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The effects of host carbogen (95% oxygen/5% carbon
dioxide) breathing on metabolic characteristics of
Morris hepatoma 9618a
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Summary Characteristics of the tumour metabolic profile play a role in both the tumour—host interaction and in resistance to treatment.
Because carbogen (95% oxygen/5% carbon dioxide) breathing can both increase sensitivity to radiation and improve chemotherapeutic
efficacy, we have studied its effects on the metabolic characteristics of Morris hepatoma 9618a. Host carbogen breathing increased both
arterial blood pCO, and pO,, but decreased blood pH. A fourfold increase in tumour pO, (measured polarographically) and a twofold increase
in image intensity [measured by gradient recalled echo magnetic resonance (MR) imaging sensitive to changes in oxy/deoxyhaemogiobin]
were observed. No changes were seen in blood flow measured by laser Doppler flowmetry. Tumour intracellular pH remained neutral,
whereas extracellular pH decreased significantly (P < 0.01). Nucleoside triphosphate/inorganic phosphate (NTP/P), tissue and plasma
glucose increased twofold and lactate decreased in both intra- and extracellular compartments, suggesting a change to a more oxidative
metabolism. The improvement in energy status of the tumour was reflected in changes in tissue ions, including Na*, through ionic equilibria.
The findings suggest that the metabolic profile of hepatoma 9618a is defined partly by intrinsic tumour properties caused by transformation
and partly by tissue hypoxia, but that it can respond to environmental changes induced by carbogen with implications for improvements in

therapeutic efficacy.
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Transformation of normal cells into tumour cells leads to changes
in tissue growth patterns and to alterations in metabolism
(Warburg, 1930). Weber (1968) noted 50 specific biochemical
parameters that correlated with the growth rate of tumours. These
parameters, which include high rates of glycolysis, decreased
respiratory activity etc., lead to the classic tumour metabolic
profile.

Several characteristics of the tumour metabolic profile have
been proposed to take part in the tumour—host interaction
(Gatenby, 1995; Gatenby and Gawlinski, 1996) and malignant
progression (Schwickert et al, 1995; Hockel et al, 1996). These
characteristics are also thought to play a role in the resistance of
solid tumours to radiation and/or chemotherapy. A variety of
factors may be involved in the lack of responsiveness, including
poor oxygenation and low pH, primarily created by inadequate and
compromised vasculature. Host carbogen (95% oxygen/5%
carbon dioxide) breathing increases both radiosensitivity (Rojas,
1991) and the uptake and efficacy of chemotherapeutic pro-drugs
such as 5-fluorouracil and ifosfamide (Rodrigues et al, 1997;
McSheehy et al, 1998) in tumours. It also causes increased tissue
oxygen tension in many (Song et al, 1987; Falk et al, 1992; Grau et
al, 1992; Nordsmark et al, 1995; Hill et al, 1998), but not all (Falk
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et al, 1992; Brizel et al, 1995), tumour types when measured
polarographically. In addition, host carbogen breathing causes
increases in signal intensity in gradient recalled echo magnetic
resonance images (GRE-MRI) of several rat tumour types
(Robinson et al, 1995, 1997). Because the principal basis of the
image contrast in the GRE-MRI method is paramagnetic deoxy-
haemoglobin, an increase in signal intensity suggests an increase
in the oxy/deoxyhaemoglobin ratio, possibly resulting in an
increase in tissue oxygenation. Host carbogen breathing therefore
presents itself as an interesting and relevant physiological chal-
lenge to the tumour environment that is likely to perturb tumour
metabolic characteristics related to malignant progression and the
outcome of treatment.

Another issue that may be examined in response to host
carbogen breathing is tumour acidity and the associated ion
balances across the tumour cell membrane. In spite of high rates of
glycolysis and lactic acid production, tumour intracellular pH
(pH)) remains relatively neutral whereas extracellular pH (pH) is
acidic (which is the reverse of normal tissue). Previously, we have
shown that the reversal of the pH gradient involves changes in
many ions and metabolites (Stubbs et al, 1994, 1995). These para-
meters were shown to be interrelated through linked equilibria,
such that the cancer cell maintains electrical and osmotic equili-
brium and pH, neutrality. Host carbogen breathing is a metabolic
insult that is likely to affect the tumour cells’ energy metabolism
(through hyperoxia) and to cause acidification (through hyper-
capnia). The interplay of these effects is likely to perturb the
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linked ionic equilibria. Because hepatoma 9618a responds to
carbogen (Robinson et al, 1997) and because its metabolism has
previously been compared with that of normal liver, its tissue of
origin (Stubbs et al, 1994), this tumour type was chosen to investi-
gate the effects of host carbogen breathing.

MATERIALS AND METHODS
Animals and tumours

Morris hepatoma 9618a was grown subcutaneously in the flanks of
Buffalo rats (230-250 g). The animals were anaesthetized with
a single intraperitoneal (i.p.) injection of fentanyl citrate
(0.315 mg ml-") plus fluanisone (10 mg ml-') (‘Hypnorm’, Janssen
Pharmaceutical), midazolam (5 mg ml-') (‘Hypnovel’, Roche) and
water (1:1:2), at a dose of 4 ml kg-'. This anaesthetic combination
has a minimal effect on tumour blood flow (Menke and Vaupel,
1988) and 3'P-magnetic resonance spectroscopy (MRS) character-
istics (Sanson and Wood, 1994). Different cohorts of animals were
used (total n = 41, mean tumour volume 1.73 + 0.13 cm?) because
not all of the procedures could be performed on the same animals.
The tumours used for the GRE imaging studies also formed part of
another study (Robinson et al, 1997). One cohort (n = 5) was used
for the 3'P-MRS studies followed by rapid freeze clamping; one
(n = 4) for control lactate, glucose, Na* and K+ measurements; one
(n = 3) for interleaved 3'P-MRS and GRE 'H-MRI to establish the
time course of the biochemical changes relative to the imaging
changes; one (n = 8) for polarographic pO, measurements; one (n =
3) for laser Doppler blood flow measurements with and without
carbogen breathing; and one (n = 11) for extracellular lactate
measurements. Two further cohorts of control rats were used to
study the effect of carbogen breathing on arterial blood gases
(n = 3) and on blood plasma glucose and lactate levels (n = 4).

Arterial blood gases and tissue pO,

Air or carbogen was administered via a nose-piece equipped with a
scavenger at 2 1 min~! for 30 min. Air breathing through the nose-
piece was always longer than the carbogen breathing episode.
Arterial blood samples were taken from the iliac artery during air
and carbogen breathing. Blood pO,, pCO, and pH were measured
on a blood gas analyser (Model IL1306, Instrumentation
Laboratory, Milan, Italy). Tissue pO, measurements were made
with an Eppendorf pO, histograph (KIMOC 6650, Eppendorf,
Hamburg, Germany) on animals breathing either air (n = 4) or
carbogen (n = 4). The electrode was inserted to a depth of ~ 1 mm
before any measurement, and the track length determined
according to the geometry of each tumour. At least six tracks per
tumour were performed with a step length of 0.9 mm (retraction;
0.3 mm). A silver/silver chloride reference electrode (Medicotest,
St. Ives, Cambs, UK) was attached to a shaved region of skin close
to the site of electrode insertion. The median pO, (mmHg) and the
relative frequency (per cent) of pO, readings less than 2.5 mmHg
were calculated and the averages of these pO, parameters obtained.

Laser Doppler flowmetry

Relative changes in microvascular perfusion (Chaplin and Hill,
1995) were measured using the Oxford array multichannel Laser
Doppler System (Oxford Optronix, Oxford, UK). This system
incorporates probes coupled to a laser diode containing optical
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fibres which deliver and collect light from the tumour. Movement
of red cells causes interaction with the photons of light causing a
change in frequency Doppler shift, which is a measure of blood
velocity.

Magnetic resonance spectroscopy and imaging

3P-MRS and 'H-MRI were performed on a SISCO 200-330
spectrometer at 4.7 T. For pH, measurements, rats were injected
with an extracellular marker, 3-aminopropylphosphonate (3-APP)
(Sigma, UK), at 1.54 g kg', i.p. 30 min before the spectra were
collected (Gillies et al, 1994). Rats were placed on a flask
containing recirculating warm water to maintain the core tempera-
ture at 35°C and positioned so that the tumour hung vertically into
a two-turn 2-cm coil tuned to *'P or dual-tuned to 'H/*'P. Non-
localized *'P-MRS spectra were acquired using a hard pulse with a
repetition time of 3 s (64 transients), giving an overall acquisition
time of 4 min. Signal contributions from outside the tumour
(largely muscle) were minimized by careful coil placement; this
was confirmed by the negligible phosphocreatine signal seen in
the spectra. The advantage of this over a localized technique such
as ISIS (image selected in vivo spectroscopy) is twofold; there is
no chemical shift artefact and, therefore, no correction is required
(McCoy et al, 1995) and the acquisition time is much shorter, thus
allowing optimal temporal resolution during the interleaved exper-
iments. Spectra were analysed in the time domain using VARPRO
(van der Veen et al, 1988) and the ratio of B-nucleoside triphos-
phate/inorganic phosphate (3-NTP/P) calculated. Tumour pH, was
measured from the difference in chemical shift between the P,
resonance and that of o-NTP at —7.57 p.p.m. and pH, from the
difference between 3-APP and o-NTP (McCoy et al, 1995). For
the GRE imaging sequence (Haase et al, 1986), the echo time (TE)
was 20 ms, the repetition time (TR) was 80 ms and the flip angle
(o) was 45°. A 1-mm slice through the centre of the tumour was
chosen and eight acquisitions of 256 phase-encoded steps over a 4-
cm field of view was used. After zero-filling to a 512 matrix, the
in-plane resolution was 0.08 X 0.08 mm. Each image took 4 min to
acquire. (For the interleaved experiments the 'H image intensity
was calibrated from the water signal intensity.) The average pixel
intensity was calculated over a region of interest that encompassed
the tumour but excluded the skin. The results are reported as per
cent normalized image intensity over the whole tumour, taking
the initial air-breathing intensity as 100%. Baseline spectra
and images were initially acquired from tumours while the rats
breathed air and subsequently carbogen for 60 min.

Tissue and blood metabolites and ions

After MRS examination of the tumours, the rapidly excised tumours
were freeze clamped with liquid nitrogen-cooled tongs, followed by
extraction with perchloric acid and neutralization. Arterial blood
samples were taken from the iliac artery before and during carbogen
breathing and the samples were centrifuged to remove the red cells.
Subsequently, an aliquot of the plasma was deproteinized with
perchloric acid and neutralized. Tissue and plasma lactate and
glucose were measured according to Bergmeyer (1974) on the
neutralized extracts. For Na+ and K*, freeze-clamped material was
homogenized in distilled water (1:10), sonicated and measured by
atomic absorption spectroscopy using lithium nitrate as a carrier.
Na* and K* were also measured on control livers from animals
freeze clamped at the same time as the tumours.
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Table 1 Effect of carbogen breathing on arterial blood gases and pH in rats

Parameter measured Control (mmHg) Carbogen breathing
(30 min)

PO, 75+12 390 + 44*

pCO, 58+4 106 + 9*

pH 7.17 £0.08 7.03+£0.03*

Results expressed as means * s.e.m. (n = 3). *Significantly different from
control P < 0.01.

Table 2 Effect of carbogen breathing on 3'P-MRS measured parameters in
hepatoma 9618a

Parameter measured Tumour Tumour (after 30 min
(air) carbogen breathing)

B-NTP/P, 0.52+0.13 1.06 £ 0.21*

pH, 7.05+0.06 7.04 + 0.06**

pH, 6.79+0.03 6.47 £ 0.10*

ApH -0.26 + 0.06 -0.57 £ 0.08*

Results expressed as means t+ s.e.m. (n=5). *P < 0.01 (paired t-test), and
**P > 0.1 compared with air-breathing control. (ApH = pH, — pH,).

Microdialysis probe analysis

Extracellular lactate was sampled in vivo by insertion of a pair of
microdialysis probes 5-7 mm into each tumour, followed by ion
chromatography of the extracellular fluid sample (Parkins et al,
1997). Samples were collected during 30 min of air breathing and
compared with samples collected during a subsequent 30 min of
carbogen breathing. Tumour dialysate results are corrected for the
relative recovery for each probe, thereby yielding nominal extra-
cellular lactate concentration.

Expression of results

The results are expressed as means * standard error of the mean
(s.e.m.), (except for the pO, histography in which the results are
expressed as medians and per cent pO, values <2.5 mmHg, i.e.
values considered to reflect radiobiological hypoxia). When
significance has been tested, Student’s r-test was used to assess the
effects of carbogen breathing compared with air breathing.

RESULTS

The effect of carbogen breathing on arterial blood gases and pH is
shown in Table 1. Carbogen breathing caused a fivefold increase
in arterial blood pO, and a twofold increase in blood pCO,
(P<0.01). The pCO, is somewhat higher than that previously
reported by Dewhirst et al (1996) but is to be expected because of
the longer period of carbogen breathing in the experiments
reported here. There was also a small but significant (P < 0.01 by
paired r-test) decrease in blood pH. Concurrent with these findings
was a fourfold increase in tissue median pO, from 6.4 £2.1 to
27.4 £ 14.3 mmHg and a decrease in pO, values <2.5 mmHg from
34% to 18.5% after carbogen breathing (Figure 1). However, these
differences did not achieve significance.
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Figure 1 pO, frequency histograms of hepatoma 9618a during host (A) air
breathing and (B) carbogen breathing

3IP-MR spectra acquired from hepatoma 9618a during air and
carbogen breathing are shown in Figure 2. Resonances were
identified for 3-APP (used to calculate pH,), phosphomonoesters
(PME), inorganic phosphate (P) and Y-, a- and B-nucleoside
triphosphates (NTP). The absence of phosphocreatine in the
hepatoma spectrum indicates negligible contribution from
surrounding tissues (see Materials and methods). Breathing
carbogen caused an increase in the NTP signals and a decrease in
the P, signal. The apparent increase in the 3-APP signal during
carbogen breathing can be accounted for by 3-APP being taken up
by the tumour in a time-dependent manner (Gillies et al, 1994).
Because the spectrum during airbreathing is acquired first, less 3-
APP is observed. However, it is the chemical shift position, rather
than the magnitude of the signal, that is important in this context.

The B-NTP/P, ratio of the hepatoma increased twofold (P < 0.01)
after 30 min carbogen breathing (Table 2). Closer analysis of the
increase in the B-NTP/P, ratio demonstrated that the B-NTP
increased and the P, decreased by a similar amount (by + 30% and
—35%, respectively, calculated from the amplitudes obtained from
the VARPRO analysis), as would be expected for net ATP synthesis
from ADP and P,. The effect of host carbogen breathing on tumour
pH, was negligible, whereas pH, became significantly more acid.
The net result of this was a twofold increase (P < 0.01) in the pH
gradient (ApH) across the tumour cell membrane, from —0.26 to
—0.57 (NB: acid outside, alkaline inside). This compares with pH,
of 7.2 and pH, of 7.4 (ApH of +0.2) in liver from air-breathing
controls (data from Stubbs et al, 1994).

Tissue glucose and lactate were measured in acid extracts subse-
quently made from freeze-clamped tumours, from the cohort that
had been examined by. 3'P-MRS during carbogen breathing and
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Figure 2 Representative 3'P-MR spectra acquired from a hepatoma 9618a
during (A) air breathing and (B) carbogen breathing (30 min). The peak
assignments are as follows: 3-APP, 3-aminopropyl phosphonate (an
extracellular pH marker); PME, phosphomonoesters; P, inorganic phosphate;
NTP, nucleoside triphosphate. The major proportion of the NTP peak seen in
the MR spectrum is ATP

Table 3 Effect of host carbogen breathing on glucose and lactate measured
in hepatoma 9618a extracts and extracellular lactate measured by
microdialysis probe

Parameter Tumour Tumour (after Liver®
measured (air) 30 min carbogen

Glucose (umol g-') 2.21 +0.39* 5.14 + 0.94* 85+0.3
Lactate (umol g-') 4.94 £ 0.76* 2.45+0.48" 1.24+0.27
Lactate, (mm)2 2.68+£0.16** 1.58 £0.17** 1.51+£0.25

n = 4/5, except 2 where n=11. *P < 0.05, **P <0.0001 compared with air
breathing. tLiver data taken from Stubbs et al (1994) and Evans and
Williamson (1988).

from air-breathing control tumours (Table 3). Tumour glucose was
twofold higher (P < 0.02) after 30 min carbogen breathing. In
contrast, tumour lactate content (measured in extracts) was signif-
icantly lower after carbogen breathing (P <0.02), and this was
mirrored by a significant decrease (P < 0.05) in the extracellular
lactate measured by microdialysis on a separate cohort.
Measurements of plasma glucose during carbogen breathing
showed an increase after 10 min, which by 30 min represented a
doubling in plasma glucose concentration (see Figure 3). The
increase was significant at 20 and 30 min (P < 0.01) compared
with air breathing. However, when the animals returned to air
breathing after 30 min carbogen breathing, the plasma glucose
returned towards precarbogen values (11.5 + 4.3 umol ml-' after
12 min of resumed air breathing). The control plasma glucose
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Figure 3 Effect of host carbogen breathing on rat blood plasma glucose
and lactate with time and subsequent air breathing in Buffalo rats, hosts for
hepatoma 9618a. Values expressed as means * s.e.m. (n=4). *Significantly
increased over control (air breathing) P < 0.01
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Figure 4 Effect of host carbogen breathing on GRE-MRI and 3'P-MRS
parameters, obtained from interleaved experiments in hepatoma 9618a
(mean t s.e.m.; n = 3). Changes in (A) normalized GRE image intensity, (B)
B-NTP/Pi ratio and (C) pH, (*) and pH, (O) when switching from air breathing
to carbogen breathing at time 0 min are shown

values reported here are in general agreement with rat whole blood
glucose values of 7.5-8.8 umol g! wet weight reported by
Folbergrova et al (1972) and Evans and Williamson (1988),
because 1 ml of plasma contains 0.93 ml of water and 1 ml of
whole blood contains 0.79 ml of water (RL Veech, personal
communication). Plasma lactate measured in the same arterial
samples increased slightly over the time course of carbogen
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Figure 5 Effect of 30 min host carbogen breathing (CB) on microregional
blood flow measured by laser doppler of hepatoma 9618a. (A) Relative
change in mean blood flow (+ s.e.m.) from three tumours (11 probes) during
and after 30 min carbogen breathing; (B), (C) and (D) relative changes
recorded from each probe in each of the three tumours. The arrow indicates
the period of carbogen breathing

breathing, but these changes were not significant (P> 0.1).
Because the tumour represents only 1-2% of the body weight of
the animal, the decreases observed in tumour and extracellular
lactate would not be expected to be reflected in plasma lactate
concentration. Increases in blood and tissue glucose and decreases
in tissue lactate have been observed previously in experiments
looking at the effects of hypercapnia in brain (Folbergrova et al,
1972; Miller et al, 1976).

Concurrent with the increases in blood and tissue pO, was an
80% increase in the GRE-MRI image intensity normalized across
the whole tumour — from 100% (air breathing) to 184% + 7%
(P < 0.0001) with carbogen breathing (see also Robinson et al,
1997). Interleaved GRE-MRI/?'P-MRS (Figure 4) showed that the
effect of carbogen on the GRE-MRI image was immediate and
was maintained for up to 1 h during continued carbogen breathing
(Figure 4A), whereas, as might be expected, it took longer (30—
40 min) for a plateau to be reached in the B-NTP/P, ratio (Figure
4B). Similarly, the pH_ gradually decreased to reach a value of
about 6.5, whereas pH, remained unaffected (Figure 4C).

The increase in contrast in the GRE-MRI image may have
both oxygenation and flow components (Howe et al, 1996).
Complementary information on the oxygenation component was
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Table 4 Effect of host carbogen breathing on tissue ions

Parameter measured Tumour  Tumour (after 30 min  Liver®
(umol g-' wet weight) (air) carbogen breathing)

Na+* 72.8+8.0 55.2+ 3.6 33+0.5
K+ 67.6+3.6 770+ 14 96+6.0
Total Na* plus K* 138 £ 4.0 132+3.2 129 +4.0
HCO,- 12.4+0.83= 26(calc)® 15.5+0.762

aTaken from Stubbs et al (1994);® calculated according to Dobson et al
(1992).

obtained with pO, histography (see Figure 1), and on the flow
component with laser Doppler flowmetry. Individual tumour
analysis of the laser Doppler flowmetry (Figure 5 B-D)
demonstrated variation in the response, but only one probe demon-
strated a > 100% increase (Figure 5B) over control values during
carbogen breathing; the other probes showed mixed responses of
less magnitude. This amounted to no overall mean change in
tumour blood flow during 30 min carbogen breathing (Figure 5A),
indicating that the mean GRE-MRI intensity increase observed
was probably mainly due to increased oxygenation of blood and
tissue rather than flow effects.

Because the reversed membrane pH gradient of tumours is
linked to changes in gradients of other cellular ions (Stubbs et al,
1994, 1995), tumour Na* and K+ were also measured and HCO,-
was calculated (Table 4). Tumour Na* was elevated in these
tumours compared with liver as shown previously (Stubbs et al,
1994). After 30 min of carbogen breathing, tumour Na* decreased.
Tumour K+ was also shown to be lower in hepatoma
(67.6 + 8.5 umol g-') than in liver (101 + 0.87 umol g-') and
increased (non-significantly) with carbogen breathing. The total
content of Na* plus K+ did not change with carbogen breathing
(Table 4). The bicarbonate, which was calculated from the
Henderson-Hasselbalch equation according to Dobson et al
(1992) using pCO, values from the blood gas analysis and
assuming a value of 12.4 umol g-' wet weight measured previ-
ously (Stubbs et al, 1994), was twofold higher with carbogen
breathing because pH, was essentially unchanged.

DISCUSSION

Morris hepatoma 9618a was chosen for these studies because a
significant amount of metabolic information already exists (Weber
et al, 1971), and comparisons between the hepatoma and its tissue
of origin (the liver) have been previously documented (Stubbs et
al, 1994). The metabolic characteristics of tumours are determined
by both the transformation process itself (intrinsic properties) and
by the interaction of the transformed tissue with the environment
in which the tumour cells find themselves. Metabolic changes
induced by carbogen breathing are, therefore, environmental
modifications of an existing metabolic profile.

Previously (Stubbs et al, 1994, 1995), we have interpreted the
linked abnormalities in tumour ion balance as an extended Donnan
equilibrium system (Masuda et al, 1990). If the present results are
interpreted within this framework, carbogen breathing would be
expected to perturb the system in three ways: (i) the increased pO,
would induce a more oxidative and less glycolytic cell metabo-
lism, resulting in a decrease in lactic acid production and, thus, a
decrease in the intracellular acid load; (ii) hypercapnia induces
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extracellular acidosis, which will provide a challenge to tumour
pH homeostasis because the cells will have to export H* ions
against a steeper gradient; (iii) the ratio [ATP)/[ADP][P,] would be
higher during oxidative metabolism — all these metabolites are
charged and form part of the extended Donnan equilibrium
system.

The carbogen-induced increase in NTP/P,, taken together with
the increased substrate supply (higher plasma glucose, probably
due to a stress-mediated breakdown of liver glycogen), higher pO,,
neutral pH, and lower tissue lactate found are all consistent with
a move towards a more oxidative metabolism (more glucose
oxidized therefore less lactate formed). Indeed, a higher NTP/P,
would also allow increased activity of the Na*,K-ATPase, and thus
explain the higher Na* gradient (i.e. a decrease in tissue Na*).

The extended Donnan equilibrium model thus successfully
accounts for, at least qualitatively, the carbogen-induced changes
seen in hepatoma 9618a, through ion homeostasis and the mainte-
nance of electrical and osmotic equilibrium. In spite of the addi-
tional acid load from the carbon dioxide component of carbogen,
pH, remains neutral through the linked equilibria of many ions and
metabolites. This is important for the cancer cell to provide a
favourable environment for various intracellular activities and is
probably related to the improved energy status of the tumour.
However, the change in pH, is paradoxical. Gullino (1976)
observed a similar decrease in the pH of interstitial fluid in his
model of implanted micropore chambers within tumour tissue
when the animals breathed 10% carbon dioxide in air, so it is not
unexpected. Protons and lactate- can move together on the mono-
carboxylate carrier and the distribution of H* and lactate- across
the plasma membrane tends to assume the relationship
[H*][lactate-], / [H*] [lactate-], = 1 (Spencer and Lehninger, 1976;
Veech, 1991). These assumptions appear to hold reasonably well
for tumours in the steady state (Stubbs et al, 1994). However,
under the conditions of a carbogen challenge, a decrease in both
pH, and lactate is observed. This suggests that the severity of the
carbogen challenge causes a disequilibrium such that protons are
exported much more slowly from the extracellular fluid into the
blood than under normal equilibrium conditions. If this is the case,
then the decrease in tissue lactate must be explained by decreased
formation rather than increased removal, which is consistent with
the view that more glucose is oxidized and, therefore, less goes to
lactate.

The carbon dioxide component of carbogen is thought to main-
tain tumour blood flow by reducing hyperoxic vasoconstriction
and improving oxygen delivery by shifting the haemoglobin—
oxygen dissociation curve to the right (Rojas, 1991). GRE-MRI
studies have shown that hepatoma 9618a responds strongly to
carbogen breathing (Robinson et al, 1997 and herein), and it has
been suggested (Howe et al, 1996) that the rapid (measurements
taken 4 min after the switch from air to carbogen) increase in
GRE-MRI signal intensity reflects the rapid change in either or
both of the components that contribute to the signal intensity, i.e.
T,* and a flow component. The studies here show that in hepatoma
9618a the flow component is probably negligible because no
increase in the average microregional blood flow was shown by
laser Doppler measurements after carbogen breathing. This has
also been observed in several other (Dewhirst et al, 1996; Powell
et al, 1996; Hill et al, 1998), but not all (Honess and Bleehen,
1995) tumour types. Both increased oxygen tension and increased
flow in response to carbogen breathing appear to be a tumour
(type)-specific phenomenon (Hill et al, 1998). Because increased
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oxygenation, and thus decreased deoxyhaemoglobin, is the prin-
cipal component of the GRE-MRI contrast change in this tumour
type and the flow changes are negligible, the results could be
explained by a carbogen-induced increase in tumour vascular
volume.

Overall, the changes observed during carbogen breathing
suggest that the metabolic characteristics of hepatoma 9618a are a
combination of both intrinsic properties and environmental limita-
tions. It is well known that tumours may depend on both aerobic
(Warburg, 1930) and anaerobic glycolysis for their energy. Such
metabolism leads to elevated lactate and a reversed pH gradient,
characteristics of many tumour types including hepatoma 9618a.
These characteristics could be owing to either the lack of some
part of the enzymatic capacity to oxidize nutrients (which would
cause the loss of the Pasteur effect and allow glycolysis to proceed
even in the presence of oxygen) and/or poor tumour blood flow or
perfusion, which may cause areas to be virtually excluded from
oxygen (anaerobic glycolysis). Correlations have been made
between the overall glycolytic rate (aerobic and anaerobic) of
tumour cells measured by lactate production and the tumour
growth rate/differentiation status (Weber, 1968; Kallinowski et al,
1989). Hepatoma 9618a is a well-differentiated tumour and as the
lactate content is decreased by host carbogen breathing, this is
likely to reflect a decrease in the rate of anaerobic glycolysis.

Vaupel et al (1994) showed correlations between median tissue
pO, measurements and NTP/Pi ratios in a murine tumour.
Increases in NTP/P, and pO, similar to those seen in hepatoma
9618A, have been seen in a CH3 mammary adenocarcinoma in
response to host carbogen breathing (Nordsmark et al, 1997). In a
study of four rat tumours (including hepatoma 9618a) and 17
mouse tumours measured polarographically and reported else-
where (Collingridge, 1997), hepatoma 9618a had one of the
highest median pO, values of all tumours studied, consistent with
its status as a well-differentiated tumour type. Although tissue pO,
represents a balance between oxygen delivered and consumed,
given the peculiarities of tumour metabolism, a high pO, suggests
better blood supply and perfusion than a tumour with low pO,.
Thus, either because of or in spite of increased tissue oxygen
tension, hepatoma 9618a has maintained more of its oxidative
enzyme machinery than, for example, a poorly differentiated
tumour which has a low tissue pO,, e.g. RIF-1 (pO, = 1.3 mmHg
0.3 mmHg, Collingridge, 1997). In this latter tumour type, no
increase in either GRE-MRI contrast (Robinson et al, 1997) or in
NTP/P, was observed on carbogen breathing (Dr PMJ McSheehy,
personal communication). However, hepatoma 9618a appears still
to have the capacity to respond in a metabolic sense to hyperoxy-
genation, and, in doing so, the tumour metabolic profile (with the
exception of bicarbonate — increased because of the additional
carbon dioxide load) shows the characteristics of a better-
oxygenated tissue. This may be judged in the case of the hepatoma
by comparing it with liver tissue — a well-oxygenated normal
tissue counterpart. The carbogen-induced changes in metabolic
parameters of the hepatoma shown in Tables 2, 3 and 4 (i.e. higher
B-NTP/P, ratio, lower tissue lactate, higher tissue glucose, lower
tissue Na*, higher tissue K*) move in the direction of the metabolic
profile of liver.

In summary, the results presented herein show that increased
oxygenation (confirmed by polarographic measurements) caused
by carbogen breathing (with no significant changes in blood flow)
enables rat hepatoma 9618a to oxidize more substrate and improve
its energy status. In addition, the hyperoxia and hypercapnia lead
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to many changes concerned with ion homeostasis. Thus, it appears
that the metabolic profile of hepatoma 9618a is defined partly by
transformation-induced intrinsic properties and partly by tissue
hypoxia, and that it is still able to respond to environmental
changes induced by carbogen. The tumour maintains its pH,
despite the fall in pH,. A practical consequence of this is that the
pH gradient between the intra- and extracellular compartments is
greater, a feature that would favour the uptake of drugs that display
a pH dependency (e.g. 5-FU; Gerweck and Seetharaman, 1996)
and, thus, may play a role in the increased chemotherapeutic
efficacy seen with carbogen breathing (McSheehy et al, 1998). A
better understanding of the metabolism of carbogen-induced
tumour effects, and the way in which the tumour microenviron-
ment interacts with tumour metabolism (or vice versa), is biologi-
cally important and might provide new strategies for cancer
treatment.
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ABBREVIATIONS

pH,, intracellular pH; pH,, extracellular pH; ApH, difference
between pH, and pH_; MRS, magnetic resonance spectroscopy;
MRI, magnetic resonance imaging; GRE, gradient recalled
echo; NTP, nucleoside triphosphate; PME, phosphomonoesters; P,
inorganic phosphate; 3-APP, 3-aminopropyl phosphonate; lactate,,
intracellular lactate; lactate , extracellular lactate.

REFERENCES

Bergmeyer HU (1974) Methods of Enzymatic Analysis, 2nd edn. Verlag Chemie:
Weinheim

Brizel DM, Lin S, Johnson JL, Brooks J, Dewhirst MW and Piantadosi CA (1995)
The mechanisms by which hyperbaric oxygen and carbogen improve tumour
oxygenation. Br J Cancer 72: 1120-1124

Chaplin DJ and Hill SA (1995) Temporal heterogeneity in microregional erythrocyte
flux in experimental solid tumours. Br J Cancer 71: 1210~1213

Collingridge DR (1997) Measurement and manipulation of tumour oxygen tension.
PhD Thesis, University of London

Dewhirst MW, Ong ET, Rosner GL, Rehmus SW, Shan S, Braun RD, Brizel DM and
Secomb TW (1996). Arteriolar oxygenation in tumour and subcutaneous
arterioles: effects of inspired air oxygen content. Br J Cancer 74: S241-5246

Dobson GP, Veech RL, Passonneau JV, Kobayashi K, Inubushi T, Wehrli S, Nioka S
and Chance B (1992) *'P NMR and enzymatic analysis of cytosolic
phosphocreatine, ATP, P, and intracellular pH in the isolated working perfused
rat heart. NMR Biomed 5: 2-28

Evans RD and Williamson DH (1988) Tissue-specific effects of rapid tumour growth
on lipid metabolism in the rat during lactation and on litter removal. Biochem J
252: 65-72

Falk SJ, Ward R and Bleehen NM (1992) The influence of carbogen breathing on
tumour tissue oxygenation in man evaluated by computerised pO, histography.
Br J Cancer 66: 919-924

Folbergrova J, MacMillan V and Siesjo BK (1972) The effect of hypercapnic
acidosis upon some glycolytic and Krebs cycle-associated intermediates in the
rat brain. J Neurochem 19: 2507-2517

Gatenby RA (1995) The potential role of transformation-induced metabolic changes
in tumor—host interaction. Cancer Res 55: 4151-4156

© Cancer Research Campaign 1998

Tumour metabolic characteristics and carbogen breathing 1455

Gatenby RA and Gawlinski ET (1996) A reaction—diffusion model of cancer
invasion. Cancer Res 56: 5745-5753

Gerweck LE and Seetharaman K (1996) Cellular pH gradient in tumor versus normal
tissue: potential exploitation for the treatment of cancer. Cancer Res 56:
1194-1198

Gillies RJ, Liu Z and Bhujwalla Z (1994) *'P-MRS measurements of extracellular
pH of tumors using 3-aminopropylphosphonate. Am J Physiol 267: (Cell
Physiol. 36) C195-C203

Grau C, Horsman MR and Overgaard J (1992) Improving the radiation response in a
C3H mouse mammary carcinoma by normobaric oxygen or carbogen
breathing. Int J Radiat Oncol Biol Phys 22: 415-419

Gullino PM (1976) In vivo utilization of oxygen and glucose by neoplastic tissue. In
Oxygen Transport to Tissue. II. Grote J, Reneau D and Thaws G (eds),
pp. 521-536. Plenum: New York

Haase A, Frahm J, Matthaei D, Hanicke W and Merboldt K-D (1986) FLASH
imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson 67:
258-266

Hill SA, Collingridge DR, Vojnovic B and Chaplin DJ (1998) Tumour
radiosensitisation by high oxygen content gases: influence of the carbon
dioxide content of the inspired gas on pO,, microcirculatory function and
radiosensitivity. Int J Radiat Oncol Biol Phys 40: 943-951

Hockel M, Schlenger, K, Aral B, Mitze M, Schaffer U and Vaupel P (1996)
Association between tumor hypoxia and maligant progression in advanced
cancer of the uterine cervix. Cancer Res 56: 4509-4515

Honess DJ and Bleehen NM (1995) Perfusion changes in the RIF-1 tumour and
normal tissues after carbogen and nicotinamide, individually and combined.
BrJ Cancer 72: 1175-1180

Howe FA, Robinson SP and Griffiths JR (1996) Modification of tumour perfusion
and oxygenation monitored by gradient recalled echo MRI and 'P MRS. NMR
Biomed 9: 208-216

Kallinowski F, Schlenger KH, Runkel S, Kloes M, Stohrer M, Okunieff P and
Vaupel P (1989) Blood flow, metabolism, cellular microenvironment, and
growth rate of human tumour xenografts. Cancer Res 49: 3759-3764

Masuda T, Dobson GP and Veech RL (1990). The Gibbs—Donnan near-equilibrium
system of heart. J Biol Chem 265: 20321-20334

McCoy CL, Parkins CS, Chaplin DJ, Griffiths JR, Rodrigues LM and Stubbs M
(1995) The effect of blood flow modification on intra- and extracellular pH
measured by 3P MRS in murine tumours. Br J Cancer 72: 905-911

McSheehy PJM, Robinson SP, Ojugo ACE, Cannell MB, Leach MO, Judson IR and
Griffiths JR (1998) Carbogen breathing increases 5-fluorouracil uptake and
cytotoxicity in hypoxic murine RIF-1 tumours: a magnetic resonance study in
vivo. Cancer Res 58: 1185-1194

Menke H and Vaupel P (1988) Effect of injectable or inhalational anesthetics and of
neuroleptic, neuroleptanalgesic, and sedative agents on tumor blood flow.
Radiat Res 114: 64-76

Miller AL, Hawkins RA and Veech RL (1976) Decreased rate of glucose utilisation
by rat brain in vivo after exposure to atmospheres containing high
concentrations of CO,. J Neurochem 25: 553-558

Nordsmark M, Grau C, Horsman MR, Jorgensen HS and Overgaard J (1995)
Relationship between tumour oxygenation, bioenergetic status and
radiobiological hypoxia in an experimental model. Acta Oncol 34: 329-334

Nordsmark M, Maxwell RJ, Horsman MR, Bentzen SM and Overgaard J (1997) The
effect of hypoxia and hyperoxia on nucleoside triphosphate/inorganic
phosphate, pO, and radiation response in an experimental tumour model. Br J
Cancer 76: 1432-1439

Parkins CS, Stratford MRL, Dennis MF, Stubbs M and Chaplin DJ (1997) The
relationship between extracellular lactate and tumour pH in a murine tumour
model of ischaemia reperfusion. Br J Cancer 75: 319-323

Powell MEB, Hill SA, Saunders MI, Hoskin PJ and Chaplin DJ (1996) Effect of
carbogen breathing on tumour microregional blood flow in humans. Radiother
Oncol 41: 225-231

Robinson SP, Howe FA and Griffiths JR (1995) Noninvasive monitoring of
carbogen-induced changes in tumor blood flow and oxygenation by functional
magnetic resonance imaging. Int J Radiat Oncol Biol Phys 33: 855-859

Robinson SP, Rodrigues LM, Ojugo ASE, McSheehy PMJ, Howe FA and Griffiths
JR (1997) The response to carbogen breathing in experimental tumour models
monitored by gradient-recalled echo ic resonance imaging. Br J Cancer
75: 1000-1006

Rodrigues LM, Maxwell RJ, McSheehy PIM, Pinkerton CR, Robinson SP, Stubbs M
and Griffiths JR (1997) In vivo detection of ifosfamide by 3'P MRS in rat
tumours: increased uptake and cytotoxicity induced by carbogen breathing in
GH3 prolactinomas. Br J Cancer 75: 62-68

Rojas A (1991) Radiosensitisation with normobaric oxygen and carbogen. Radiother
Oncol 20 (suppl. 1): 65-70

-3

British Journal of Cancer (1998) 78(11), 1449-1456



1456 M Stubbs et al

Sansom JM and Wood PJ (1994) *'P MRS of tumour metabolism in anaesthetized vs
conscious mice. NMR Biomed 7: 167-171

Schwickert G, Walenta S, Sundfor K, Rofstad EK and Mueller-Kleiser W (1995)
Correlation of high lactate levels in human cervical cancer with incidence of
metastasis. Cancer Res 55: 4757-4759

Song CW, Lee 1, Hasegawa T, Rhee JG and Levitt SH (1987) Increase in pO, and
radiosensitivity of tumors by Fluosol-DA (20%) and carbogen. Cancer Res 47:
442-446

Spencer TL and Lehninger A (1976) L-Lactate transport in Ehrlich ascites tumour
cells. Biochem J 154: 405414

Stubbs M, Rodrigues L, Howe FA, Wang J, Jeong KS, Veech RL and Griffiths JR
(1994) Metabolic consequences of a reversed pH gradient in rat tumours.
Cancer Res 54: 40114016

Stubbs M, Veech RL and Griffiths JR (1995) Tumor metabolism: the lessons of
magnetic resonance spectroscopy. Adv Enz Reg 35: 101-115

British Journal of Cancer (1998) 78(11), 1449—1456

van der Veen JWC, de Beer R, Luyten PR and van Ormondt D (1988) Accurate
quantification of in vivo *'P NMR signals using the variable projection method
and prior knowledge. Magn Reson Med 6: 92-98

Vaupel P, Schaefer C and Okunieff P (1994) Intracellular acidosis in murine
fibrosarcomas coincides with ATP depletion, hypoxia, and high levels of
lactate and total Pi. NMR Biomed 7: 128-136

Veech RL (1991) The metabolism of lactate. NMR Biomed 4: 53-58

Warburg O (1930) The metabolism of tumors. Constable: London

Weber G (1968) Carbohydate metabolism in cancer cells and the molecular
correlation concept. Naturwissenshaften 55: 418-429

Weber G, Stubbs M and Morris HP (1971) Metabolism of hepatomas of different
growth rates in situ and during ischaemia. Cancer Res 31: 2177-2183

© Cancer Research Campaign 1998



