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ABSTRACT: An optical sensing approach that balances port-
ability with cost efficiency has been designed for the reliable
monitoring of fugitive methane (CH4) emissions. Employing a
LiTaO3-based pyroelectric detector integrated with micro-electro-
mechanical systems and a broad infrared source, the developed gas
sensor adeptly measured CH4 concentrations with a low limit of
detection of about 5.6 ppmv and showed rapid response times with
t90 consistently under 3 s. Notably, the novelty of our method lies
in its precise control and reduction of CH4 levels, enhanced by
wavelet denoising. This technique, optimized through meticulous
grid search, effectively mitigated noise interference noticeable at
CH4 levels below 10 ppmv. Postdenoising, nonlinear regression
analyses based on the modified Beer−Lambert equation returned
R2 values of 0.985 and 0.982 for the training and validation sets, respectively. In conclusion, this gas sensor has been shown to be
able to meet the requirements for early warning of CH4 leakage on the surface in various carbon capture, utilization, and storage
projects such as enhanced oil or gas recovery projects using CO2 injection.

■ INTRODUCTION
Methane (CH4), as a potent greenhouse gas, warrants
attention because of its significant global warming effect
compared to carbon dioxide (CO2).

1−3 Recent data shows a
concerning surge in global atmospheric CH4 levels since 2007,
with a marked increase from 2014.4 Concurrently, with
governments increasingly focusing on CO2 issues and the
maturation of carbon capture, utilization, and storage (CCUS)
technologies,5−7 breakthroughs have been achieved in practical
applications like CO2-enhanced oil recovery (CO2-EOR), coal
bed methane (CO2-ECBM), and shale gas (CO2-ESG).
However, the high pressures required to achieve supercritical
CO2 injection states might inadvertently heighten the risk of
natural gas (predominantly CH4) leakages, potentially jeopard-
izing adjacent ecosystems and communities.
Oil and gas operations are responsible for a significant

portion of increased CH4 in the atmosphere.8,9 Considering
the declared environmental and climate impacts, monitoring
CH4 emissions from the surface to the atmosphere in
traditional oil and gas operations as well as in emerging
CCUS project development is critical. Achieving precise
detection and quantification of CH4, especially at low
concentrations of less than 10 ppm, remains a challenge.
Beyond accuracy, the need for miniaturization and ease of
deployment are crucial, particularly given the vast and varied
characteristics of oil and gas fields. While methods like gas
chromatography and mass spectrometry are known for their

precision,10,11 their high cost and operational complexities can
restrict their widespread adoption for continuous leakage
monitoring.
Optical sensing technologies, however, are emerging as

promising tools for precise CH4 measurement in the context of
CCUS. Technologies such as wavelength modulation spec-
troscopy (WMS), when combined with approximation
methods, have shown enhanced sensitivity and resolution,
effectively mitigating issues of spectral line interference at
atmospheric pressure.12−17 The study by Xia et al. (2021)
demonstrated that WMS, supplemented with Allan deviation
analysis, could detect CH4 concentrations as low as 560 ppt,
with a 290 s averaging time.13 Furthermore, other absorption
spectroscopy-based optical methods such as tunable diode
laser absorption spectroscopy,18,19 cavity ring-down spectros-
copy,20,21 cavity enhanced absorption spectroscopy,22 quartz-
enhanced photoacoustic spectroscopy,23,24 Fourier transform
infrared spectroscopy,25,26 and off-axis integrated cavity output
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spectroscopy27−29 have been employed for CH4 measure-
ments.
However, their practical application has been limited due to

the necessity of sophisticated optical components and high
associated costs, confining their use predominantly to scientific
research.30 On the other hand, the integration of micro-electro-
mechanical system (MEMS) detectors with infrared (IR)
sources has paved the way for the development of compact,
low-power, and cost-effective gas sensors for CO2 monitor-
ing.31−38 Despite this progress, there is a paucity of such
advancements in the field of low-concentration CH4 detection.
To address this challenge, our study presents an optical

sensing device that balances simplicity with high reliability for
the detection of low-concentration CH4 emissions. The device
incorporates a MEMS-based pyroelectric detector, which is
designed to achieve a low limit of detection, thereby facilitating
early warning of CH4 leakages at the surface. Additionally, the

impact of environmental changes, such as temperature
fluctuations, on the accuracy of CH4 detection is examined.
To further enhance the limit of detection for CH4, a wavelet
denoising technique is employed to overcome the issue of an
insufficient signal-to-noise ratio (SNR). This additional step
enhances the CH4 detection limit for CCUS production
operation safety, moving us closer to a more sustainable and
carbon-neutral future.

■ EXPERIMENTAL SECTION
Comprehensive Experimental Design for CH4 Spec-

trometry. In this work, the comprehensive experimental
design for CH4 spectrometry, which comprises the exper-
imental layout and approach, is systematically presented and
illustrated in Figure 1. Presented in Figure 1a is the
experimental design schematic specifically customized for

Figure 1. (a) Schematic representation of the experimental setup, detailing the control unit and data acquisition methodology. (b) Illustration of
gas sample preparation at varying concentrations and the associated dilution process. (c) Exploded view detailing the internal components of the
gas cell. (d) Photograph of the gas sensor assembly, highlighting the gas cell length of ∼30 cm.
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CH4 measurement, integrating both a spectrally tunable
pyroelectric detector and a thermal IR source to offer a
comprehensive solution for accurate gas detection. Two
vacuum pumps, each capable of a maximum flow rate of 12
L/min, supply the essential gas flow momentum. Furthermore,
these pumps can swiftly create and sustain a vacuum, given a
negative pressure of at least 0.062 MPa. High-precision needle
valves from Swagelok are attached to the pumps’ outlets or
inlets to ensure rigorous flow regulation. Each mass flow meter,
calibrated for a 0 to 1 L/min range, continuously monitors the
flow rate of both the incoming and outgoing gas. Throughout
the experiment, this flow rate is consistently held at 1 L/min
with a tolerance of ±0.01 L/min.
Gas samples were housed within an aluminum foil sampling

bag, with solenoid valves positioned at both the inlet and outlet
to safeguard against potential contamination. Figure 1b
illustrates the primary gas dilution procedure, which employs
a high-precision microsyringe as the standard gas injector. It
administered 1 mL of 99.9% pure CH4, provided by GL
Sciences, into the sampling bag. Conducted under indoor
ambient atmospheric conditions at ∼26 °C, the injection was
followed by the introduction of a meticulously measured 1000
mL volume of ambient air, regulated by a mass flow meter and
controller, yielding an initial CH4 concentration of 1000 ppmv.
Absorption spectrometry measurements were performed

using a custom-made aluminum alloy gas cell with a length of
∼30 cm, translating to an estimated internal volume of ∼46.2
mL as shown in Figure 1c. It was designed with specialized
saddles and caps, created using advanced 3D printing
technology, to precisely fit the unique dimensions of both
the detector and IR source. To ensure consistent gas flow and
maintain airtightness in the MEMS, both ends of the gas cell
were fitted with ultratransparent quartz sheets, which were
secured with a resilient silicone-based adhesive that also
anchored the cell to the saddles and sealed the connectors at
both the inlet and outlet. Moreover, the gas cell’s port features
solenoid valves to prevent gas leakage and contamination, and
a pressure gauge allows real-time monitoring of the internal gas
pressure.
Data acquisition was achieved using a Fabry−Peŕot

interferometer (FPI) connection board as shown in Figure
1d. This board was integrated with a LiTaO3-based pyro-
electric detector equipped with Fabry−Peŕot filters, specifically
the LFP-3144C-337 model from InfraTec, which operated
effectively within the spectral range of 3100−4400 nm.
Complementing this setup was the IR emitter EMIRS200
from Axetris, which emitted wavelengths ranging from 2 to 14
μm. The FPI connection board was then connected to a PC via
a USB cable, facilitating the configuration of operating
parameters and relaying measurement data through specialized
software (FPI Evaluation Workbench) on the computer.
Additionally, the gas sensor was housed within a box that is
40 cm long, enhanced with insulation layers to bolster
temperature stability. Two surface-mount thermocouples
gauged the temperature at the gas cell’s extremities, while a
probe-type thermocouple assessed the ambient temperature.
Optical Configuration of the MEMS-Integrated

Fabry−Peŕot Filter. Fabry−Peŕot filters, consisting of two
parallel reflective surfaces, form an optical cavity. When
integrated with MEMS technology, these filters produce
interference patterns that enable the selective transmission of
specific light wavelengths. Ebermann et al. (2016) demonstrate
the mechanical design of the MEMS structure for the filter,

where the integration of T-shaped spring suspensions as stress-
relief components is specifically aimed at optimizing the
efficiency of wavelength selection. Made from LiTaO3 and
housed within a TO-8 package, the pyroelectric detector is
strategically positioned at the output end of the Fabry−Peŕot
filter for effective gas sensing, with a detailed design breakdown
available in ref 39.
Neumann et al. (2009) illustrate the cross section of the

optical cavity.40 The distance between the reflective surfaces
can be modulated using control electrodes. This precise
modulation of the cavity distance is achieved using the FPI
Evaluation Workbench software suite, facilitating interference-
based wavelength selection. By regulating the cavity length,
specific wavelengths of light can be selected and filtered
effectively for pyroelectric sensing elements. The associated
technology of the Fabry−Peŕot filter offers notable advantages,
including high precision, compactness, and energy efficiency,
rendering it a highly reliable solution for optical filtering.
Automated Control of CH4 Gas Mixture Concen-

trations. To achieve varying concentrations of the CH4 gas
mixture, precise control over the volume of diluent-air intake at
a specific flow rate was imperative. This control was executed
by a system board centered around the STM32F407ZGT6
microcontroller, which acted as a dedicated gas mixture
controller in line with eq 1. The precision process began with
the manual injection of a set volume of pure CH4 standard gas.
Subsequent concentrations were then autonomously deter-
mined using the pre-established dilution factor α, reducing
potential operational inaccuracies associated with manual gas
handling. The microcontroller, with its sophisticated timer,
managed the activation intervals of the solenoid valve and
pump, ensuring meticulous control throughout the gas sample
dilution phase.

C
V

V
( ) , (0, 1)mixture

CH

air

4=
(1)

where Cmixture denotes the gas sample concentration and α
represents the dilution factor governing the extraction volume,
while VCH4

and Vair are the initial volumes of CH4 and air,
respectively.
Our methodology initially introduced 1 mL of pure CH4

into the gas bag depicted in Figure 1b. The controller managed
the gas bag filling at a flow rate of 1 L/min, resulting in a CH4
concentration of 1000 ppmv after a 1 min air injection. With
the dilution factor α set to 0.25, it signifies that at a flow rate of
1 L/min, one-quarter of the sample gas within the gas bag is
discharged. Simultaneously, an equivalent volume of fresh air is
introduced. This series of actions leads to a gradual reduction
in CH4 concentration, reaching 1 ppmv after 25 consecutive
dilutions.
The present experiments were conducted in a laboratory

specifically engineered for superior air circulation. Leveraging
an efficient air conditioning system, we ensured that the
circulating air maintained a stable ambient temperature,
consistently around ∼26 °C. While the ambient air, used as
the diluent, naturally encompasses minute traces of CH4, these
minor fluctuations in concentration were deemed negligible for
the purposes of our study. As detailed in Table 1, the final
concentration distribution, which emitted a group of signal
responses from the detector, was derived from these dilution
steps and served as the foundational data set for the rigorous
performance evaluation of the gas sensor.
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Stratified Sampling for Improved Nonlinear Regres-
sion Analysis. In our investigation, we observed a clear
skewness in the distribution of the sampled data,41 which was
not consistent with a desirable uniform or random pattern. The
presence of this nonuniformity complicates nonlinear
regression analyses, specifically when dense data clustering in
certain intervals leads to model overfitting. Consequently, the
model’s predictive accuracy can be compromised in sparser
data regions. Analyzing the data set with the probability
density function42,43 as shown in eq 2, we identified a
significant concentration of data at the lower-concentration
boundaries. Such skewed distributions can limit model
adaptability and interpretability. Recognizing these challenges,
it is crucial to leverage techniques like stratified sampling to
achieve a more balanced data representation, fortifying the
robustness of subsequent analyses and interpretations.

P X f d x(1 1000) ( )d
1

1000
< < =

(2)

For our stratified sampling approach, we demarcated the
concentration range into three distinct intervals using four
boundaries: 1000, 300, 10, and 1 ppmv. Within these strata,
three samples were systematically acquired, summing to nine
primary data points. Recognizing 1000 and 1 ppmv as pivotal
benchmark concentrations, we integrated them directly into
the data set, bringing the total data count to 11. Figure 2 shows
the poststratification sample distribution, which was further
divided into two data sets: one for training the regression
model and the other for validation purposes. Given the
objective emphasis on low-concentration CH4 detection, the
sampling technique inherently leans toward these lower-
concentration regions.
Addressing Sensitivity and Noise with Grid Search

Wavelets. We chose the high-resolution method primarily for

its superior sensitivity in differentiating CH4 signal responses
across varied concentrations. However, such heightened
sensitivity also inadvertently amplified noises from sources
like mechanical vibrations, ambient temperature fluctuations,
and electrical interferences.44−46 Pyroelectric detectors were
particularly adept at capturing rapid temperature changes. Yet,
their dual pyroelectric and piezoelectric properties made them
susceptible to microphonic effects.31 Mechanical stresses and
electromagnetic interferences during system operation further
exacerbated the noise challenges. To address this intricate
challenge of distinguishing genuine signals from noise, we
adopted the PyWavelets package47 to develop a parameter
optimization model, with both parameters and methods finely
tuned via grid search, as detailed in Table 2. For denoising

discrete signals in the time domain using three types of
wavelets: Daubechies (db), Symlets (sym), and Coiflets (coif),
we set the window size from 2 to 12 with a step of 2, levels
from 1 to 7 with a step of 1, and a threshold ranging from 0.1
to 0.7 with a step of 0.1 as our base parameters.
Navigating the complexities of our chosen method’s

heightened sensitivity required a robust noise reduction
approach. Drawing parallels between wavelet denoising and
grid search provided a comprehensive framework. As we
measured the quality of a denoised signal using metrics such as
energy preservation (E) in eq 3, mean squared error (MSE) in
eq 4, and peak SNR (PSNR) in eq 5,48−50 we were reminded
of how wavelet parameter performance was quantified.
Through this lens, our commitment to isolating precise CH4
signature signals amidst the persistent challenges of system
noise became evident.

E x t( )
t

N

1

2= | |
= (3)

where x(t) represents the signal amplitude at time t, and N is
the total sample count.

Table 1. Evolution of CH4 Gas Concentration Dilution

cycle CH4 (mL) air (mL) conc. (ppmv)

1 1.0000 1000 1000.0
2 0.7500 1000 750.0
3 0.5625 1000 562.5
4 0.4219 1000 421.9
5 0.3164 1000 316.4
6 0.2373 1000 237.3
7 0.1780 1000 178.0
8 0.1335 1000 133.5
9 0.1001 1000 100.1
10 0.0751 1000 75.1
11 0.0563 1000 56.3
12 0.0422 1000 42.2
13 0.0317 1000 31.7
14 0.0238 1000 23.8
15 0.0178 1000 17.8
16 0.0134 1000 13.4
17 0.0100 1000 10.0
18 0.0075 1000 7.5
19 0.0056 1000 5.6
20 0.0042 1000 4.2
21 0.0032 1000 3.2
22 0.0024 1000 2.4
23 0.0018 1000 1.8
24 0.0013 1000 1.3
25 0.0010 1000 1.0

Figure 2. Distribution of CH4 gas samples highlighting the enhanced
balance achieved through stratified sampling with an emphasis on
lower-concentration regions.

Table 2. Grid Configuration for Wavelet Parameters Search

wavelet
type window size level thresholds

dB
sym 2 to 12, step = 2 1 to 7, step = 1 0.1 to 0.7, step = 0.1
coif
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N
x t x tMSE
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where x(t) and x(t) are the original and denoised signals at

time t, respectively.

PSNR 10 log
MAX
MSE10

2
= ·
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jjjj

y
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zzzz

(5)

where MAX is the peak amplitude of the original signal.

■ RESULTS AND DISCUSSION
Experimental and Simulation Insights for Sensitive

Wavelength. In our effort to determine the most suitable

Figure 3. Selection of sensitivity wavelength for CH4 detection: (a) 10 nm scan step used to determine the initial range of wavelengths sensitive to
CH4 detection, (b) refinement of the wavelength scan using a 2 nm step, enhancing precision in identifying wavelengths with heightened CH4
detection sensitivity, and (c) response of measurements distinguishing between air and CH4, providing valuable insights into variations in the
system output,.

Figure 4. Simulation from the HITRAN database: (a) absorption coefficients of H2O, CO2, and CH4 using data from the HITRAN database, inset
highlights the most sensitive region for CH4, leading to the initial selection of 3346 nm as the optimal wavelength and the (b) absorption spectrum
of H2O, CO2, and CH4 at 299.15 K and 1 atm, using an optical path length of 30 cm.
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wavelength for CH4 detection, we used two distinct scanning
steps as shown in Figure 3. Initiating with a 10 nm step size, we
conducted a broad scan across the 3100 to 4400 nm
wavelength range, which not only facilitated rapid scanning
but also identified a preliminary CH4 response window
between 3200 and 3500 nm as shown in Figure 3a.
For enhanced resolution, we then proceeded with a finer 2

nm step size, focusing specifically on the initially identified
window. Figure 3b shows a detailed view of this region, and as
a result, a sensitive range of 3320 to 3350 nm was delineated,
further highlighted in Figure 3c. This specific range was
determined by comparing the response ratio (RespR) of the
reference voltage Vair, measured from ambient air, to the
voltage VCH4

obtained from a CH4 concentration of 1000 ppmv,
as described in eq 6

V
V

response ratio log10
reference

target
=

(6)

where response ratio is the logarithm of the ratio between the
voltage representation of the measured target and the reference
voltage, Vreference represents the voltage at the reference point,
and Vtarget means the voltage value at the gas sample
measurement point.
Identifying the optimal wavelength for CH4 detection within

the sensitive range proved to be challenging due to minor
variations in that domain. Determining the root causes of these
slight differences, whether attributed to noise interference or
other variables, presents a challenge. To address this
complexity, we turned to HAPI data from the HITRAN
database.51 By simulating and analyzing the absorption

coefficient and rate of CH4, and considering its main
interference sources, CO2 and H2O, under specific conditions,
we were able to offer a clearer evaluation.
Figure 4a shows the absorption coefficient simulation for 1%

H2O, 400 ppmv CO2, and 1000 ppmv CH4 at 299.15 K and 1
atm in the wavelength range of 3100 to 4400 nm, which
matches our experimental conditions closely. The data
highlight a distinct absorption coefficient for CH4 in the
3200 to 3400 nm region, with minimal interference from CO2.
The inset magnifies the absorption features of CH4 and H2O,
pointing to 3346 nm as the ideal wavelength due to its strong
absorption coefficient. Even though there is a potential
influence from H2O, the discrepancy is on the order of 103,
making it minor and manageable through the use of desiccants.
Figure 4b confirms the dominant absorption rate of CH4 at
3346 nm compared to H2O under the given conditions with an
optical path of 30 cm. In our experiments conducted at a single
wavelength of 3346 nm, we evaluated the detector’s capability
in quantifying various CH4 concentrations within a controlled
lab setting, spanning conditions from vacuum to air and mixes
of CH4 and air.
Exploring the Thermal Sensitivity of the Pyroelectric

Detector. The pyroelectric detectors, while excellent at
capturing rapid temperature fluctuations, exhibit vulnerability
to microphonic effects due to their inherent pyroelectric and
piezoelectric properties, as highlighted by Ng et al.31 To
understand the temperature effects on the detector’s perform-
ance and validate our findings, we conducted an extensive
laboratory test on static air under natural conditions for nearly
10 h. In our pursuit of minimizing perturbations stemming
from human activities, the experimental window was

Figure 5. Temperature effects on the detector’s signal response: (a) signal variation corresponding to temperature change with an evident increase
during the manual temperature rise and a subsequent decrease, (b) linear fit between normalized signal and temperature values, showing a
consistent relationship with R2 = 0.95, and (c) correlation matrix between signal values and temperature, indicating a strong correlation with a
Pearson coefficient of 0.97.
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judiciously selected to span from 00:30:00 to 10:00:00. The
procedural commencement was marked by a 30 min interval of
deliberate temperature escalation, subsequently giving way to a
period of natural temperature diminution within the confines
of a deserted laboratory setting, a strategic move aimed at
deciphering the resultant modulations in the detector signal.
Elucidated in Figure 5, the experimental outcomes offer a

comprehensive visual narrative. Figure 5a simultaneously
illustrates both the temperature dynamics and the signal’s
trajectory, highlighting an ascending signal with increasing
temperature and a subsequent descent, while maintaining an
almost invariant peak-to-peak signal magnitude, thereby
demonstrating the intricate interplay between temperature
and signal behavior.
Progressing to a quantitative analysis, we engaged in a linear

fitting exercise postnormalization of signal and temperature
values, the results of which are presented in Figure 5b. This
exercise culminated in the revelation of a strong, linear
correlation between the signal values and temperature, a fact
underscored by a coefficient of determination (R2) value of
0.95, signaling a high degree of concordance. The exploration
reached its peak with the construction of a correlation matrix
between signal values and temperature, shown in Figure 5c.
Here, a Pearson correlation coefficient of 0.97 emerged,
testifying to an exceptionally strong interdependence.
In the comprehensive statistical analysis presented in Table

3, the signal response is characterized by an average value of

206.027 mV. The median settles at 205.910 mV, oscillating
between 204.893 and 207.618 mV. As for the temperature of
the detector, observations yield an average of 33.9 °C, with a
span from 33.4 up to 34.9 °C; the median is consistently at
33.8 °C. Particularly noteworthy is the fact that the peak-to-
peak voltage demonstrates an average of 0.111 mV, with its
median registering closely at 0.093 mV. This suggests a
commendable stability and symmetry in the signal response
distribution. However, the maximum value of 0.733 mV also
indicates that certain sample points might have been
influenced due to outliers or noise interference.
High-Resolution Performance of CH4 Gas Detection.

Figure 6 shows the raw CH4 signal captured through a cyclic
measurement method with intervals of 45 s across 25 cycles,
spanning CH4 concentrations from 1000 to 1 ppmv. Due to the
detector’s 60 s temperature compensation cycle, there are
periods without data acquisition, leading to observable gaps in
the collected data. To mitigate this, we divided and regrouped
the data indicated by the dotted line in Figure 6a. In our
assessment of the gas sensor’s response times for identifying
CH4 within mixtures at concentrations of 100.1 and 75.1 ppmv,
we found that the t90 value�representing the duration for the
sensor’s signal to reach 90% of its final value�was less than 3 s

as shown in Figure 6b. Such a rapid response surpasses many
existing studies and underlines the sensor’s potential for timely
and accurate detection in critical scenarios associated with
CCUS projects. When analyzing the segmented data using the
box plot method, the maximum values from each group
exhibited a distinct linear pattern. In contrast, the trend of the
minimum values is consistent with the Beer−Lambert law as
shown in Figure 6c. The peak and base values within each
segment represent the voltage responses for the vacuum state
and the varying CH4 concentrations, respectively.
Upon examining the gas sensor’s precision in detecting

ambient air through five repeated tests, we used the peak
voltage response Vreference in a vacuum and the lowest Vair
during ambient air inflow to the gas cell to determine the air
RespR based on eq 6. As shown in Figure 6d, our
measurements yielded an average response ratio of 1.182 ×
10−3 with a variation of ±7.24 × 10−5. It indicates that the CH4
in ambient air, essentially representing a baseline with a net
CH4 concentration of 0 ppmv in the air mixture, produces a
value nearly equivalent to this ratio. Notably, this value is
slightly less than the 1.225 × 10−3 RespR observed when air is
mixed with a net content of 1 ppmv of CH4, highlighting the
sensor’s refined sensitivity to CH4 gas.
While Figure 6 demonstrated the gas sensor’s impressive

ability to detect CH4 concentrations ranging from 1000 to 1
ppmv, highlighting the advantages of the high resolution, it also
revealed certain drawbacks. The simplified design of the gas
sensor, although efficient and of low cost, seemed to be more
susceptible to interference, resulting in notable signal
deviations. This issue became particularly noticeable for CH4
concentrations below 10 ppmv, where we observed an increase
in voltage inconsistencies, affecting signal precision. Given the
design’s inherent simplicity, reducing noise through structural
changes appeared challenging. Therefore, the need for a strong
noise reduction algorithm became evident to enhance signal
quality.
Tuning Wavelet Parameters for Robust CH4 Sensing.

Wavelet denoising is a sophisticated method whose perform-
ance is intricately tied to the selection of its parameters. Our
approach to understanding this entailed a deep dive into three
primary metrics: E, MSE, and PSNR. Figure 7a shows how
wavelet levels critically influence denoising. Across all wavelet
types, E scores rise with increased window sizes and levels. The
“coif” wavelet, in particular, exhibits superior performance.
However, while the MSE rises with these increments across all
types, the distinctions are minimal. Conversely, the PSNR
score declines with increased levels, showing a similar pattern
across different wavelet types.
Turning to Figure 7b which highlights the influence of

thresholds, we observed that an increase in thresholds only
slightly affects the E scores. It is only when the window size
grows that these values rise, with the “coif” wavelet standing
out again. The changes in MSE and PSNR due to threshold
variations are similar to those caused by different levels in both
scale and trend. These observations emphasize that balanced
levels and thresholds are essential to achieving the finest
denoising results while larger window sizes have clear
advantages.
While the “coif” wavelet clearly outperforms the “db” and

“sym” in terms of E scores, relying solely on one metric can be
misleading. Overaggressive denoising might eliminate most of
the intricate details, yielding an impressive score but
compromising data fidelity. Therefore, our next step involves

Table 3. Statistical Description of the Signal Response,
Temperature of the Detector, and Peak-To-Peak Voltage

statistic signal response (mV) detector (°C) peak-to-peak voltage (mV)

mean 206.027 33.9 0.111
std 0.554 0.4 0.084
min 204.893 33.4 0
25% 205.560 33.6 0.044
50% 205.910 33.8 0.093
75% 206.415 34.2 0.160
max 207.618 34.9 0.733
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a regression analysis using the modified Beer−Lambert
equation as detailed in eq 7.31,52 We determined the optimal
parameter selection based on the R2 values. Upon analyzing
our stratified-sampled training data, we identified that using the
wavelet type “sym”, a window setting of “10”, level “6”, and
threshold “0.4” resulted in an optimal R2 value of 0.985,
indicating an exceptionally strong regression effect for these
parameters in our model. Furthermore, the result demonstrates
that while the “coif” wavelet clearly outperforms others, it
might be a consequence of overaggressive denoising.

eRespR span (1 )lx= × (7)

where x is the CH4 gas concentration, κ is the effective
absorption coefficient of CH4, l is the optical path length in the
gas system, which is 0.3 m for the gas cell, and span is a
coefficient which is an indication of the amount of IR radiation
that can be absorbed.
Evaluating Gas Sensor Efficacy Post-Noise Reduction.

The exceptional performance of the gas sensor, assessed using
stratified train samples, becomes evident with denoising
parameters (wavelet type, window size, level, and threshold)
specifically configured as parameters = [“sym”, “10”, “6”,
“0.4”], as shown in Figure 8a. Under this configuration, the

voltage signal responses clearly show the benefits of noise
reduction. Importantly, the denoised signal significantly
reduces outliers, especially in areas where the CH4
concentration is less than 10 ppmv, effectively reducing the
noticeable noise fluctuations found in the original signal.
Enhanced signal resolution now supports the detection of CH4
leaks as low as 5.6 ppmv.
Figure 8b shows that the developed noise reduction scheme

is highly effective, based on a comparative analysis of the gas
sensor’s reaction before and after denoising the stratified train
samples. While the denoised data fits closely with the modified
Beer−Lambert equation, having an R2 value of 0.985, the
original data lags with an R2 of just 0.829. Comparing the
original data to the modified Beer−Lambert equation curve
shows the negative impact of noise on the initial signal,
highlighting the importance of our noise reduction in
enhancing signal accuracy.
Using a 95% confidence interval as depicted in Figure 8b,

the uneven distribution of the confidence interval for the
nondenoised data around the regression curve suggests that
outliers or noise present in the original signal compromised the
stability and predictive accuracy of the regression model. In
contrast, the evenly distributed confidence interval postdenois-
ing indicates that the denoising process effectively removed

Figure 6. Gas-specific signal response measurements: (a) signal response during CH4 measurements transitioning between a vacuum state and CH4
gas at 45 s intervals, (b) evaluation of t90 response time for the gas sensor when detecting 100.1 and 75.1 ppmv CH4 mixtures, (c) box plot
representation of voltage variations across the cycles, and (d) depiction of the signal response of the gas sensor to indoor ambient air.
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Figure 7. Analyzing wavelet denoising performance using E, MSE, and PSNR metrics. Key points include the (a) effects of wavelet levels and (b)
changes brought about by threshold adjustments.
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anomalies or noise from the data, thereby enhancing the
model’s stability and predictive accuracy. This observation
aligns with the evaluation results from the R2 values. Notably,
in areas where the CH4 concentration is lower, the confidence
interval becomes narrower, implying that the model’s
predictions for low-concentration CH4 leakages will be more
stable and reliable.
To further validate the robustness of our denoising

algorithm, we applied stratified validation samples to observe
the nonlinear regression performance under identical param-
eter conditions. The R2 for the validation samples, before
denoising, was only 0.77. After denoising, the result reached
0.982, closely aligning with the training samples’ outcome as
evidenced in Table 4, which confirms the validity of the noise
reduction algorithm and parameter selections.

■ CONCLUSIONS
We meticulously construct an optical sensing device for CH4
detection that features a simple yet reliable design and also
consider cost effectiveness and portability in acquiring
reference signals under vacuum conditions. It employs a
MEMS-based pyroelectric detector operating within a spectral
range of 3100−4400 nm, paired with an IR source covering an
extensive wavelength range of 2 to 14 μm. The experimental
design incorporates 25 dilution cycles to systematically reduce
the CH4 concentration from 1000 to 1 ppmv in a laboratory
maintained at a constant temperature of ∼26 °C. Signal
response times’ t90 value measured at CH4 concentrations of
100.1 and 75.1 ppmv is ∼2 and ∼2.5 s, respectively, both under
3 s, demonstrating a rapid signal response for CH4 detection.
The application of a wavelet denoising algorithm, fine-tuned
through a grid search to select the optimal parameters (“sym”,
“10”, “6”, “0.4”), effectively mitigates noise and improves the
limit of detection of CH4 to 5.6 ppmv. Based on the modified
Beer−Lambert equation, the approach achieved R2 values of
0.985 and 0.982 across different sample sets, respectively,
highlighting the denoising algorithm’s robustness. The novelty
of our method lies in its detailed and controlled reduction of
CH4 levels, coupled with the use of wavelet denoising, which
further enhances data precision and improves detection limits.
Given its enhanced detection capabilities and when supple-
mented by the associated denoising algorithm, we believe that
this approach presents a promising solution to meet the
stringent requirements of early warning for CH4 leakage on the
surface at CCUS project sites. However, further validation and
testing are needed to clearly establish its efficacy in diverse
scenarios.
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Table 4. Evaluation of Wavelet Denoising Performance across Different Data Sets

R2

type stratified samples (ppmv) original denoised

train 1000 750 562.5 316.4 237.3 13.4 10 5.6 4.2 1.8 1 0.829 0.985
val 1000 750 562.5 421.9 237.3 178 10 4.2 2.4 1.8 1 0.77 0.982
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