S2 Table)

Fig 4. Cell proliferation was assessed using the MTT assay. Activated LX-2 cells expressing UBC9

shRNA exhibited a significant reduction in proliferation compared with NC shRNA groups. *P < 0.05, n = 4.

https://doi.org/10.1371/journal.pone.0174374.g004
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Fig 5. Down-regulation of UBC9 influences the expression of apoptosis-regulated proteins. (A) Bcl-2, Bax, Cleaved-Caspase3 and Caspase3

protein expression was examined in the Normal, Lipo2000, shNC, and sh-UBC9 groups by Western blot. (B) Graph of the relative ratios of Bax/Bcl-2 and

Cleaved-Capase3/Capase3 in each group. *P < 0.05 and #P <0.001compared with the NC shRNA group, n = 4.

https://doi.org/10.1371/journal.pone.0174374.g005

Fig 6. Apoptosis was detected by flow cytometry. The number of apoptotic cells was increased in activated LX-2 cells

expressing the indicated shRNA compared with the Normal, Lipo2000 or control group. *P < 0.05 compared with Control shRNA

group, n = 4.

https://doi.org/10.1371/journal.pone.0174374.g006

UBC9 and liver fibrosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0174374 March 30, 2017 8 / 13

https://doi.org/10.1371/journal.pone.0174374.g005
https://doi.org/10.1371/journal.pone.0174374.g006
https://doi.org/10.1371/journal.pone.0174374


8. Down-regulation of UBC9 expression inhibited the NF-κB signaling

pathway in activated LX-2 cells

NF-κB plays a broad and important role in the immune response, inflammatory response, cell

survival, proliferation, differentiation and apoptosis and exists widely in eukaryotic cells. Acti-

vation of the NF-κB signaling pathway is closely related with the phosphorylation and degra-

dation of IκBα[20]. After transfection with UBC9 shRNA, Western blot was utilized to detect

protein expression of P-IκBα, IκBα, P-p65 and p65 in activated LX-2 cells. The results showed

that downregulation of UBC9 expression significantly decreased the P-p65 and P-IκBα expres-

sion levels, and IκBα protein expression was increased in activated LX-2 cells (Fig 8A and 8B).

Fig 7. Cell cycle distribution was assessed using the Cell Cycle Analysis Kit. Knockdown of UBC9

exhibited a significantly increase the number of cells in the G2 phase compared with the scrambled control

group in activated LX-2 cells. *P < 0.001 compared with the Control shRNA group, n = 4.

https://doi.org/10.1371/journal.pone.0174374.g007

Fig 8. UBC9 knockdown influences the expression of multiple downstream genes. (A) Representative

images of 3 independent experiments with similar results are presented. Downregulation of UBC9 expression

decreases the expression of the P-p65 and P-IκBα proteins, but increased the expression of the IκBα protein.

(B) Graph of the relative ratios of the P-p65, p65, P-IκBα and IκBα proteins to β-actin in each group. *P < 0.01

and #P <0.05 compared with NC shRNA group, n = 4.(C) The subcellular localization of p65 in activated LX-2

cells treated with UBC9 shRNA were examined by confocal microscopy analysis with a confocal microscope.

https://doi.org/10.1371/journal.pone.0174374.g008
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The immunofluorescence assay was performed in our study to further observe the localization

of NF-κB in activated LX-2 cells affected by UBC9 expression. Our results showed that

UBC9-shRNA treatment significantly decreasing phosphorylation of p65 by inhibited the ran-

slocation of ReIA/p65 from cytoplasm to nucleus(Fig 8C). These results suggested that down-

regulation of UBC9 expression could inhibit the NF-κB signaling pathway in activated LX-2

cells.

Discussion

In this study, we demonstrated that UBC9 expression was significantly up-regulated in acti-

vated LX-2 cells. Knockdown of UBC9 significantly inhibited HSC proliferation and reduced

the expression levels of a-SMA and collagen I. Downregulation of UBC9 expression in acti-

vated LX2 also caused cell cycle arrest at the G2 phase and induced apoptosis in HSCs medi-

ated by the up-regulation of the protein Bax/Bcl-2 and Cleaved-Capase3/Capase3 ratio.

Furthermore, knockdown of UBC9 prevented liver fibrosis by inhibiting HSC proliferation

and inducing HSC apoptosis by inhibiting the NF-κB signaling pathway.

UBC9 has been identified as a novel regulator of fibrosis. Scholars have demonstrated that

inhibition of SUMOylation by knockdown of UBC9 almost completely prevented the develop-

ment of fibrosis and inhibited the canonical TGF-β/Smad signaling pathway in experimental

models[13]. In this study, we demonstrate that UBC9 expression in LX-2, HepG2, and

SMMC-7721 was significantly increased compared with LO2, suggesting that UBC9 might

play a role in of liver fibrosis. Furthermore, UBC9 might promote hepatic fibrosis through acti-

vation of HSCs.

First, after down-regulation of UBC9, the expression levels of markers of HSC activation,

including a-SMA and Collagen I, were reduced in activated LX-2 cells. In addition, TNF-a and

IL-6 secretion by activated LX-2 cells was also reduced. In the liver, TNF-a, which plays a sig-

nificant role in necrosis and apoptosis, tissue damage, inflammation and fibrosis, is mainly

secreted by Kupffer cells, monocytes, macrophages, HSCs and other cells[21]. TNF-a is

involved in the regulation of hepatic fibrosis through a variety of mechanisms. TNF-a pro-

motes fibroblast proliferation, collagen synthesis and transformation into myofibroblasts.

TNF-α also increases liver fibrosis by promoting activated HSCs to produce a large number of

ECM proteins and to secrete several soluble cytokines, such as TGF-β, IL-1, IL-6, VEGF and

ET-1[22]. IL-6 is a multifunctional cytokine that has both pro- and anti-inflammatory proper-

ties[23]. Additionally, IL-6 is a key player in the network of inflammatory mediators and plays

an important role in the inflammatory response. Increased IL-6 expression in vivo can lead to

several diseases, including rheumatoid arthritis, glomerulonephritis, Crohn’s disease (CD) and

Castleman’s disease. One study found that patients with chronic kidney disease exhibited

increased expression of IL-6[24]. Furthermore, IL-6 induces the production of acute phase

proteins, such as hepatocyte stimulating factor (HSF) [25].

Stimulating apoptosis in HSCs is considered to be a necessary step to resolve liver fibrosis

[17,26,27]. Thus, elucidation of the mechanisms involved in HSC apoptosis and identification

of the key players in this process can lead to the discovery of new anti-fibrotic targets and the

development of novel therapeutic strategies. In combination with the flow cytometric analysis

results, we suggest that knockdown of UBC9 promotes cell apoptosis in activated LX-2 cells,

and the pro-apoptosis effect of knockdown UBC9 on activated LX-2 cells was further con-

firmed by the increase of the Bax/Bcl-2 and cleaved-Caspase3/Caspase3 ratio.

The NF-κB signaling pathway plays an active role in a number of chronic liver diseases

[16,28]. Evidence suggests that the activity of NF-κB is increased in activated HSCs[29,30] and

that inhibition of HSC apoptosis promotes liver fibrosis[30,31]. Inhibition of the NF-κB
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signaling pathway is typically associated with the induction of apoptosis in activated HSCs and

reversal of experimentally induced liver fibrosis[30]. For example, NF-κB proteins play a

major role in factor decoy, which affects CCl4-induced liver injury and fibrosis by activated

HSCs and inhibition of HSC apoptosis [32]. SUMOylation of important protein factors in the

NF-κB signaling pathway, such as IκBα and NEMO, could lead to a modified response. IκBα
was the first protein in the NF-κB signaling pathway discovered to be SUMO-modified[20].

Scholars have also demonstrated UBC9 silencing reduced the capture of IkBa modified with

SUMO-ubiquitin hybrid chains that display a defective proteasome-mediated degradation.

Thus, silencing of UBC9 leads to loss of phosphorylation of IkBa, attenuation of SUMO-2-Ubi-

quitin heterologous chains on IkBa, decreased proteasomal degradation of IkBa and a delay in

NF-kB activation[33]. So in our study, UBC9-shRNA treatment significantly reduced the

phosphorylation of p65 and IκBα, but increased the expression of IκBα. Our results also

showed that UBC9-shRNA treatment significantly decreasing phosphorylation of p65 by

inhibited the ranslocation of ReIA/p65 from cytoplasm to nucleus. These all suggests that

down-regulation of UBC9 expression negatively controls NF-κB signaling pathway.

In summary, our findings suggest that UBC9 plays a critical role during hepatic stellate cell

activation and apoptosis by inhibiting the NF-κB signaling pathway. Down-regulation of

UBC9 expression induced LX-2 cell apoptosis and prompted the cell to return to a quiescent

state, which may have therapeutic potential for the treatment of liver fibrosis. To the best of

our knowledge, this is the first report of UBC9 down-regulation during liver fibrosis in vitro
and is also the first report of UBC9 function in organic fibrosis reversion. Although future

studies should be performed to confirm the effects, UBC9 potentially serves as an ideal target

for the prevention and treatment of liver fibrosis.
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