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1  |  INTRODUCTION

Recent advances in culturing primary cancer cells in three- 
dimensional (3D) conditions have offered a better understanding 
of the roles of cancer cell clusters. The polarity of epithelial cells 
has been intensively studied.1 Meanwhile, the relationship between 
polarity and metastasis in cancer cell clusters has been reported in 
few studies and remains largely elusive. Here, we review the recent 
progress in understanding the features of the apico– basal polarity 
of cancer cell clusters and the role clusters abnormality plays in the 
pathophysiology of micropapillary carcinoma.

1.1  | Apico–basalpolarityoftheepithelium

The formation of an epithelial layer with apico– basal polarity is a 
fundamental process in the development of a multicellular organ-
ism. Epithelial cells form sheets, which are essential for barrier 
function as well as absorption and secretion2 (Figure 1A). Polarity 
formation and maintenance require the regulation of tight junctions 
by proteins, lipids, position sensors (E- cadherins and integrins), and 
guanosine triphosphatase switches.3 The actin and microtubule cy-
toskeleton are coordinated, and ultimately the apical and basolat-
eral domains are formed.4,5 Par,6 Scribble,7 and Crumbs8 maintain 
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Abstract
Apico– basal polarity is a fundamental property of the epithelium that functions as a 
barrier, holds cells together, and determines the directions of absorption and secre-
tion. Apico– basal polarity is regulated by extracellular matrix- integrin binding and 
downstream signaling pathways, including focal adhesion kinase, rouse- sarcoma 
oncogene (SRC), and RHO/RHO- associated kinase (ROCK). Loss of epithelial cell 
polarity plays a critical role in the progression of cancer cells. However, in differ-
entiated carcinomas, polarity is not completely lost but dysregulated. Recent pro-
gress with a three- dimensional culture of primary cancer cells allowed for studies 
of the mechanism underlying the abnormality of polarity in differentiated cancers, 
including flexible switching of polarity status in response to the microenvironment. 
Invasive micropapillary carcinoma (MPC) is one of the histopathological phenotypes 
of adenocarcinoma, which is characterized by inverted polarity. Aberrant activation 
of RHO– ROCK signaling plays a critical role in the MPC phenotype. Establishing in 
vitro models will contribute to future drug targeting of the abnormal polarity status 
in cancer.
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the apical and basolateral membrane domains. These are essential 
for organizing the intracellular signaling pathways that maintain 
epithelial homeostasis. Delivery of membrane proteins to the apical 
surface of epithelial cells is regulated by direct transport from the 
trans- Golgi network or transcytosis via endosomes. These mecha-
nisms are differentially utilized depending on the types of epithelial 
cells, the physiologic requirements of the cells, and the develop-
mental states.9

1.2  | DownstreamsignalingofECM-integrin
bindingdeterminesthepolaritydirection

The mechanisms of polarity formation have been studied using 
multiple models, particularly Madin– Darby canine kidney (MDCK) 
cells.10,11 In this model system, a suspension of MDCK cells is plated 
in a collagen gel matrix. These single cells proliferate and differen-
tiate to form multicellular and highly polarized cysts (Figure 1B). 
When laminin deposition is perturbed, an apical surface forms 
outside the cystic structure,12,13 which is called “inverted polar-
ity.” Collagen is also important for polarity formation in MDCK 

cells. Furthermore, inhibition of β1- integrin can invert the polar-
ity.14 Thus, extracellular matrix (ECM)- integrin interactions are in-
volved in establishing epithelial apico– basal polarity and luminal 
structures.

ECM is a physical scaffold synthesized by cells. The core ECM 
proteins comprise collagen subunits, proteoglycans, and glycopro-
teins.15 Cells interact with ECM molecules via integrins. The ex-
tracellular domain of integrins binds to ECM ligands, whereas the 
intracellular domain binds to cytoskeletal and regulatory proteins.16

Integrin- stimulated focal adhesion kinase (FAK) phosphory-
lation creates a high- affinity binding site for the SRC- homology 2 
domain of SRC kinase families (SFKs). The binding of SRC to FAK 
can lead to the activation of SFKs and the formation of a transient 
FAK– SRC signaling complex that plays a central role in actin cyto-
skeleton reorganization and migration.17 FAK also promotes Rac1 
activation, specifically at a polarized lamellipodium extension.18 In 
MDCK cells, integrin β1 binding to extracellular collagen activates 
Rac114 and leads to basement membrane assembly,12 which is de-
pendent on RHO– ROCK– myosin signaling.19 The RHO substrate, 
RHO- associated kinase (ROCK), plays a role in laminin deposition 
and apico– basal polarity formation.20

F IGURE 1 Apico– basal polarity and its 
inverted form. (A) Apico– basal polarity of 
the epithelium. A schematic view of the 
apico– basal polarity. Components and 
functional roles (italic letters) related to 
the apico– basal polarity are shown. The 
apical membrane is indicated in green. 
(B) Inverted polarity: single cells after 
proliferation or the aggregates of the 
MDCK cell line can form multicellular and 
highly polarized cysts in a collagen gel 
matrix. When laminin deposition or the 
integrin/integrin signaling is perturbed, 
the apical surface is formed outside 
the cystic structure, showing “inverted 
polarity.”
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1.3  | Apico–basalpolarityincancer

Intracellular signaling via SRC,21 FAK,22 and RHO23 is often activated 
in cancer. In addition to the integrins and their intracellular signaling 
pathways, polarity determinant proteins are involved in cancer pro-
gression. Indeed, the expression or localization of polarity- related 
proteins is already altered in the preinvasive stages.24 Thus, loss of 
polarity of epithelial cells due to the dysregulation of these proteins 
plays a key role in the progression of cancer cells.25 However, in 
differentiated carcinomas, polarity is somehow retained as one of 
the 3D characteristics. For example, more than 90% of colorectal 
cancers are differentiated adenocarcinomas and even the highly dif-
ferentiated colorectal carcinomas have malignant characteristics.26 
Therefore, polarity in these differentiated carcinomas is disorgan-
ized but not lost. Due to the lack of suitable model systems, few 
studies on the polarity of differentiated adenocarcinomas have been 
conducted.

1.4  |  Polarityswitching

Apico– basal polarity is fundamentally based on the adhesion be-
tween cells and is only seen in the multicellular context. The recent 
development of 3D culture has led to studies of cancer character-
istics as cell clusters. The cancer tissue- originated spheroid (CTOS) 
method is one cancer organoid method in which cancer cells are 
prepared and cultured as clusters from patient tumor tissue.27 
Colorectal cancer (CRC) organoids prepared via CTOS methods re-
tain the 3D characteristics of the original patient cancer tissue, es-
pecially glandular or cribriform structures of CRC.27 Notably, CRC 
organoids can be cultured in floating conditions. This is in contrast to 
other organoid culture methods28 in which organoids are cultured in 
a basement membrane matrix. In floating conditions, the apical mem-
brane of the CRC organoids is formed on the outermost membrane 
of the organoids (apical- out status) (Figure 2A). When embedded in 
Matrigel or collagen, multiple lumens are formed inside the orga-
noids, which are lined by the apical membrane (apical- in status).27,29 
The apical- in status is a common feature of CRC. Meanwhile, the 
apical- out status is also found in patient tumors in lesions with mi-
crovessel invasion or micropapillary carcinoma, as described later. 
These opposite polarity statuses are changeable in both directions. 
This phenomenon is called polarity switching.29 Polarity switching in 
enteroids has been reported by another study.30

The apical- out phenotype in floating conditions is a common 
feature of the CRC organoids, but the ability for polarity switching 
varied among them in different patients.29 As for intracellular signal-
ing, polarity switching was strongly suppressed by SFK inhibitors, 
and partially by an integrin β1 neutralizing antibody and a dynamin 
inhibitor.29 Involvement of transforming growth factor β signaling in 
polarity switching has also been reported.31 The dynamic process of 
polarity switching was further studied by Onuma et al.32 (Figure 2B). 
They reported that within 1 or 2 h after the apical- out organoids 
in the floating condition were embedded in Matrigel, the apical 

markers were focally lost on the outermost membrane and spread 
out to fuse. The fused points with the remaining apical marker 
moved inside of the organoids and formed lumens.

1.5  |  Polarityswitchingandmetastasis

The contribution of cancer cell clusters to metastasis has been pro-
posed since the 1950s.33 Circulating tumor cell (CTC) clusters in 
the blood are associated with significantly worse clinical outcomes 
compared with single cell CTCs.34– 36 Experimentally, tumor cell 
clusters generate metastasis more efficiently than single cells.37,38 
Additionally, it has been shown, using mouse models, that meta-
static foci originate from multiple clones rather than from a single 
clone, indicating the important role of cancer cell clusters in me-
tastasis.36,39,40 Although the apico- basal polarity status of the CTC 
clusters has not been well studied,41 CTC clusters can be apical- out 
like the organoids cultured in floating conditions. Cancer cell clus-
ters in the ascites of CRC patients were shown to be in the apical- out 
status.31 Furthermore, the apical- out status is observed in patient 
tumor lesions with microvessel invasions.29 When clusters of cancer 
cells collectively invade the vascular lumen, they may switch polar-
ity from apical- in to apical- out (Figure 3). When apical- out CTOS 
organoids in floating conditions were injected into the portal vein 
of mice, they switched polarity to apical- in in the liver and eventu-
ally formed liver metastasis.29 When the polarity switching was pre-
vented by inhibitors of SRC or dynamin, the formation of metastasis 
was suppressed.29 This suggested that polarity switching is a critical 
step for metastasis formation by cancer cell clusters.

1.6  |  Invasivemicropapillarycarcinoma

Invasive micropapillary carcinoma (MPC) is a histopathological 
form of adenocarcinoma that has been reported in a variety of or-
gans, including the colon, breast, bladder, lung, ovary, and salivary 
glands.42,43 The incidence of MPC is low, but MPC offers a poor 
prognosis due to high rates of lymphatic invasion and lymph node 
metastasis, no matter the organ of origin.42,43 MPC is histologically 
characterized by a lacuna between small papillary carcinoma foci 
and stroma without a stalk. Notably, the cancer cell foci show in-
verted polarity. In adenocarcinoma other than MPC, the apical mem-
brane is localized on the luminal side, inside the carcinoma foci, and 
on the opposite side of the surrounding ECM (apical- in). Conversely, 
MPCs have an apical- out structure, in which the apical membrane is 
localized outside of the cancer foci despite being surrounded by the 
ECM.44– 46 Thus, MPCs have an abnormal polarity status.

1.7  | GenemutationsinMPC

Several reports have comprehensively analyzed the genetic muta-
tions in MPC.47– 52 Alteration of some genes, such as tumor protein 
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p53 (TP53), Kirsten rat sarcoma virus (KRAS), epidermal growth 
factor receptor (EGFR), phosphatidylinositol- 4,5- bisphosphate 
3- kinase catalytic subunit alpha, and v- raf (rapidly accelerated fi-
brosarcoma) homolog B (BRAF), is reportedly more frequently 

detected in MPC than non- MPC (Table S1), although it is difficult 
to draw any definitive conclusions because the number of the sam-
ples is too low and there are many cases with mixed phenotype 
both with the MPC and non- MPC regions within a tumor. Whether 

F IGURE 2 Polarity switching in a cluster of human colorectal cancer. (A) The polarity switching in a cluster of human colorectal cancer. 
The apical membrane is formed on the outside surfaces of the cancer cell cluster (apical- out) when cultured in suspension, whereas the 
apical membrane lines the surface of the lumen inside the cluster (apical- in) when cultured in extracellular cell- matrix (ECM). Rapid switching 
occurs in both directions when the culture conditions are changed. (B) Dynamic process of the polarity switching in a colorectal cancer 
organoid. The organoid is cultured in the floating condition and embedded in ECM (start), showing apical- out status. Black arrowheads 
indicate the regions where the apical membrane is lost. Red arrows indicate the direction of the continuous disappearance of the apical 
membrane. Green circles indicate the foci of the apical marker. Blue arrows indicate the direction of the movement and expansion of the 
foci. The organoid eventually adopts the apical- in status (end). The process depends on SRC kinase family (SFK) activity.

F IGURE 3 Predictive multisteps in metastasis originated from cancer cell clusters. The cancer cells in the primary lesion show apical- in 
status and collectively migrate to the vessels. When they invade the vessels, the polarity switching occurs and the apical membrane faces 
the bloodstream. The small clusters detach from the mainland due to the shear stress or the budding growth. The survivors from the shear 
stress and the protective immune system arrive at the metastatic organs and attach to the endothelial cells, clear them, and invade the 
stroma underneath the vessels, accompanied by the polarity switching. They eventually form metastatic foci after collective migration and 
proliferation at the metastatic site. Components and functional roles (italic letters) are shown.
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they are the “driver” alterations of MPC remains to be functionally 
elucidated by using in vitro models such as the one reported here. 
In lung cancer, micropapillary predominant lung adenocarcinoma 
frequently harbored driver mutations in EGFR.48 In thyroid cancer, 
papillary thyroid carcinoma (PTC) is the most common histological 
type and is less malignant. However, the rare micropapillary/hobnail 
variant of PTC has been considered an aggressive subtype and has 
a high incidence of the BRAFV600E mutation.50 In colorectal cancer, 
TP53 alterations (mutations and/or accumulation) were detected 
more frequently than in the micropapillary carcinoma cases.47 In 
ovarian cancer, Singer et al. proposed the stepwise progression 
of low- grade serous carcinoma from serous borderline tumors to 
invasive MPC where KRAS mutation is involved.53 Mutations in 
tetratricopeptide repeat domain- 7A have been found in patients 
with multiple intestinal atresias. Furthermore, intestinal organoid 
cultures from patient biopsies displayed inverted polarity of the ep-
ithelial cells.54 In any case, no single, common mutation responsible 
for MPC likely exists.

1.8  |  ExperimentalmodelofMPC

Few experimental models of MPC exist. Although not a cancer 
model, MDCK cells show MPC- like inverted polarity when cultured 
in ECM under inhibition of integrin β1.3,10 Apart from polarity dys-
regulation, 3D cultured HCT116 cells in floating conditions were 
proposed as an MPC model according to the similarity of glucose 
metabolism and inactive cell proliferation.55 Nonetheless, the 
model should better represent the disease and be established from 
the disease. Recently, an organoid model of MPC prepared from 
CRC patient tumors with MPC features was developed.32 The MPC 
organoids showed apical- out status even in the Matrigel embed-
ded condition, recapitulating the MPC phenotype in the tumors 
(Figure 4). Xenografts generated by the organoids showed the MPC 
phenotype.

1.9  | AberrantactivationofRHO–ROCKsignaling
intheMPCorganoid

Onuma et al. utilized the MPC model to investigate the molecular 
mechanism underlying the MPC phenotype.32 RhoA was reported 
to be a regulator of polarity status as a downstream signaling tar-
get of integrin in MDCK cells.19 Both protein levels and the active 
form of RhoA were increased in the MPC organoids. Suppression 
of RhoA signaling enabled the MPC organoids to complete polarity 
switching in vitro32 (Figure 4). Additionally, when RhoA was sup-
pressed, the xenografts of the MPC organoids showed a non- MPC 
phenotype. Notably, the MPC phenotype reverted even when the 
MPC organoids were pretreated with a ROCK inhibitor before 
injecting into the mice. This suggested that the etiology of MPC 
might be a failure of polarity switching due to the disability of sens-
ing ECM.

1.10  |  TreatmentofMPCtargeting
abnormalpolarity

MPC is associated with more malignant phenotypes than other his-
topathological subtypes. Unfortunately, no specific treatment has 
been established yet.56 Clarifying the mechanisms underlying the 
dysregulated polarity might lead to the development of novel treat-
ments. The interchangeable nature of the inverted polarity status 
in MPC at least in an experimental setting implies that reversion of 
the inverted polarity could be an effective therapeutic approach to 
treat MPC. Indeed, a ROCK inhibitor can prevent the inverted polar-
ity in the MPC CRC organoid model when the inhibitor was added at 
the polarity switching.32 However, the delayed addition of the ROCK 
inhibitor after the formation of the inverted polarity did not show a 
significant effect. Therefore, activation of ROCK in MPCs might be 
required only for polarity switching on contact to ECM but not for 
maintenance of the MPC phenotype.

F IGURE 4 Impaired polarity switching 
in an micropapillary carcinoma (MPC) 
colorectal cancer (CRC) organoid. 
Hematoxylin and Eosin (HE) staining of an 
MPC (upper left) and a non- MPC (lower 
left) CRC tumor is shown, from which the 
organoids are prepared. Note the apical- 
out status of the cancer cells embedded 
in extracellular matrix (ECM) in the MPC 
tumor. Polarity switching does not occur 
in MPC organoids but occurs with RHO/
RHO- associated kinase (ROCK) inhibition.
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1.11  |  Perspectives

The story of dysregulated polarity in differentiated adenocarcinoma 
is just beginning to unfold. Further research will be necessary. Areas 
to further investigate include the following: the functional roles of 
the inverted polarity, the interaction with endothelial cells, perito-
neal cells, and the immune system, and the abnormal direction of 
secretion or shedding of apical proteins. The molecular mechanisms 
of metastasis in MPC can be investigated via MPC organoids. If the 
inverted polarity is only seen in pathological states such as cancer, it 
could provide a crucial target for therapy. Using in vitro models may 
contribute to future drug discovery.
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