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Abstract

This paper presents a three-dimensional finite element model for cyclic adenosine monophosphate 

(cAMP) signaling. Governing equations for the synthesis, diffusion, and degradation of cAMP 

were numerically implemented using the finite element method. Simulated results were displayed 

as time course plots of cAMP concentrations at selected nodes within the discretized geometry. 

The validity of the finite element model was assessed by comparing simulated results against 

analytical or other numerical solutions of cAMP concentration distribution for a spherical cellular 

volume. An endothelial cell was also simulated using its discretized geometry obtained from 

microscopic cellular cross-sectional images. Simulated solutions using the spherical cellular 

volume produced near identical cAMP concentration plots to the analytical solutions and were 

in good agreements with numerical results obtained from VCell, an existing software package 

for modeling cell biological systems. The validated 3-D finite element model was then employed 

to simulate the cAMP signaling pathway within a pulmonary microvascular endothelial cell 

geometry.
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1. Introduction

Although enzymatic control of the cyclic adenosine monophosphate (cAMP) signaling 

pathway is well understood, the way in which information is encoded within cAMP signals 

is not as well defined. cAMP is a second messenger in intracellular signaling involved in 
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the regulation of numerous cellular functions. These functions include cellular proliferation, 

differentiation, and gene expression [1,2]. Synthesis of cAMP occurs typically at the plasma 

membrane in response to stimulated adenylyl cyclase (AC) activity. Degradation of cAMP 

is due to phosphodiesterase (PDE) enzyme activity. There is evidence of correlations 

between cAMP levels and disease. For example, in vitro infections with HIV have shown 

T cells with higher concentrations of cAMP [3]. Pharmaceuticals regulating cAMP levels 

have been developed to treat diseases such as diabetes, hypertension, and asthma [3–6]. 

Phosphodiesterase inhibitors, in particular, have been proven as successful treatments for 

central nervous system damage [7].

With only rudimentary knowledge of information encoding within intracellular signals, we 

have limited understanding of the subcellular localization, kinetics, and frequency of cAMP 

signals [8,9]. Numerical models for predicting spatial distributions of cAMP and other 

second messengers have been developed. A fourth order Runge-Kutta MATLAB script was 

used to simulate cAMP distributions near the plasma membrane of HEK-293 cells [10–12]. 

A large-scale stochastic model was also developed to model the subcellular localization of 

cAMP signals in HEK-293 cells using the software NeuroRD [13]. Both the models and 

study outcomes have been summarized [14]. The program Virtual Cell [15], or VCell, is 

an intracellular modeling software developed by the University of Connecticut. It uses the 

Finite Volume Method to simulate deterministic partial differential equation systems onto 

uploaded cellular geometries [15].

This work focuses on the implementation of the finite element method (FEM) for three-

dimensional modeling of the cAMP signaling pathway. The finite element method is a 

numerical engineering technique useful in complex geometries. It relies on the discretization 

of the geometry and the conversion of the partial differential equations governing the system 

into a system of algebraic equations. A two-dimensional finite element model had been 

developed and reported in our previous work [16] where more information about related 

works on cAMP intracellular signaling can be found.

The three-dimensional finite element model used equations governing the synthesis, 

diffusion, and degradation of cAMP. Four node tetrahedral elements were used to discretize 

the cellular geometries. Simulations were then run with initial conditions and parameters to 

model the spatial and temporal dynamics of the cAMP signaling pathway. Both spherical 

and realistic cellular geometries have been modeled. Cellular geometries were obtained 

from endothelial cross-sectional cell image sequences that were converted into a solid, finite 

element meshed volume. The finite element model ran off MATLAB scripts.

The 3-D finite element simulations were validated through comparison of available 

analytical solutions and of resulting simulations previously done using the software VCell 

[17]. The validated 3-D FEM model was then utilized for simulating cAMP intracellular 

signaling within a pulmonary microvascular endothelial cell (PMVEC).

In a previous work from our group, a 3-D FEM model was developed [18]. However, that 

model was based upon a linear approximation of the Michaelis-Menten enzyme kinetics 

about the initial value of cAMP concentration. As a result, the model in [18] is only accurate 
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for low cAMP concentrations. On the other hand, the 3-D FEM model proposed in this work 

utilized a quasi-linearization of the Michaelis-Menten kinetics. This technique is based on 

a linear approximation about the cAMP concentration level at any given time. Despite the 

fact that the quasi-linearization requires some iterations to converge, the technique produces 

an accurate estimate of PDE reactions at any levels of cAMP concentration. In addition, the 

3-D model developed in this work is able to simulate a variety of AC and PDE activities 

anywhere within the cell, as well as the instants when these activities start.

2. Governing equation

For 3-D cAMP intracellular signaling, its governing equation describing cAMP synthesis, 

diffusion and degradation is generally given as (see [19,20])

∂C
∂t =

D∇2C if t < ts
D∇2C + EAC(x, y, z) if ts ≤ t < td
D∇2C + EAC(x, y, z) − M(C) if t ≥ td

(1)

where C = C(t, x, y, z) is the cAMP concentration at time t and location (x,y,z), D is the 

diffusion coefficient, EAC is the cAMP synthesis function, M(C) is the Michaelis-Menten 

cAMP degradation function, and ts and td are the time points when AC activity (cAMP 

synthesis) and PDE activity (cAMP degradation) start taking place, respectively. In this 

work, PDE activity is assumed to occur after or at the same time of AC activity ts ≤ td .

Under the steady-state assumption,

M(C) = V maxC
KM + C (2)

where Vmax is the maximum cAMP hydrolysis rate, and KM is the Michaelis-Menten 

constant for cAMP binding to PDE.

As M(C) is a nonlinear function in C, an iterative method will need to be employed in the 

FEA of the model given by Eq. (1). The iterative technique adopted in this work is based on 

a quasi-linearization of M(C) about C = C1:

M(C) = M C1 + dM
dC |C = C1 C − C1

= V maxKM
KM + C1

2C + V maxC1
2

KM + C1
2

(3)

To accurately evaluate Eq. (2) using its quasi-linearization (3), at a given time and location, 

the iteration must be carried out until the difference between the predicted C1 and the 

solution C resulting from solving the third equation of system (1) satisfies a chosen 

convergence criterion.

The possible boundary conditions are

Warren et al. Page 3

Forces Mech. Author manuscript; available in PMC 2022 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• C is specified;

• Normal derivative (concentration flux) is prescribed along a boundary surface,

D∂C
∂n = β (4)

where n is the normal vector to the boundary surface and β is a constant. For 

the proposed FEA model, this concentration flux β can be used to simulate AC 

activities in the plasmalemmal or perinuclear region of a cell.

3. Finite element implementation of the governing equation

To use the Galerkin approximation, we first discretize the cellular geometry into a number 

of elements. For each element, we multiply Eq. (1) by the shape functions Ni (i = 1, 2, …, 

n, where n is the number of nodes of the chosen type of element) selected as weighting 

functions and then integrate it over the volume V of the element as follows:

∫
V

(∂C
∂t − D∇2C)NidV = 0 if t < ts

∫
V

(∂C
∂t − D∇2C − EAC(x, y, z))NidV = 0 if ts ≤ t < td

∫
V

(∂C
∂t − D∇2C + aC − b)NidV = 0 if t ≥ td

(5)

where ∇2 is the Laplacian, and

a = V maxKM
KM + C1

2

b = EAC(x, y, z) − V maxC1
2

KM + C1
2

(6)

By using Gauss’s divergence theorem on the diffusion term and the boundary conditions 

(see, e.g., [21] for more details), one obtains the following weak form in 3-D:

∫
V

(∂C
∂t Ni + D(∂C

∂x
∂Ni
∂x + ∂C

∂y
∂Ni
∂y + ∂C

∂z
∂Ni
∂z ))dV = 0 if t < ts

∫
V

(∂C
∂t Ni + D(∂C

∂x
∂Ni
∂x + ∂C

∂y
∂Ni
∂y + ∂C

∂z
∂Ni
∂z ))dV = β∫Sn

NidS + ∫
V

EACNidV if ts ≤ t < td

∫
V

(∂C
∂t Ni + D(∂C

∂x
∂Ni
∂x + ∂C

∂y
∂Ni
∂y + ∂C

∂z
∂Ni
∂z ) + aCNi)dV = β∫Sn

NidS + ∫
V

bNidV if t ≥ td
(7)
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where Sn is the face of the element over which its concentration flux is specified.

In this equation, the concentration C of cAMP is interpolated over the element from the 

nodal values c1, c2, …, cn using the shape functions N1, N2, …, Nn as follows:

C = N1 N2⋯Nn

c1
c2
⋮
cn

= [N]{c} (8)

Thus the time derivative of C and its gradients are given by

∂C
∂t = N1 N2⋯Nn

ċ1
ċ2
⋮
ċn

= [N]{ċ} (9)

∂C
∂x
∂C
∂y
∂C
∂z

=

∂N1
∂x

∂N2
∂x ⋯ ∂Nn

∂x
∂N1
∂y

∂N2
∂y ⋯ ∂Nn

∂y
∂N1
∂z

∂N2
∂z ⋯ ∂Nn

∂z

c1
c2
⋮
cn

= [B]{c} (10)

Substitution of Eqs. (8)–(10) into Eq. (7) results in,

K1 ċ + K2 c = 0 if t < ts
K1 ċ + K2 c = R1 + R2s if ts ≤ t < td
K1 ċ + K2 + K3 c = R1 + R2b if t ≥ td

(11)

where

K1 =
V

[N]T[N]dV (12)

K2 =
V

[B]T[κ][B]dV (13)

[κ] = D
1 0 0
0 1 0
0 0 1

(14)
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K3 = a
V

[N]T[N]dV (15)

R1 = β Sn
[N]TdS (16)

R2s = EAC V
[N]TdV if ts ≤ t < td (17)

R2b = b
V

[N]TdV if t ≥ td (18)

In this work, the four-node tetrahedral element (see Fig. 1) was selected for a 3-D numerical 

implementation of Eq. (11). The shape function matrix of this element is known to be

[N] = 1 − ξ − η − ζ ξ η ζ (19)

where ξ, η and ζ are the coordinates of the natural coordinate system.

By using these shape functions in Eqs. (12), (13), (15)–(18), one gets

K1 = V
20

2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

(20)

K2 = V [B]T[κ][B] (21)

where

B =
x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1
x4 − x1 y4 − y1 z4 − z1

−1 −1 1 0 0
−1 0 1 0
−1 0 0 1

(22)

K3 = a K1 (23)

R1 =

βA123/3 1 1 1 0 T for flux BCs on face 1‐2‐3

βA234/3 0 1 1 1 T for flux BCs on face 2‐3‐4

βA341/3 1 0 1 1 T for flux BCs on face 3‐4‐1

βA412/3 1 1 0 1 T for flux BCs on face 4‐1‐2

(24)
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R2s = V EAC
4

1
1
1
1

if ts ≤ t < td (25)

R2b = V b
4

1
1
1
1

if t ≥ td (26)

In the above equations, (xi, yi, zi) are the nodal coordinates of the four-node tetrahedral 

element under consideration, V is the volume of the element, and Aijk is the area of face 

i–j–k of the element.

At this point, the matrices and vectors in Eqs. (20)–(26) for all elements need to be expanded 

to the structure/model size before they can be assembled to obtain the global version of the 

first-order differential Eq. (11).

By using the time integration method [22], the vector of unknown concentrations {c}i+1 at 

time ti+1 can be found from {c}i at time ti as

1
Δt K1 + γ K2 c i + 1 = 1

Δt K1 − (1 − γ) K2 c i if t < ts
1

Δt K1 + γ K2 c i + 1 = 1
Δt K1 − (1 − γ) K2 c i +

(1 − γ) R1 + R2s i + γ R1 + R2s i + 1
if ts ≤ t < td

1
Δt K1 + γ K2 + K3 c i + 1 = 1

Δt K1 − (1 − γ) K2 + K3 c i +

(1 − γ) R1 + R2b i + γ R1 + R2b i + 1
if t ≥ td

(27)

where Δt = ti + 1 − ti is the time step and in this work, Galerkin’s implicit method (γ = 2/3)
was chosen as the method is known to be unconditionally stable (no restriction on Δt for 

obtaining a stable solution, [22]).

The equation system (27) is simply a linear system of algebraic equations of the form

[K] c i + 1 = F i + 1 (28)
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If some nodal concentrations are prescribed, these boundary conditions must be applied to 

Eq. (28) to obtain a reduced system of linear equations that contains the vector {cr}i+1 of 

only unknown nodal concentrations at time ti+1.

For each step time of the time integration method described in Eq. (27), as mentioned 

before, an iterative process must be utilized for the quasi-linearization of the Michaelis-

Menten model. To be specific, the concentration solution {c}i from the previous step time ti 
will be used as an initial guess for C1 employed in evaluating [K3] and {R2} for calculations 

at step time ti+1 (see Eqs. (6), (23) and (26)). The solution {c*}i+1 resulting from using these 

[K3] and {R2} is expected to be a better guess for C1 and this process should be repeated 

until a chosen convergence criteria is met.

4. Validation of the proposed FEA model

The 3-D FEA model developed was validated against some available analytical solutions and 

published data. The FEA simulations employed the same cAMP signaling data as in [17] 

for PMVECs, i.e., EAC = 0.1412 μM/s for synthesis, D = 0.3 to 300 μm2/s for diffusion, 

Vmax = 0.295 μM/s, KM = 2 μM for degradation, and Co = 0.05 μM for initial conditions. 

In addition, no cAMP signal is assumed to be transported between the cytoplasm and the 

nucleus.

The validation was first conducted against some analytical solutions. For this purpose, FEA 

results were obtained using a spherical cell model. The radii of the cell and the nucleus 

are Ro = 9.34 μm and Ri = 5.26 μm, respectively. Fig. 2(a) and 2(b) show the tetrahedral 

meshes with 381 nodes and 1,472 elements for this spherical cell model. These meshes 

were constructed by Distmesh [23] (a MATLAB program developed by Per-Olof Persson for 

generating and manipulating unstructured 2-D and 3-D meshes).

The validated 3-D FEA model was then applied to simulate intra cellular cAMP signaling 

within a cultured PMVEC model. Fig. 3(a) and 3(b) depict the tetrahedral meshes with 4,983 

nodes and 29,069 elements for the PMVEC model.

The FEA meshes shown in Fig. 2(a), 2(b), 3(a) and 3(b) are those satisfying the mesh 

convergence tests presented in section 4.1.2. These meshes also have good quality measured 

by their aspect ratio and solid angle as depicted in Table 1 [24]. For each quality measure, its 

best and worst possible values are 1 and 0, respectively. The mesh quality for the spherical 

cell model is better than the PMVEC model as the geometry of the latter is much more 

complex.

4.1. Convergence tests

4.1.1. Time-step convergence tests—As mentioned above, the Galerkin’s implicit 

method chosen has no restriction on the time step Δt for producing stable solutions. To 

illustrate this advantage, two time-step convergence tests were performed: the first one for 

the cAMP concentration response of the spherical cell model to PDE activity uniformly 

distributed in the cytosolic region (see section 4.2.1 for more details) and the second one for 

the cAMP concentration response of the PMVEC model to AC activity uniformly distributed 
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in the cytosol (see section 4.2.2). The results in Fig. 4(a) and 4(b) confirm the advantage of 

Galerkin’s implicit method as the cAMP responses remain stable with different time steps 

selected, namely, Δt = 10, 5 and 1 sec. For the spherical cell model using mesh 3 (see Table 

2 and section 4.1.2), the numerical results are mostly unchanged and accurate even with the 

use of a very coarse time step of 10 sec. For the PMVEC model with a complex geometry 

(934 nodes and 5,039 elements), the error of the numerical results is visible at large time 

steps. However, the accuracy of the FEA result in case Δt = 10 sec is still acceptable. As 

expected, the results converge to the analytical solution as Δt is reduced.

4.1.2. Mesh convergence tests—A series of meshes with increasing mesh density 

were employed for the mesh convergence tests. Table 2 shows the information for the two 

coarsest and two finest meshes in the series for the spherical cell model.

For compartmental models (see sections 4.2.1 and 4.2.2) the outputs are almost independent 

of the mesh density. As a result, the use of mesh 1 (see Table 2) was sufficient for 

obtaining the accurate FEA results shown in sections 4.2.1 and 4.2.2. The result of the 

mesh convergence test on the PMVEC model shown in Fig. 5(a) demonstrates this mesh 

independence behavior of compartmental models. In this test, the coarse mesh has 934 nodes 

and 5,039 tetrahedral elements while the fine mesh is shown in Fig. 3(a) and 3(b).

For non-compartmental models, such as those presented in section 4.3, the outputs are 

sensitive to the mesh density. Fig. 5(b) depicts the time courses of cAMP concentration in 

the spherical cell model at the subplasmalemmal and perinuclear regions in response to AC 

activity uniformly distributed over the plasma membrane (see section 4.3 for more detailed 

information). As the mesh density increases, it can be seen that the solutions converge. Since 

the FEA results obtained from meshes 3 and 4 are almost the same, mesh 3 were selected for 

all the FEA simulations in sections 4.2.3 and 4.3.

4.2. Validation against analytical solutions

There is no general analytical solution to the governing Eq. (1). However, analytical 

solutions are available for some particular cases involving simple cellular geometries or 

uniform loading conditions. These particular cases are considered in this section to partially 

verify the proposed FEA model.

4.2.1. Verification of the implementation of the Michaelis-Menten equation—
If there is no concentration flux (β = 0) at the subplasmalemmal and perinuclear regions, 

and cAMP synthesis and/or degradation occur uniformly in the cytosolic region, then there 

is no diffusion of cAMP which means cAMP concentration at any cellular location is the 

same at a given time. This is known as a compartmental model for which the resulting 

concentration C is independent of cellular location (x, y, z), cellular geometries and the 

diffusion coefficient D which means that C is a function of time only. Hence, for t ≥ td, the 

partial differential Eq. (1) becomes the following ordinary differential equation for finding 

C(t):
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dC
dt = EAC − V maxC

KM + C (29)

The analytical solution for this equation is given by Eq. (33) in the Appendix.

In this section, Eq. (29) was used to validate the FEA implementation of the iterative process 

for the quasi-linearization of the Michaelis-Menten Eq. (2). To this end, a compartmental 

model for which no AC activity (EAC = 0) is present and PDE activity is uniformly 

distributed within the cytosol from td = 0 was studied. The concentration responses for 

four different scenarios of PDE activities are depicted in Fig. 6(a) and 6(b) where the FEA 

results agree perfectly with the analytical solutions given by Eq. (35). The outputs confirm 

the compartmental behavior of the FEA model as they are independent of the cellular 

position, the cellular geometry (PMVEC or spherical cell) and the diffusion coefficient used. 

As predicted, an increase of Vmax with respect to KM (Fig. 6(a)) speeds up the cAMP 

degradation, while an elevation of KM with respect to Vmax slows down the degradation.

As with the 2-D FEA model [16], the following biological behavior can be observed for 

compartmental models studied in this section: cAMP concentration responses are the same 

as long as the ratio of Vmax /KM is the same. This can be confirmed by noticing that the 

curve for Vmax = 0.118 μM/s and KM = 2 μM in Fig. 6(a) and the curve for Vmax = 0.295 

μM/s and KM = 5 μM in Fig. 6(b) are identical as they have the same ratio Vmax/KM = 

0.059.

4.2.2. Verification of the implementation of cAMP synthesis—Eq. (29) was also 

employed to validate the implementation of cAMP synthesis in the proposed FEA model. 

This was done by using a compartmental scenario where the plasma membrane and the 

perinuclear region are under flux-free boundary conditions, PDE activity is absent (Vmax 

= 0) and AC activity is uniformly occurred inside the cytosol from ts = 0. The analytical 

solution for the compartmental output for this case is given by Eq. (36)

Three AC activities characterized by three synthesis rates EAC = 0.11, 0.1412 and 0.17 

μM/s were investigated. Very good agreement between the FEA results and the analytical 

solutions can be seen in Fig. 7(a).

In a next step, a further validation involving a compartmental case where both AC and 

PDE activities take place at the same time was considered. This was done by adding to the 

three AC activities a uniform PDE activity (Vmax = 0.295 μM/s, KM = 2 μM) within the 

cytosol from td = 0. Fig. 7(b) shows an excellent agreement between the FEA results and 

the analytical counterparts obtained by employing Eq. (33). As expected, a lower amount of 

cAMP synthesis rate results in a shorter time before the steady state of concentrations being 

reached.

4.2.3. Verification of the implementation of cAMP diffusion—To validate the 

proposed FEA model in terms of numerical implementation of cAMP diffusion, two 

simulations involving different boundary conditions at the subplasmalemmal and perinuclear 
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regions were studied. Both simulations were conducted on the spherical cell geometry in 

Fig. 2(a) subjected to a diffusion coefficient D = 30 μm2/s and an absence of AC and PDE 

activities within the cytosol (EAC = 0 and Vmax = 0).

For the first simulation, cAMP concentrations of 4 μM and 1 μM were prescribed over 

the plasma membrane and perinuclear region, respectively. The FEA results for the time 

response of cAMP concentration on two spherical surfaces of radii R = 7.468 μm and R 
= 7.112 μm within the cytosol are favorably compared against the steady-state analytical 

results as shown in Fig. 8(a).

For the second simulation, concentration boundary conditions (C = 3 μM or C = 5 μM) were 

applied at the plasma membrane while flux-free boundary conditions were imposed over 

the perinuclear region. Because of these boundary conditions, the cAMP concentration at 

any locations in the subplasmalemmal region will remain at the applied value (3 μM or 5 

μM) while the concentration at other locations in the cytosolic and perinuclear regions will 

rise from the initial value of 0.05 μM to the steady-state value of 3 μM or 5 μM. Due to 

this behavior, it is sufficient to show the FEA result for a representative location within the 

cytosolic region.

Fig. 8(b) depicts the FEA vs analytical results for the time responses of cAMP concentration 

on the spherical surface of radius R = 7.112 μm within the cytosol under two cases of 

concentration boundary conditions aforementioned. For both cases, the FEA results agree 

very well with the analytical solutions available in [25].

4.3. Validation against other numerical technique

In this section, two simulations involving non-compartmental models for the spherical 

cell geometry (Fig. 2(a) and 2(b)) were used to verify the proposed FEA technique as a 

whole by comparing the FEA results with those obtained from the finite volume technique 

implemented within the VCell software [15].

In both simulations, AC activity was uniformly distributed at the plasma membrane and PDE 

activity was uniformly distributed in the cytosol. The first simulation employed a diffusion 

coefficient of 3 μm2/s while that value chosen for the second simulation was 0.3 μm2/s. Note 

that these simulations were previously run using the VCell software and the results were 

reported in [17].

The uniform AC distribution at the subplasmalemmal region was modeled using a positive 

flux on the outer surface of the spherical cell geometry. As in [17], β was determined under 

the assumption of the same total AC activity produced either over the plasma membrane or 

inside the cytosolic region, i.e.,

EACV c = βSp (30)

where EAC = 0.1412 μM/s, Vc and Sp are the volume of the cytosolic region and surface area 

of the plasma membrane of the spherical cell geometry shown in Fig. 2(a).

Therefore,
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β = EACV c
Sp

=
EAC Ro

3 − Ri
3

3Ro
2 = 0.3611 μM⋅μm/s (31)

Fig. 9(a) and 9(b) show a comparison between the FEA and VCell results for the first 

(D = 3 μm2/s) and second (D = 0.3 μm2/s) simulations, respectively. In each figure, the 

time responses of cAMP concentration on the plasma membrane (Ro), on the spherical 

surface of radius R = 7.8μm and at the perinuclear region (Ri) are plotted. There is 

reasonable agreement between the two results (FEA vs VCell), but not perfect. For the 

second simulation (see Fig. 9(b)), some noticeable discrepancy occurs at the perinuclear 

region in the early time of the process (t < 10 s). However, the FEA curve during this early 

time period makes sense as the perinuclear region is far from the source of synthesis while 

D is small (cAMP spread is slow): cAMP concentration at the perinuclear region should first 

drop from the initial value of 0.05 μM (due to PDE activity) before AC activity reaches this 

region and raises C to its steady-state value. The absence of this concentration drop on the 

VCell curve may be explained by the fact that the VCell simulation in [17] used a larger 

time step (Δt = 10 s vs Δt = 2 s employed in the FEA simulation) which prevented it to 

capture the concentration drop within the first 10 seconds of the process.

4.4. FEA simulations on the 3-D cultured PMVEC geometry

The proposed FEA model previously validated was used in this section to simulate cAMP 

cellular signaling within the complex 3-D cultured PMVEC geometry shown in Fig. 3(a) 

and 3(b). Two simulations with and without delayed start of AC and PDE activities were 

considered herein. The time responses of cAMP concentration at three typical cellular 

locations were sought. These locations are represented by nodes 2438, 2460 and 2437 at 

the subplasmalemmal, cytosolic and perinuclear regions, respectively. These nodes have the 

same z-coordinate of 4.6 μm. The location of these nodes in the cross section z = 4.6 μm is 

depicted in Fig. 10.

4.4.1. Uniform AC and PDE activities—In this simulation, AC activity uniformly 

generated from the plasma membrane was modeled using a positive flux β = 2 μM·μm/s. 

PDE activity (Vmax = 0.295 μM/s, KM = 2 μM) was uniformly taken place throughout the 

cytosol. A diffusion coefficient D = 10 μm2/s was selected. There was no delayed start of AC 

and PDE activities, ts = td = 0s.

Fig. 11 shows the time responses of cAMP concentration at three chosen cellular locations. 

As expected, all the three curves start from the initial conditions and then approach their 

respective steady-state values. The closer the node to the source of synthesis, the higher the 

amount of steady-state concentration. As nodes 2460 and 2437 are at some distances from 

the plasma membrane where AC activity occurs, their curves exhibit an initial drop of cAMP 

concentration due to cAMP degradation before they recover and reach steady-state level.

4.4.2. Uniform AC and PDE activities with delayed start—The only difference 

between this and the previous simulation is the delayed start of cAMP synthesis and 

degradation: AC and PDE activities were assumed to start at ts = 10 s and td = 20 s, 
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respectively. As a result, the concentrations at the three cellular locations remained at the 

initial level of 0.05 μM until t = 10 s when they started to rise (see Fig. 12). Due to cAMP 

synthesis without degradation between t = 10 and 20 s, there is a linear portion within 

this time period on each of the three curves depicted in Fig. 12. As soon as PDE activity 

started at t = 20 s, the slopes of the three curves decreased and the concentration started 

approaching their respective steady-state values.

5. Conclusion

A developed 3-D finite element model for cAMP intracellular signaling was presented 

in this paper. The model produced time course plots of cAMP concentrations at selected 

nodes using equations governing the synthesis, diffusion, and degradation of the second 

messenger. The finite element model is capable of simulating multiple AC and PDE activity 

scenarios. It can also confine cAMP synthesis and degradation to certain areas of the 

cell such as uniformly distributing both AC and PDE activity within the cytosol and/or 

bounding AC activity to the plasma membrane with a boundary flux condition. Initial cAMP 

concentrations, diffusion coefficients, and simulation times are also modifiable variables in 

the model.

The time course cAMP concentration plots simulated with the spherical cell geometry 

produced almost identical curves to the analytical literature solutions. Due to the use 

of two different numerical techniques (FEM vs FVM), there was a minor but uniform 

discrepancy between the simulated FEA and VCell results when a boundary flux β was 

specified to contain AC activity to the plasma membrane while PDE activity was uniformly 

distributed within the cytosol. Finally, the validated 3-D FEM model was successfully 

used to simulate cAMP intracellular signaling within a cultured PMVEC cell subjected to 

different distributions of AC and PDE activities.

In general, similar to a conclusion in our previous 2-D work [16], 3-D simulations also 

showed that sustained cAMP gradients can be formed within endothelial cells which is 

consistent with those observed in rat PMVECs [26]. These data demonstrate that the finite 

element modeling approach is a viable approach for modeling second messenger signaling 

systems in four dimensions (x, y, z, t). While the simulation data employed in this work were 

acquired from PMVECs, applications of the proposed FEA model to other cell types are 

possible.

Acknowledgments

This research was supported in part by NIH awards P01HL066299, S10RR027535, S10OD020149, and 
R01HL058506.

Appendix

The solution of the following initial value problem:

dC
dt = EAC − V maxC

KM + C ; C(0) = C0 (32)
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where EAC, Vmax, KM and C0 are constants, is given by

C(t) = KM
V max − EAC

EAC + V maxW − 1
V maxKM

exp(U) (33)

where W() is the Lambert W function, and

U = 1
V maxKM

EAC − V max
2 BV maxKM

A − t − EACKM

A = EAC
2 − V max 2EAC − V max

B = ln EACKM + EACC0 − V maxC0 exp C0
KM

1 − EAC
V max

(34)

If EAC = 0, the solution reduces to

C(t) = KMW C0
KM

exp 1
KM

−V maxt + C0 (35)

If Vmax = 0, the solution is simply given by

C(t) = EACt + C0 (36)
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Fig. 1. 
A four-node tetrahedral element.
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Fig. 2. 
Tetrahedral mesh for a spherical cell model with units in μm: (a) surface mesh; (b) cross 

section.
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Fig. 3. 
Tetrahedral mesh for a cultured PMVEC model with units in μm: (a) surface mesh; (b) cross 

section.
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Fig. 4. 
Time-step convergence tests: (a) Spherical cell model; (b) PMVEC model.
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Fig. 5. 
Mesh convergence tests: (a) PMVEC model; (b) Spherical cell model.
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Fig. 6. 
FEA vs analytical solutions for the time course of cAMP concentration in response to only 

PDE activity uniformly distributed in the cytosol: (a) Effect of Vmax; (b) Effect of KM.
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Fig. 7. 
FEA vs analytical solutions for the time course of cAMP concentration in response to 

(a) AC activity uniformly distributed in the cytosol; (b) AC and PDE activities uniformly 

distributed in the cytosol.
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Fig. 8. 
FEA vs analytical solutions for the time courses of cAMP concentration at different 

cellular locations in response to diffusion coefficient D = 30 μm2/s and different boundary 

conditions: (a) C = 4 μM at the plasma membrane and C = 1 μM at the perinuclear region; 

(b) C = 3 μM or 5 μM at the plasma membrane and β = 0 at the perinuclear region.
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Fig. 9. 
FEA vs finite volume (Virtual Cell) solutions for the time courses of cAMP concentration 

at the subplasmalemmal, cytosolic and perinuclear regions in response to AC activity (β 
= 0.3611 μM·μm/s) uniformly distributed over the plasma membrane and PDE activity 

uniformly distributed in the cytosol (a) D = 3 μm2/s; (b) D = 0.3 μm2/s.
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Fig. 10. 
Location of nodes 2438 (on the plasma membrane), 2460 (in the cytosol) and 2437 (at the 

perinuclear region).
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Fig. 11. 
FEA solution for the time responses of cAMP concentration at nodes 2438 (on the plasma 

membrane), 2460 (in the cytosol) and 2437 (at the perinuclear region) in response to AC 

activity (β = 2 μM·μm/s) uniformly distributed over the plasma membrane at ts = 0, PDE 

activity uniformly distributed in the cytosol at td = 0, and D = 10 μm2/s.
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Fig. 12. 
FEA solution for the time responses of cAMP concentration at nodes 2438 (on the plasma 

membrane), 2460 (in the cytosol) and 2437 (at the perinuclear region) in response to AC 

activity (β = 2 μM·μm/s) uniformly distributed along the plasma membrane at ts = 10 s, PDE 

activity uniformly distributed in the cytosol at td = 20 s, and D = 10 μm2/s.
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Table 1

Mesh quality measures.

Mesh Measure Minimum Maximum Mean

Spherical cell Aspect ratio 0.025 0.997 0.880

Solid angle 0.023 0.961 0.715

PMVEC Aspect ratio 0.007 0.996 0.547

Solid angle 0.003 0.987 0.315
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Table 2

Four representing tetrahedral meshes employed in the mesh convergence test for the spherical cell model.

Mesh # Number of nodes Number of elements

Mesh 1 77 271

Mesh 2 97 270

Mesh 3 381 1472

Mesh 4 456 1830
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