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SARS-CoV is a pathogenic coronavirus that emerged from a

zoonotic reservoir, leading to global dissemination of the virus.

The association SARS-CoV with aberrant cytokine, chemokine,

and Interferon Stimulated Gene (ISG) responses in patients

provided evidence that SARS-CoV pathogenesis is at least

partially controlled by innate immune signaling. Utilizing models

for SARS-CoV infection, key components of innate immune

signaling pathways have been identified as protective factors

against SARS-CoV disease, including STAT1 and MyD88.

Gene transcription signatures unique to SARS-CoV disease

states have been identified, but host factors that regulate

exacerbated disease phenotypes still remain largely

undetermined. SARS-CoV encodes several proteins that

modulate innate immune signaling through the antagonism of

the induction of Interferon and by avoidance of ISG effector

functions.
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SARS-CoV: the first viral pandemic of the new
millenium
In 2002 the first viral pandemic of the millennium emerged

from the Guangdong province in Southern China. Severe

Acute Respiratory Syndrome (SARS) presented as initial

‘flu-like’ symptoms (cough, sore throat, and fever) that

could progress to atypical pneumonia in patients with

severe SARS disease [1,2]. A rapid response from scientists

identified a novel coronavirus as the causative agent of

SARS, named SARS-Coronavirus (SARS-CoV, Figure 1a)

and angiotensin converting enzyme 2 (ACE2) as the viral

receptor [3]. Despite identification of the virus, the disease

spread from China to other Southeast Asia countries,
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becoming a global threat with significant outbreaks

reported in Singapore, Hong Kong, Taiwan, and Canada

[4]. At the end of the epidemic, 774 of the 8096 confirmed

cases resulted in death (a mortality rate of 9.6%) [5]. By July

of 2003 the virus was controlled by public health measures,

but no vaccines or antivirals are currently approved for the

treatment of SARS-CoV should the virus re-emerge [6,7].

SARS disease in patients with poor outcome was marked

by the progression to Acute Respiratory Distress Syn-

drome (ARDS): approximately 25% of SARS cases were

diagnosed with ARDS and the ARDS-associated

mortality rate exceeded 50%[8]. Elderly SARS patients

had a poor prognosis with mortality rates of 50% in

patients over 65 year of age [9]. In SARS patients with

ARDS, the acute phase characterized by pulmonary

edema, severe hypoxia, and the accumulation of inflam-

matory cells in the lungs could progress to ARDS late

phase fibrosis, organizing pneumonia, systemic inflam-

mation responses, and multiple organ failure [10,11].

Consistent with ARDS progression, the primary targets

of SARS-CoV infection are ciliated cells of the airway

epithelium and alveolar Type II pneumocytes [12,13].

ARDS is also associated with the induction of inflamma-

tory cytokines including IL-1, IL-6, IL-8, CXCL-10, and

TNFa, many of which were highly expressed in the lungs

of SARS patients [14,15]. In many viral infections the

antiviral cytokine Interferon (IFN) acts not only to con-

trol viral infections, but also to program the adaptive

immune response to promote viral clearance [16]. How-

ever, in patients with severe SARS disease, aberrant IFN,

Interferon Stimulated Genes (ISGs), and cytokine

responses were observed compared to healthy individuals

providing evidence that SARS is an innate immune

regulated disease [17,18].

Elucidation of innate immune pathogenesis
mechanisms through models of SARS-CoV
infection
Initial models of SARS-CoV innate immune pathogenesis

were viral infection of cell lines including Vero E6, Caco-

2, and Huh-7 cells, as well as PBMCs; however, these

systems may not yield relevant biological information

consistent with SARS-CoV infection of pneumocytes,

because they are not derived from lung tissues [19–21].

Human Airway Epithelial Cultures (HAEs) are primary

cell lines of pseudostratified mucocilliary epithelium that

replicate the morphological and physiological character-

istics of human airways. HAEs can be infected with

SARS-CoV, are derived directly from normal lung tissues,
www.sciencedirect.com
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The SARS-CoV genome and functions of SARS-CoV innate immune antagonists. (a) The typical coronavirus genome size is quite large in comparison

to many other positive-sense RNA viruses; within the SARS-CoV genome of 29.7 kB at least ten genes with potential functions that modulate innate

immunity have been characterized (highlighted here in red). Like other members of the viral family Coronaviridae, SARS-CoV has a positive-sense,

single-stranded RNA genome that is amenable to manipulation using reverse genetic techniques [90]. In SARS-CoV the first open reading frame (ORF)

encodes the 16 nonstructural proteins that make up the viral replicase, while the ensuing ORFs encode four structural proteins that compose the virion,

as well as eight accessory proteins. The SARS-CoV accessory proteins share no homology to the accessory proteins of other human coronaviruses,

and while dispensable for replication in vitro, encode functions that probably impact viral pathogenesis in vivo [91]. While SARS-CoV was a novel virus

not previously recognized before the 2002 outbreak, other coronaviruses have been associated with disease in humans. Coronaviruses known to infect

humans include HCoV-HKU1, HCoV-OC43, HCoV-229E, and HCoV-NL63, which also cause respiratory infections but are generally much less severe

than SARS [92]. (b) Transcription and subsequent signaling of Interferon is vital for activating the antiviral response in host cells. Because of this, many

viruses (including SARS-CoV) encode proteins that antagonize the IFN response to viral infection. Of the SARS-CoV viral proteins listed here, eight

have been identified as Interferon antagonists and two have been implicated in the viral RNA capping machinery.

www.sciencedirect.com Current Opinion in Virology 2012, 2:264–275
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Figure 2
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IκB

(a) RLR family of innate immune receptors induce Type I interferon. The family of RIG-I Like Receptors (RLRs) contains three cytosolic RNA helicases

that recognize non-self RNA species resulting from viral replication [93]. The two signaling sensors within the RLR family are retinoic acid-inducible

gene I (RIG-I) and melanoma differentiation  associated factor 5 (MDA5). The third RLR, laboratory of genetics and physiology 2 (LGP2, not shown),

facilitates recognition  of viral PAMPs by RIG-I and MDA5, but is dispensable for their signaling [94]. RIG-I recognizes primarily 50ppp-RNA molecules

with secondary motifs of dsRNA or ssRNA of short length [95,96]. MDA5 recognizes longer dsRNA motifs than RIG-I [97]. Following binding of viral

RNAs, RIG-I and MDA5 interact with the mitochondrial membrane bound adaptor molecule MAVS (mitochondrial antiviral signaling protein, also

referred to as IPS-1, VISA, or CARDIF) to transduce the signal via complexes of kinases: the IKKe/TBK1 complex and the IKKa/IKKb/IKKg complex.

The IKKe/TBK1 kinases phosphorylate the transcription factors IRF3 and IRF7, which then form homodimers or heterodimers. Upon dimerization,

the transcription factors enter the nucleus to initiate transcription of Type I IFNs (IFN-a and IFN-b). While IRF3 is nearly ubiquitously expressed

in cells, IRF7 is an ISG typically expressed at low levels, so it is thought that IRF3 mediates transcription of the majority of early IFN expression.

Current Opinion in Virology 2012, 2:264–275 www.sciencedirect.com
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and contain the relevant epithelial cell types within

human airways for SARS-CoV infection, but HAEs are

difficult to procure and are highly heterogeneous [13,22].

Recently, the 2B4 cell line derived from a clonally

selected Calu-3 cell population with high expression of

ACE2 (the SARS-CoV receptor) was developed that

forms differentiated pseudostratified columnar epithelia

highly permissible to SARS-CoV infection. SARS-CoV

infection of 2B4 cells provides data on innate immune

responses within a biologically relevant and easily repli-

cated in vitro system [23��].

Small animal models of SARS-CoV infection have

benefits into the elucidation of innate immune patho-

genesis beyond cell culture systems due to their ability to

model the interaction of lung epithelium and immune

cell types within an infected organism. While hamsters

and ferrets have been considered for use as small animal

models of SARS-CoV infection, a robust mouse model has

been more vigorously pursued because of the relative

ease of genetic manipulation of the host, as well as greater

availability of immunological reagents [24–26]. SARS-

CoV epidemic isolates replicate in young mice but do

not cause clinical disease, limiting the use of these models

for pathogenesis studies [27,28]. SARS-CoV infected

aged mice (12 months) exhibit minor clinical illness,

but do not address pathogenic mechanisms associated

with SARS disease in senescent or non-senescent popu-

lations [29–31]. Infections using the mouse coronavirus

MHV-1 have also been proposed as models for SARS-

CoV infection [32]. Recently, mouse adapted SARS cor-

onaviruses (MA-SARS-CoV) have been developed by

serial passage through the lungs of mice yielding several

different MA-SARS-CoV strains [33,34]. Infection of 6-10

week old mice with SARS-CoV adapted by 15 serial

passages (MA15-SARS-CoV) causes morbidity and

mortality, viral replication in the lungs, and lung pathol-

ogy associated with mild SARS disease [33,34]. In

addition, MA-SARS-CoV infections of aged mice exhibit

exacerbated SARS disease that mimics the age-depend-

ent and ARDS phenotypes seen in humans [35,36�].
Currently, studies are underway to determine the
(Figure 2 Legend Continued) The IKKa/IKKb/IKKg kinases phosphorylate

Activation of NF-kB leads to transcription of proinflammatory cytokines, and

of ARDS [46]. SARS-CoV encodes proteins that antagonize RLR family signali

to induce interferon stimulated genes. The secretion of IFN-a and IFN-b mole
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stimulation before infection, it is a crucial pathway to preventing viral spread in
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MA15-SARS-CoV infection, demonstrating that STAT has important IFN indepe

mice infected with MA15-SARS-CoV was associated with the infiltration of imm

expression of inflammatory cytokines (IL-1, IL-6, IL-10, IL-12, and TNFa) and 

transcriptional regime responsible for fibrotic phenotypes within the lungs. Ad

compared to wild type or IFNAR�/� mice, leading to the conclusion that STAT

mice [80]. It remains unclear how STAT1 controls ISGs independent of IFNAR

pathogenesis.
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response of recombinant inbred lines of mice (known

as the Collaborative Cross) to MA15-SARS-CoV infec-

tion, utilizing Genome Wide Associate Studies to map

quantitative trait loci that contribute to in vivo pheno-

types (e.g. weight loss or lung pathology) [37�]. These

studies offer an unbiased approach to determining the

contributions of many different genes to the complex trait

of SARS-CoV disease, and could identify novel host

factors involved in SARS-CoV pathogenesis.

The use of primate models of SARS-CoV infection is

typically limited due to ethical concerns and expense.

However, infection of nonhuman primates with SARS-

CoV is a model more relevant to humans for testing of

drug treatments and vaccines. SARS-CoV replicates in

the lungs of primate species, including African green

monkeys, cynomolgus macaques, and rhesus macaques

[38]. Infection of cynomolgus macaques with SARS-CoV

replicates aspects of the human disease, including lung

pathology of diffuse alveolar damage (DAD) found in

humans [39]. Additionally, a comparison of SARS-CoV

infection of young adult cynomolgus macaques to aged

cynomolgus macaques found age-dependent suscepti-

bility to SARS disease resembling the same trend in

humans [40��]. More recently, it has been shown that

SARS-CoV causes increased severity of disease in African

green monkeys compared to cynomolgus macaques, and

that the increased lung injury is probably associated with

differential innate immune signaling [41�].

Host antiviral innate immune detection and
response to SARS-CoV infection
Innate immune signaling is the earliest differentiation of

pathogens from cellular molecules that alerts host cells to

the presence of invading viruses. Pattern Recognition

Receptors (PRRs), such as the RIG-I-Like Receptors

(RLRs, Figure 2a) and Toll-Like Receptors (TLRs,

Figure 3a and b) recognize Pathogen Associated Molecular

Patterns (PAMPs) from viral components or replication

intermediates, resulting in signaling cascades that initiate

an antiviral state in cells as a result of infection [42,43].

PRRs are distributed on plasma membranes, endosomal
 IkBa, targeting this repressor protein of NF-kB for degradation.

 NF-kB mediated transcription has also been linked to the pathogenesis

ng, shown here in red.(b) Interferon signals through the JAK-STAT pathway

cules from an infected cell leads to an autocrine and paracrine signaling

esulting in the activation of the JAK-STAT pathway. The JAK/TYK2 kinases

imers complexed with IRF9. The STAT complex translocates to the nucleus

h an antiviral state in the cell. Because neighboring cells can receive IFN

 the host. SARS-CoV also encodes proteins that antagonize the JAK-STAT

eptibility to SARS-CoV infection [98]. Although there were no differences in

s, viral titer, and lung pathology compared to wild type over the course of

ndent role in SARS-CoV infection [80]. Severe lung pathology in STAT1�/�
une cells and fibrotic lung response. The STAT1�/� dependent prolonged

chemokines (CCL2, CCL3, CCL4, CCL7, and CCL20), could be a

ditionally, ISG responses were significantly lower in STAT1�/� mice

1 dependent, IFNAR1 independent ISG expression was protective in these

 expression, or which ISGs have important potential roles in SARS-CoV
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membranes, and within the cytosol of host cells to ensure

maximal detection of viral PAMPs including nucleic acid

motifs, carbohydrate moieties, glycoproteins, lipoproteins

or other small molecules present within the viral life cycle,

but absent from normal cellular components.

RIG-I like receptor signaling

The RIG-I Like Receptors are cytoplasmic sensors that

detect viral RNA PAMPs in a wide range of cell types

(Figure 2a). The RLRs RIG-I and MDA5 are ISGs that

are transcribed during SARS-CoV infection in vitro
[23��]. MHV, another coronavirus, is recognized by

MDA5 in brain macrophages and microglial cells, and

by RIG-I and MDA5 in oligodendrocyte cells [44,45�].
Although it is not known whether SARS-CoV is recog-

nized by RLRs, MHV and SARS-CoV are likely to have

similar replication intermediates (putative RLR ligands),

so it is likely that SARS-CoV could be detected by the

same sensors. RLR signaling leads to the activation of

several transcription factors: IRF3, IRF7, and NF-kB.

IRF3and IRF7 initiate transcription of Type I IFNs

(IFN-a and IFN-b), important for an antiviral response.

NF-kB mediated transcription of proinflammatory cyto-

kines has been linked to the pathogenesis of ARDS [46].

In vitro SARS-CoV infections have demonstrated that the

expression of NF-kB generated transcripts, such as IL-6

and IL-8, happens as early as 12 h post infection, while

IRF3/IRF7 transcription of Type I IFNs is delayed until

48 h post infection [23��]. Similarly, in the macaque

model of age-dependent SARS-CoV pathogenesis NF-

kB induced genes are more highly expressed in aged

macaques that have significantly increased lung injury

compared to young adult macaques where higher expres-

sion of IFNs was observed [40��]. While the correlation of

severe SARS-CoV disease with different transcriptional

regimes is promising, the key to finding determinants of

increased SARS-CoV pathogenesis may be how innate

immune sensing mechanisms initiate transcription at

critical junctures during infection and which types of

innate immune sensing are protective.

Toll-Like Receptor signaling

The Toll-Like Receptor family of membrane bound

sensors also recognizes viral PAMPs, although no TLR

has been directly implicated in the recognition of SARS-

CoV. On the surface of cells, TLR1, TLR2, TLR4, and

TLR6 have been implicated in the recognition of PAMPs

from other viruses (Figure 3a), while the endosomal

receptors TLR3, TLR7, TLR8, and TLR9 detect viral

nucleic acid PAMPs (Figure 3b). TLR4 recognizes viral

glycoproteins of RSV, is expressed on the surface of lung

epithelium, is a potential entry co-factor for respiratory

viruses, and has been identified as a protective host factor

against MHV-1 in a respiratory model of SARS disease

[47–49]. Transcription of TLRs increased in mice follow-

ing infection with MA15-SARS-CoV and in human

dendritic cells infected with SARS-CoV [50��,51].
Current Opinion in Virology 2012, 2:264–275 
Additionally, the activation of TLR3 has protective

effects in a mouse model of SARS-CoV infection [52].

While there are many TLRs that recognize viral PAMPs,

they signal through the common adaptor molecule

MyD88, with the exception of TLR3 that uses the adaptor

TRIF (Figure 3a and b). Infection of MyD88�/� mice

established a protective role for TLR adaptors in MA15-

SARS-CoV infection: while wild-type mice experienced

transient weight loss, from which they recovered after 7

days, MyD88�/� mice lost significantly more weight, and

all of the MyD88�/�mice died by day 6 post-infection [53].

Additionally, higher viral loads, severe lung pathology and

differences in cytokines and chemokines were observed in

MyD88�/� mice compared to wild-type mice [53]. Cur-

rently, studies are in progress to determine the roles of

other TLR adaptor proteins (TRIF, MAL, and TRAM) in

SARS-CoV infections, as well as what TLR(s) or TLR

ligand(s) contribute to the protective role of MyD88.

Innate immune signaling effector molecules
and SARS-CoV pathogenesis
Following detection of virus by the host cells, the pro-

duction of cytokines, chemokines, and ISGs continues

the innate immune response to viral infection by mediat-

ing inflammation and cellular antiviral processes. The

importance of these effector responses to the prognosis

of SARS patients is underscored by the observation that

IFN (Type I and Type II IFN), chemokine (CXCL10

and CCL2), and ISG (CIG5, MXA, IFITM1, IFIT3)

hyperimmune responses persisted in patients who suc-

cumbed to SARS, indicating that differences in expres-

sion patterns of innate immune effector molecules may

be a determinant of SARS disease outcome [18].

Interferon

Interferons are potent cytokines of critical importance in

controlling viral infections and priming adaptive immune

responses [54]. Several studies of antiviral treatments

tested against SARS-CoV replication show administration

of Type I IFN inhibits SARS-CoV growth in cell culture

as well as viral replication in cynomolgus macaques and

mouse models [39,40��,55–59]. Despite the potential

importance of IFNs in controlling SARS-CoV replication,

infection of mice deficient in Type I, II, or III IFN

receptors showed minimal phenotypic difference in

weight loss, viral titer, lung pathology, and mortality from

wild-type mice in the MA15-SARS-CoV model [60�].
However, mice deficient in STAT1, a critical transcrip-

tion factor for IFN signaling (Figure 2b), were signifi-

cantly more susceptible to MA15-SARS-CoV infection

than wild-type or IFNAR1�/�mice [60�]. Transcriptional

analysis from these studies showed that ISGs were

induced even in the absence of IFNAR1, demonstrating

that there may be compensatory mechanisms through

other innate immune signaling to protect against severe

SARS-CoV disease in the absence of IFN [50��]. In the

SARS-CoV infection model, mice deficient in Type I,
www.sciencedirect.com
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Figure 3
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Pathogen associated molecular pattern sensing by Toll-Like Receptors. (a) In the endosomal compartment, TLRs recognize viral nucleic acid PAMPs: TLR3

recognizes dsRNAs, TLR7/8 recognizes ssRNAs, and TLR9 recognizes CpG DNA motifs. (b) On the surface of cells, TLR2 and TLR4 are known to recognize

viral glycoproteins [47,99]. TLR2/6 heterodimers help to activate the innate immune response to RSV, though the viral PAMP recognized has not been

determined [100]. TLR1/2 heterodimers have been shown to recognize viral glycoproteins, though their potential role in respiratory virus infection has not

been determined [99]. While there are many TLRs that recognize viral PAMPs, they signal through common adaptor molecules, including MyD88, MAL,

TRAM, and TRIF. The TLR adaptor molecules signal through the IKKe/TBK1 complex and the IKKa/IKKb/IKKg complex similarly to RLRs, but can also

recruit an IRAK-1/IRAK4/TRAF6 complex capable of activating the transcription factors IRF3, IRF7, and NF-kB. Activation of these transcription factors

leads to the transcription of Type I IFNs and proinflammatory cytokines. Due to the considerable crosstalk between TLR and RLR signaling, it is difficult to

discriminate between transcriptional products generated by the two sensor families, but it is likely that both play an important role in the innate immune

response to SARS-CoV infection.

www.sciencedirect.com Current Opinion in Virology 2012, 2:264–275
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Type III, or Type I and Type III IFN receptors had

slightly higher levels of viral replication in the lungs [61].

In 2B4 cells expression of Type III IFN was detected

24 h earlier than Type I IFN transcripts, demonstrating a

delay in Type I IFN signaling and a potentially protective

role of Type III IFN following SARS-CoV infection

[23��]. While IFNs continue to be an attractive potential

antiviral strategy if SARS were to re-emerge, their role as

a protective component of the innate immune response

during SARS-CoV infection still needs additional inves-

tigation, particularly into protective innate immune

mechanisms that occur in the absence of IFN signaling.

Cytokines, Chemokines, and ISGs

Proinflammatory cytokines and chemokines (many of

which are ISGs) may be part of a necessary initial immune

response to pathogens, but exacerbated expression of

these factors is associated with immunopathology and

ARDS [46,62]. In vitro studies found that SARS-CoV

infection initiates a proinflammatory cytokine response

at 24 h post infection, but that IFNs and ISGs are delayed

in expression until 48 h post infection [23��]. Although

the consequences of the timing of these signals are not yet

understood, SARS-CoV infection of susceptible aged

mice leads to elevated levels of proinflammatory cyto-

kines with ARDS association, including TNFa, IL-6, and

IL-1b [30,31]. Chemokine receptors CCR1, CCR2, and

CCR5 have protective roles during MA15-SARS-CoV

infection in the mouse model as well as SARS-CoV in-

fection of human DCs, indicating the importance of cell

recruitment in controlling SARS-CoV infections [51,53].

Transcriptional profiles of ISGs associated with increased

SARS-CoV disease have been described in several model

systems, but the consequences of ISG signaling responses

to SARS-CoV infection has not been characterized

[23��,31,40��,41�,50��]. Although it is known that antiviral

ISGs of the IFITM family restrict SARS-CoV entry into

host cells and several ISGs such as MxA, OAS1, RNaseL,

PKR, IFIT, Viperin, and TRIM5a have defined func-

tions in the context of other viral infections, these are only

a subset of this large family of molecules, most of which

have antiviral properties that are not yet well understood

[63��,64]. Additional studies to determine the crucial

ISGs that control SARS-CoV infection or contribute to

SARS disease could be exploited for the development of

antiviral therapies. Extant reagents to study the over-

expression of ISGs singly and in combination could

determine which ISGs are effective at initiating an anti-

viral state against SARS-CoV infection [65��].

Modulation of innate immune response by
SARS-CoV: evasion of innate immune
detection
Evasion of innate immune responses to SARS-CoV in-

fection requires avoidance of detection by cellular PRRs.

During the SARS-CoV replication cycle, the segregation

of viral dsRNA intermediates in the interior of Double
Current Opinion in Virology 2012, 2:264–275 
Membrane Vesicles (DMVs) may potentially shield viral

PAMPS from recognition by cytosolic PRRs [66,67]. It is

unknown whether small viral ssRNA or dsRNA degra-

dation products are also sequestered within DMVs or can

be sensed by PRRs. The lack of a 50cap distinguishes viral

mRNAs from other eukaryotic mRNAs, and many viruses

(including SARS-CoV) have evolved mechanisms to mimic

host capping machinery. In vitro capping of SARS-CoV

RNAs requires nsp14 and an nsp16/nsp10complex [68�,69].

The guanine-N7-methyltransferase activity of SARS-CoV

nsp14 is the initial step to building an RNA cap that is

structurally similar to the RNA cap used by the host,

making it more difficult for the host to discriminate viral

non-self RNAs from self mRNAs [68�,70]. Additionally,

nsp16 of SARS-CoV has been identified as a 20-O-methly-

transferase capable of modifying the cap of viral RNAs,

which seems to be of particular import in evading recog-

nition by host PRRs such as MDA5, as well as host ISGs

such as IFIT family members IFIT1 and IFIT2 [71,72��].

Strategy of antagonism of innate immune
molecules by SARS-CoV: block IFN
To counter innate immune signaling, SARS-CoV encodes

eight proteins that antagonize the IFN response to pre-

vent activation of antiviral effectors in host cells (Figures

1b and 2a, b).

Nonstructural proteins

The first nonstructural protein SARS-CoV nsp1 antagon-

izes Type I IFN by three mechanisms: inactivation of host

translational machinery, degradation of host mRNAs, and

inhibition of phosphorylation of STAT1 [73,74,75�]. While

nsp1 mediates host mRNA degradation, SARS-CoV

mRNAs are not susceptible to the cleavage or subsequent

degradation [75�]. Part of the third nonstructural protein,

SARS-CoV PLP is a papain like protease that antagonizes

IFN by blocking phosphorylation IRF3 [76]. PLP prevents

IRF3 phosphorylation in cell culture but not with purified

components of the signaling pathway, indicating that a

direct interaction between PLP and IRF3 does not take

place [77]. More recently, findings that PLP interacts with

STING resulted in a proposed mechanism of IFN

antagonism by disruption of the signaling complex that

leads to phosphorylation of IRF3 [78]. PLP also disrupts

NF-kB signaling in addition to IRF3 signaling, possibly by

a similar mechanism [77]. In addition to SARS-CoV nsp1

and PLP, SARS-CoV nsp7 and nsp15 have both been

identified as potential IFN antagonists, but are not well

described [77]. The majority of the SARS-CoV nonstruc-

tural proteins are required for replication, including those

that have been identified as IFN antagonists. Their essen-

tial functions in viral replication may be due at least partly

to their innate immune modulatory functions.

Structural proteins

In addition to functioning as components of the SARS-

CoV virion two structural proteins antagonize IFN
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signaling. The Nucleocapsid (N) protein of SARS Co-V

is capable of blocking Type I IFN when induced by

Sendai virus or polyI:C, but not upstream signaling

components such as RIG-I, MDA5, MAVS, IKKe,

TBK1 or TRIF, indicating that N exerts its effects

before these signaling mediators [79�,80]. Additional

studies of MHV Nucleocapsid identified IFN antagon-

ism activity through RNaseL mediated host translation

shutoff, but this has not yet been shown with SARS-

CoV N [81]. The SARS-CoV Membrane (M) protein

blocks transcription of IFN-b when stimulated by

dsRNA as well as components of the RIG-I signaling

pathway including RIG-I, MAVS, IKKe, and TBK1, but

not the transcription factor IRF3, suggesting that the

block in signaling is prior to IRF3 initiation of tran-

scription [82]. SARS-CoV M also co-immunoprecipi-

tated with RIG-I, IKKe, and TBK1, suggesting that

SARS-CoV M interacts with a complex formed by these

proteins as a mechanism for disrupting IFN-b transcrip-

tion. SARS-CoV M was not identified as an IFN

antagonist by the Venezuelan Equine Encephalitis

Virus Replicon or Newcastle Disease Virus-GFP

screens, demonstrating the need for multiple

approaches to identify all of the IFN antagonist

proteins within the SARS-CoV genome [80,83]. Struc-

tural components of the SARS-CoV virion acting as

antagonists of IFN may be important for blocking

innate immune responses immediately upon introduc-

tion of the virion into the cell; however, the temporal

nature of antagonism of IFN signaling by SARS-CoV is

not yet well understood.

Accessory proteins

SARS-CoV encodes eight accessory proteins that share

no homology with proteins from other human corona-

viruses and are dispensable for viral replication [84,85].

SARS-CoV ORF3b protein was identified as an antagon-

ist of Type I IFN capable of inhibiting RIG-I and

MAVS mediated induction of IFN-b by the transcrip-

tion factors IRF3 and NF-kB [80,86]. However, ORF3b

does not inhibit TNFa mediated activation of NF-kB

transcription, leading to speculation that the disruption

of NF-kB signaling is specific for induction by the RLRs

[86]. SARS-CoV ORF3b temporally distributes to the

mitochondrial outer membrane, indicating that the

mechanism of IFN antagonism may involve MAVS,

also located on the mitochondria [86]. SARS-CoV

ORF6 protein antagonizes IFN by inhibiting signaling

of the JAK-STAT pathway downstream of IFNAR by

blocking nuclear translocation of the transcription factor

STAT1 [80,83,87]. ORF6 binds to karyopherin-a2, and

tethers karyopherin-b1 on internal membranes, disrupt-

ing formation of the complex of proteins associated with

the nuclear import of STAT1 [87]. The C-terminus of

ORF6 interferes with proteins with NLS-signals, dis-

rupting the classical nuclear import pathway [88,89].

The disruption of nuclear transport is specific to a
www.sciencedirect.com 
nuclear import pathway, indicating that there are poten-

tially many other transcription factors that modulate

innate immunity that could be affected by SARS-CoV

ORF6.

Many of the SARS-CoV gene products that modulate

IFN signaling have been identified by overexpression in

cell culture using individual viral components, a system

that may not accurately reflect innate immune signaling

that occurs during SARS-CoV infection in vivo.

Additional studies are needed to elucidate IFN antagon-

ism by these proteins in the context of infection, particu-

larly because SARS-CoV proteins can form large

complexes during viral infection, and the role of these

complexes in potentially modulating innate immune

responses is not yet known. Because of the complicated

replication scheme utilized by coronaviruses like SARS-

CoV, some viral proteins may be temporally expressed at

different levels during viral infection or compartmenta-

lized in different areas of the cell, which are factors that

still need to be investigated in the context of how viral

proteins affect innate immune signaling.

SARS-CoV pathogenesis: innate immune
factors still at large
SARS-CoV is a highly pathogenic respiratory virus where

the mechanisms of severe disease are largely mediated by

innate immune pathways. Excellent models exist for

studying SARS-CoV pathogenesis that replicate findings

from the SARS outbreak in humans: cell lines for studying

in vitro responses in human lung epithelial cells, mouse

models of fibrosis and GWAS mapping of traits, as well as

primate models of comparative species infection and age-

dependent phenotypes. Due to the development of these

models, SARS-CoV is uniquely suited for a systems biology

based platform to compare respiratory virus infection in

multiple relevant model systems as an unbiased approach

to identify novel host modulators of innate immunity in the

context of viral infections. In addition, SARS-CoV encodes

many proteins that antagonize the host’s Interferon

response, but questions remain about the effects of these

antagonists of viral pathogenesis during SARS-CoV infec-

tion in vivo. Of the currently well-described innate

immune signaling pathways, there is evidence to support

that RLR and TLR sensors detect and respond to SARS-

CoV infection, but no mechanism or SARS-CoV ligand for

these receptors has been determined. Unique gene tran-

scription signatures associated with defined temporal

expression of proinflammatory cytokines and ISGs in

models of severe SARS-CoV disease have been described,

but few of these genes have been evaluated for their role in

SARS pathogenesis or the host antiviral response to SARS-

CoV, which could help identify novel immunomodulatory

therapies in the event of SARS-CoV re-emergence. In

future studies, SARS-CoV could be particularly useful as

a comparative model for Influenzavirus or RSV infection to

evaluate common targets for antiviral strategies as well as
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unique mechanisms of innate immune pathogenesis across

multiple virus families with similar tropisms.
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