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A B S T R A C T   

To enhance therapeutic approaches, we created a distinctive pattern utilizing the cell demise 
indicator (CDI) to predict the effectiveness of immunotherapy in individuals with bladder car-
cinoma (BLCA). Hub prognostic CDIs were identified from the TCGA database using differential 
gene expression and survival analysis, encompassing 763 genes across 13 death modes. The 
subtype assessment was employed to evaluate the impact of these genes on the prognosis and 
immunotherapeutic outcomes in patients with BLCA. The LASSO regression method was used to 
identify significant CDIs, while Cox regression and nomogram analyses were conducted to explore 
the impact of CDIs on prognosis. CHMP4C and GSDMB were selected as the hub genes for the 
following research. Subsequently, These two central genes underwent further investigation to 
explore their association with immunotherapy, followed by an analysis of their potential regu-
latory network. Subtype analysis showed that these CDIs were significantly associated with the 
prognosis and immunotherapy of BLCA patients. The regulatory network in BLCA was evaluated 
through the establishment of the lncRNA XIST/NEAT1-CDIs-miR-146a-5p/miR-429 axis. Immu-
nohistochemical analysis revealed a significant up-regulation of CHMP4C in bladder cancer tis-
sues, which was strongly associated with an unfavorable prognosis for BLCA patients. Moreover, 
our findings provide compelling evidence that CHMP4C plays a pivotal role in promoting BLCA 
progression through the activation of the epithelial-mesenchymal transition (EMT) pathway. 
These findings highlight the negative impact of CHMP4C on BLCA patient prognosis, while also 
providing insights into the oncogenic mechanisms and immunotherapy in which CHMP4C may be 
involved.   
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1. Introduction 

Comprehensively studying all modes of cell death could enhance our understanding of how tumor cells evade death. Both normal 
and tumor cells experience two conditions: survival and death. We hope that normal cells will survive while abnormal cells, such as 
tumor cells, will die. Therefore, the investigation of tumor cell death was of paramount importance in safeguarding human well-being. 
Accidental cell death (ACD) and regulated cell death (RCD) are the two categories of cell demise. ACD refers to uncontrolled cell death, 
while RCD involves controlled methods of cell death [1]. In this research, we studied 13 modes of cell death: apoptosis [2], necroptosis 
[2], pyroptosis [3], ferroptosis [4], entotic cell death [5], netotic cell death [5,6], parthanatos [5], lysosome-dependent cell death [5], 
autophagy [2], immunogenic cell death [7], alkaliptosis [8,9], oxeiptosis [10–12] and cuproptosis [13]. 

Globally, bladder cancer (BLCA) was one of the top 10 leading cancers, with approximately 549,000 new diagnoses and 200,000 
fatalities in 2018 [14]. BLCA faced a continuous risk of recurrence and progression that can ultimately lead to patient death [15]. In the 
past few decades, traditional treatments for BLCA have included surgical resection, intravesical perfusion, systemic chemotherapy, and 
radiotherapy. Ongoing advancements in tumor microenvironment and immunotherapy research are being complemented by studies 
on sequencing and genetic expression, which have unveiled a plethora of DNA, RNA, and protein biomarkers in BLCA that have gained 
significant popularity in recent years [16,17]. Nevertheless, the outlook for individuals with BLCA remains dissatisfactory. Despite 
numerous studies conducted on BLCA, the overall incidence and mortality rates of BLCA remained unchanged in the past 20 years [18, 
19]. Therefore, it is urgent for us to construct new prognostic models and identify therapeutic targets for BLCA. 

A pan-tumor study, which included apoptosis, autophagy, ferroptosis, necroptosis and pyroptosis, demonstrated a significant as-
sociation between cell death and cancer prognosis as well as the tumor microenvironment [20]. In the previous study by Xu et al., the 
effects of apoptosis, ferroptosis, and necrosis on the prognosis and immunotherapy of BLCA were proven [21]. Additionally, Zhang 
et al. published a paper on pan-programmed cell death in BLCA which involved six modes of cell death: apoptosis, autophagy, 
cuproptosis, ferroptosis, necroptosis and pyroptosis. Their model’s features were demonstrated to improve the accuracy of bladder 
cancer prognosis prediction [22]. In summary, we observed an association between BLCA and RCD, although the precise mechanism of 
cell death underlying this relationship remains elusive. Notably, BLCA did not investigate antotic cell death, netotic cell death, 
lysosome-dependent cell death, alkaliptosis, or oxeiptosis. Hence, a cell demise indicator (CDI) was formulated to evaluate the outlook 
and immunotherapy in individuals diagnosed with BLCA (Fig. 1). 

2. Materials and methods 

2.1. Selection and application of database 

We obtained the RNA sequencing (RNA-seq) data and accompanying clinical information for BLCA from the Genomic Data 
Commons (GDC) data portal (TCGA), which is located at https//portal.gdc.cancer.gov/. After removing six duplicate tumor samples 
during data processing, there were a total of 433 BLCA samples combined, consisting of 408 tumor samples and 19 normal samples. 
Due to the notable distinction between tumor and normal samples, we obtained data from 21 bladder samples considered as normal 
from the GTEx V8 release version (https://gtexportal.org/home/datasets). 

2.2. Identification of 12 prognostic genes 

We confirmed 13 modes of death and identified 763 genes by searching previous studies or public databases (Supplementary 
Table 1). The limma R package was utilized to identify differentially expressed genes (DEGs) among the 763 CDIs that were identified, 
considering a P value < 0.05 and fold change >2. Prognosis evaluation was conducted using Kaplan-Meier (KM) survival analysis. 

2.3. Subtype analysis 

The consistency analysis was conducted using the R package called ’ConsensusClusterPlus’. ClusterAlg ‘hc’ with innerLinkage 
‘ward.D2’ was used to draw 100 times from the 80 % of the total samples, with a maximum of 6 clusters. The R software was utilized to 
analyze the mRNA that was expressed differentially, employing the limma package. The threshold for the differential expression of 
mRNAs was defined as having an Adjusted P value less than 0.05 and a Log 2(Fold Change) greater than 1 or less than − 1. Moreover, 
the ClusterProfiler package (3.18.0 version) was utilized in R to examine the GO function of potential targets and enhance the KEGG 
pathway. The boxplot was drawn using the R package called ‘ggplot 2’. We obtained and visualized the mutation data using the 
maftools package in the R software. We utilized immuneeconv, an R software bundle that incorporated three state-of-the-art algo-
rithms: TIMER, xCell, and CIBERSORT. To evaluate the immunological connection of the CDIs and anticipate the potential reaction to 
immune checkpoint blocking therapy (ICB), the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was utilized to extract the 
expression values of the 8 genes relevant to immune checkpoints. 

2.4. Construction of a new prognostic model 

The R software package ‘glmnet’ was used to perform LASSO analysis. Based on the findings from the LASSO regression analysis, a 
new risk score was formulated, and individuals diagnosed with BLCA were categorized into high-risk and low-risk groups based on the 
median threshold. The KM curve provided P-values and hazard ratios (HRs) along with 95 % confidence intervals (CIs) through log- 
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Fig. 1. Flow chart. The full text was displayed in the flow chart.  
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rank tests and univariate Cox proportional hazards regression. To assess the forecast accuracy of the risk score, the R software package 
called ‘timeROC’ was employed. Riskscore = (− 0.1668) * NTF3 + (0.0227) * CRYAB + (0.0219) * HSPB8 + (0.0082) * DCN +
(− 0.0762) * CHMP4C + (0.0025) * NGF + (0.0712) * TRIB3 + (0.0677) * DAPL1 + (− 0.2182) * GSDMB. 

2.5. Identification and immune relevance of the hub CDIs 

Based on the weight of all death genes, GSDMB and CHMP4C were selected as the next research targets. The R software package 
“forestplot” was used to generate a forest plot displaying the P value, HR, and 95 % CI of each variable. Using the outcomes of 
multivariate Cox proportional hazards analysis, a nomogram was created to forecast the overall survival (OS) for 1, 3, and 5 years. The 
R software package “pheatmap” was used to display the correlation analysis between the hub CDIs and the six immune cells. The R 
software package “estimate” was utilized to estimate the relationship between the 2 hub genes and the 3 immune scores (Immune-
Score, StromalScore, and ESTIMATEScore), respectively. 

2.6. Construction of competing endogenous RNA (ceRNA) network and GSEA for the CDIs 

To further explore the possible mechanisms of hub CDIs in BLCA, we predicted the upstream and downstream regions of CHMP4C 
and GSDMB. To assess miRNAs linked to these CDIs, we employed the miRTarBase and TarBase V.8, which are databases containing 
experimentally validated microRNA-target interactions. StarBase v2.0 and LncBase Predicted v.2 were utilized to investigate the as-
sociation between lncRNA and miRNAs after validating the significant miRNAs. We estimated the expression levels of identified 
miRNAs and lncRNAs in BLCA and normal tissues using the wilcox.test method. Additionally, GEPIA was utilized to present the KM 
curve of the predicted lncRNA. Pathway enrichment comparison was conducted using Gene Set Enrichment Analysis (GSEA) to assess 
the differences between expression groups of the central CDIs, which were categorized based on the median. 

2.7. Immunohistochemistry 

Paraffin sections were prepared from samples obtained from 100 patients. The chips underwent dewaxing, antigen retrieval, 
endogenous peroxidase blocking, primary and secondary antibody incubation, staining, dehydration, mounting, and air drying. 
Antibody CHMP4C (proteintech, 1:200), E-cadherin (Fuzhou Maixin Biotechw, 1:200) and N-cadherin (Fuzhou Maixin Biotech, 1:200) 
were further used for immunohistochemistry. The antibody score was calculated by multiplying the staining intensity with percentages 
that were statistically scored using the quartile method. 

2.8. Cell culture, Western blot and transwell assay 

The 5637 cell line (sunncell, SKU: SNL-036, human) was cultured in RPMI-1640 medium with 10 % fetal bovine serum and 1 % 
penicillin/streptomycin solution in a thermostatic cell incubator. The cells were transfected by lentivirus (from Shanghai GENE 
biology). WB followed the routine steps of electrophoresis, membrane transfer, blocking, antibody incubation, and visualization. 
CHMP4C antibody (abcam, 1:1000), E-cadherin (proteintech, 1:1000) and N-cadherin (proteintech, 1:1000), β-Actin antibody (CST, 
1:1000) and second antibody Rabbit (Absin, 1:2000) were used for Western Blot. 

Lentivirus-transfected cells were seeded in chambers on 24-well plates at a density of 50,000 cells per well. The upper chamber was 
filled with 200 μL of 1640 medium, while the lower chamber contained 500 μL of 10 % fetal bovine serum. The plates were incubated 
in a cell incubator for 24 h. Subsequently, the chambers were fixed with 4 % paraformaldehyde and stained with crystal violet. After 
drying, the cells on the outer surface of the chamber were counted under a microscope. 

2.9. Statistical analysis 

R software version v4.0.3 was utilized for all operations conducted with the R package. The information utilized in this research 
was acquired from publicly accessible databases and is available for download in its original form from these resources. The data used 
were standardized TPM, which showed a distribution similar to the normal distribution. Hence, both the t-test and log-rank test could 
be used to assess the disparities between the two groups. Data sets were processed without randomization. Levels of significance are 
indicated by asterisks (*p < 0.05, **p < 0.01, ***p < 0.001). 

3. Results 

3.1. Screening and functional analysis of 763 CDIs were conducted 

Initially, we compared the mRNA expression levels of these 763 CDIs in BLCA samples and normal samples obtained from the TCGA 
database. The heat map in Fig. 2A and the volcano plot in Fig. 2B showcased the 92 DEGs. According to the KEGG pathway analysis, 
these DEGs were mainly involved in Endometrial cancer, the ErbB signaling pathway, and Chronic myeloid leukemia (as depicted in 
Fig. 2C). The analysis of gene ontology biological process (BP) revealed that the CDIs were primarily associated with the intrinsic 
apoptotic signaling pathway triggered by DNA damage, the promotion of autophagy, and the control of cysteine-type endopeptidase 
activity (Fig. 2D). GO cellular component (CC) analysis revealed that CDIs were significant correlated to multivesicular body, plasma 

M. Gao et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e33200

5

membrane raft and caveola (Fig. 2E). The analysis of GO Molecular function (MF) was conducted to demonstrate the CDIs primarily 
associated with the binding of protein phosphatase 2A, binding of neurotrophin receptors, and inhibitory activity of protein serine/ 
threonine kinases (Fig. 2F). 

3.2. Screening the 12 prognostic CDIs 

To explore whether CDIs affected the prognosis of BLCA, forest plots (Fig. 3A) and KM survival analysis (Fig. 3B) were conducted. 
The results showed that only 12 CDIs had statistical significance. The poor prognosis in BLCA patients was found to be correlated with 
elevated levels of CRYAB, HSPB8, DCN, NGF, TRIB3, MYC, TFAP2A, DAPLA, and TREM2. Additionally, the low expression levels of 
NTF3, CHMP4C and GSDMB were also associated with poor prognosis in BLCA patients. Nevertheless, it was discovered that in-
dividuals exhibiting increased expression of CHMP4C and GSDMB had a more favorable prognosis than initially anticipated. 

3.3. Subtypes analysis of the 12 CDIs 

First, we used a Venn diagram to illustrate the relationship between these 12 CDIs and 13 death modes. As depicted in the figure, 
the key CDIs were associated with autophagy, pyroptosis, ferroptosis, and necroptosis (Fig. 4A). Furthermore, we conducted a cor-
relation analysis among these 12 genes and identified that CRYAB and DCN as having the highest correlation coefficient (Fig. 4B). 

To further study the relationship between these 12 key genes and BLCA, we conducted a subgroup analysis to divide genes into CDI- 
low and CDI-high subtype. Based on the optimal result, we determined that K = 2 (Fig. 4C and D). Furthermore, a heatmap was 
employed to exhibit the levels of expression for the 12 CDIs in both CDI-low and CDI-high subtypes (Fig. 4E). In conclusion, we 
assessed the influence of these two categories on the outlook of BLCA patients. Fig. 4F displayed that individuals in the CDI-high 
subtype experienced unfavorable outcomes in terms of overall survival, progression-free survival, and disease-specific survival. 
Additionally, we found associations between the two subtypes with age and TNM stage in BLCA patients (Supplementary Table 2). 

Fig. 2. Screening and functional analysis of DEGs. (A) The heatmap displays the 92 target genes that are differentially expressed. (B) Display a 
map of volcanoes representing the top 10 genes that are expressed differentially. KEGG pathway (C), BP (D), CC (E) and MF analysis (F) were 
performed to exhibit the top 20 relevant pathways based on the DEGs. 
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3.4. DEGs, functional and mutation analysis in the subgroups 

We analyzed the differential gene expression between CDI-low and CDI-high subtype, and found that 929 genes were up-regulated 
while 424 genes were down-regulated. The results were presented in the volcano plot (Fig. 5A). Additionally, we utilized a heat map to 
illustrate the relationship between these two subgroups and clinical samples (Fig. 5B). The bubble chart displayed the results of 20 up- 
regulated and down-regulated KEGG pathways, as well as GO analysis (Fig. 5C–F). The mutation analysis results showed that these 10 
genes (TP53, TTN, KMT2D, MUC16, RB1, ARID1A, PIK3CA, KDM6A, KMT2C and EP300) have the highest mutation rate among CDI- 
high subtype (Fig. 6A), while these 10 genes (TTN, TP53, KDM6A, MUC16, KMT2D, ARID1A, FGFR3, SYNE1, PIK3CA and HMCN1) 
have the highest mutation rate among CDI-low subtype (Fig. 6B). These results indicate that TP53 and TTN may be of great significance 
in inducing tumor cell death. 

3.5. The relationship between the subtypes and immune infiltration 

Initially, we employed the ‘xCell’ technique to distinguish two subsets of CDIs that exhibited a correlation with 24 distinct cate-
gories of immune cells (Fig. 7A). Furthermore, employing the ‘CIBERSORT’ technique, we discovered that CDIs were associated with a 
diverse range of 15 immune cell types (as depicted in Fig. 7B). Moreover, through the utilization of the ‘Timer’ technique, we linked the 
subcategories of CDIs with T lymphocyte CD4+, T lymphocyte CD8+, Neutrophil, Macrophage, and Myeloid dendritic cell (Fig. 7C). 
Furthermore, a connection was discovered between the subcategories of CDIs and eight immune checkpoint molecules, namely CD274, 
CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT, and SIGLEC15 (as shown in Fig. 7D). Using the TIDE score, the response of the two 
subtypes to an inhibitor that targets the anticipated immune checkpoint was predicted. The results showed that patients in the CDI- 
high subtype had poor immunotherapeutic efficacy and shorter survival after ICB treatment (Fig. 7E). Furthermore, individuals in the 
CDI-high subtype exhibited decreased tumor stemness scores, suggesting a decline in cellular stemness among this cohort (Fig. 7F). 

Fig. 3. Screening of the prognostic genes. (A) Prognostic forest map of 92 identified genes. (B) KM curves of 12 prognostic significantly CDIs.  
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3.6. Construction of the new CDI-related prognostic model 

The LASSO method was used to reduce dimensionality and construct a prognosis model based on the 12 prognostic genes 
mentioned above (Fig. 8A and B). The risk score was categorized into high-risk and low-risk groups based on the median value. Patients 
in the high-risk group had decreased survival rates and adverse outcomes compared to those in the low-risk group (Fig. 8C). We 
examined the correlation between the risk model and prognosis of BLCA patients using this risk model group as a basis. It was found 
that individuals with an increased risk experienced an unfavorable prognosis (Fig. 8D, P < 0.001; HR = 2.092; 95 % CI, 1.54–2.843; 
Median time = 1.8 years in H vs. 6.5 years in L). ROC curves were generated to predict prognostic significance at one-year, three-year, 
and five-year intervals with corresponding AUC values of 0.694, 0.681, and 0.702 (Fig. 8E). 

3.7. Establishment of a predictive nomogram 

We selected CHMP4C and GSDMB as our research targets based on their weight in the prognostic model formula. Through uni-
variate analysis, we assessed the impact of CHMP4C, GSDMB, age, gender, T stage, TNM stage and grade on the prognosis of BLCA 
patients (Supplementary Fig. 1A). The findings of our study indicated that CHMP4C, GSDMB, patient age, tumor stage (T stage), and 
TNM stage were correlated with an unfavorable prognosis among individuals with BLCA). Based on the multivariate analyses (Sup-
plementary Fig. 1B), GSDMB, age, and TNM stage were identified as independent factors contributing to unfavorable prognosis in 
BLCA patients. The predictive nomogram suggested that the model including GSDMB can estimate survival rates for 1, 3, and 5 years 
(Supplementary Fig. 1C), while presenting a calibration curve for the diagram (Supplementary Fig. 1D). 

3.8. Relevance of the hub CDIs and immunity 

Firstly, we investigated whether the presence of the 2 CDIs in BLCA contributes to immune cell infiltration. In addition, we 
examined the correlation between these two CDIs and the tumor immune microenvironment (TIME). To demonstrate their strong 
association with immunity in BLCA, we utilized ImmuneScore, StromalScore, and ESTIMATEScore (Fig. 9A–C). 

The evaluation of the correlation between central hub CDIs and immune checkpoints involved the utilization of CD274, CTLA4, 
HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT, and SIGLEC15. The results indicate a significant correlation between the expression of 
CHMP4C or GSDMB and immune checkpoints. The low expression group of CHMP4C exhibited higher levels of immune checkpoints 
(CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, and TIGIT) compared to the high expression group. However, SIGLEC15 showed 
the opposite trend in both groups. The comparison also included a normal group of patients (Fig. 9D). Furthermore, the normal group 
exhibited no notable disparity in the expression of GSDMB and PDCD1 (Fig. 9E). The low expression of CDIs in the hub, as shown 
previously, indicated a poor prognosis. It was hypothesized that the group with decreased expression had a higher presence of immune 
checkpoint molecules, enabling the tumor to evade the immune system. Subsequently, we utilized the TIDE algorithm to evaluate the 
impact of ICB on both groups. The findings revealed that the group with lower expression levels exhibited a greater TIDE score for 
CHMP4C and GSDMB, suggesting a reduced survival duration following ICB therapy compared to the group with higher expression 
levels (Fig. 9F and G). The outcome aligns with our earlier deduction. 

3.9. Building of the regulatory network for CHMP4C and GSDMB 

In order to gain a deeper understanding of the hub CDIs in BLCA, we created a network that showcases the interactions between 
lncRNA and microRNA. By searching the databases miRTarBase and Tarbase v8, we found one miRNA targeting CHMP4C and two 
miRNAs targeting GSDMB in miRTarBase. In Tarbase v8, we found 11 miRNAs targeting CHMP4C and 16 miRNAs targeting GSDMB. 
After merging the two aforementioned databases and intersecting the related microRNAs for both CDIs, we finally identified two 
regulatory microRNAs for both CHMP4C and GSDMB: miR-146a-5p and miR-429 (Fig. 10A). Next, we evaluated the expression levels 
of these two microRNAs in BLCA samples from TCGA database as well as normal samples. The data showed high expression levels of 
both microRNAs in BLCA (Fig. 10B and C). 

In lncBase Predicted v2, we identified 672 lncRNAs interacting with miR-146a-5p and 538 lncRNAs interacting with miR-429. In 
StarBase v2, we found 37 lncRNAs interacting with miR-146a-5p and 28 lncRNAs interacting with miR-429. After intersecting the four 
datasets, we obtained the lncRNAs XIST and NEAT1 (Fig. 10D). The levels of XIST and NEAT1 were evaluated, revealing a significant 
disparity between the BLCA and control cohorts (including TCGA and 40 GTEx data) (as depicted in Fig. 10E and F). Furthermore, 
NEAT1 exhibited prognostic value for BLCA (Fig. 10G). Additionally, we explored potential pathways involved in the hub CDIs of BLCA 
through GSEA. Consequently, we found a significant association between the epithelial-mesenchymal transition (EMT) pathway and 

Fig. 4. Analysis of subtypes for the prognostic CDIs. (A) Venn diagram of the 13 death genes. (B) Correlation analysis of 12 prognostic CDIs. (C) 
The cumulative distribution function (CDF) of consensus clustering and the relative change in the area under the curve of the CDF (CDF Delta area). 
(D) Consistency of clustering results heatmap (k = 2), rows and columns represented samples, the different colors represent different types. (E) The 
expression levels of 12 CDIs in various subgroups were visualized using a heatmap, where high expression was indicated by the color red and low 
expression was indicated by the color blue. (F) The survival rates, rates of progression-free survival, and rates of survival specific to the disease for 
the two subcategories. 
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Fig. 5. DEGs analysis of the subtypes. (A) Volcano map to show the DEGs for the subtypes. (B) The heatmap to show the DEGs for the subtypes. 
(C) KEGG pathway to show the top 20 up pathways. (D) GO analysis to show the top 20 up pathways. (E) KEGG pathway to show the top 20 down 
pathways. (F) GO analysis to show the top 20 down pathways. 
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the CDIs (Fig. 10H and I). Therefore, our speculation is that low expression of CHMP4C and GSDMB may impact tumor metastasis 
process and prognosis in patients. 

3.10. CHMP4C is involved in the EMT pathway in BLCA by experiments 

According to the TCGA database, CHMP4C exhibited significantly elevated expression levels in BLCA tissues (Fig. 11A). Consis-
tently, our center’s data also supported this conclusion (Fig. 11B). To further elucidate the potential oncogenic mechanism of 
CHMP4C, we conducted a bioinformatics analysis and identified a potential association between CHMP4C and the EMT pathway 

Fig. 6. The mutations between two subtypes. (A, B) Genetic mutation landscape waterfall map to exhibit the top 10 mutation genes in the CDI- 
high/low subtype. 
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Fig. 7. Immunotherapy of the two subtypes. (A) Utilizing the ‘xCell’ tool, we can examine the association between the two subsets of CDIs and 
the diverse range of 24 immune cell categories. (B) Using the method of ‘CIBERSORT’, we examined the relationship between the two subcategories 
of CDIs and the 15 distinct categories of immune cells. (C) The correlation between the two subgroups of CDIs and the 6 distinct categories of 
immune cells will be analyzed using the ‘TIMER’ tool. (D) The correlation between the two subgroups of CDIs and the 8 different immune 
checkpoint genes. (E) TIDE score to show the immunotherapy efficacy between the two subgroups. (F) mRNAsi score to show the tumor stemness 
between the two subgroups. 

Fig. 8. Establishment and evaluation of a prognostic risk model. (A) Lasso regression model to establish prognostic model. (B) Plots of the ten- 
fold cross-validation error rates. (C) Information grouping by the risk score, the survival status, and the expression of PRGs shown by heatmap in 
BLCA. (D) Prognostic overall survival curve of risk model. (E) ROC curve to measure the 1,3,5-years predictive value of prognostic model in BLCA. 
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(Fig. 11C). Fig. 11D and E demonstrated a direct association between the expression of CHMP4C and the levels of N-Cadherin, while an 
inverse relationship was observed with the expression of E-Cadherin, as indicated by immunohistochemical analysis. CHMP4C induced 
changes in the expression of EMT-related genes at the cellular level (Fig. 11F), which were consistent with the immunohistochemical 
results. Additionally, CHMP4C promoted the metastasis of BLCA cells. (Fig. 11G). In conclusion, CHMP4C is involved in influencing 
BLCA through the EMT pathway. 

4. Discussion 

Previous studies on tumor cell death did not indicate the dominant mode [20–22]. In this manuscript, we propose that pyroptosis 
plays a crucial role in BLCA among all modes of cell death. Previous research has shown the significant involvement of pyroptosis in 
BLCA [23,24]. We identified CHMP4C and GSDMB as key factors, particularly GSDMB, which exhibited abnormal up-regulation 
leading to enhanced growth and invasion of BLCA cells [25]. GSDMB has been implicated in tumor progression and metastasis [26, 
27]. Phosphorylation of CHMP4C can inhibit apoptosis, while its depletion enhances radiation sensitivity and prolongs the S phase of 
the cell cycle in lung cancer [28]. Overexpression of CHMP4C was associated with lower survival rates in cervical cancer. In contrast to 

Fig. 9. The analysis of immunotherapy for the two hub genes. (A) The Spearman correlation between the 2 hub genes and 6 immune cells. (B, 
C) The spearman correlation between the 2 genes and the tumor immune microenvironment (ImmuneScore, StromalScore and ESTIMATEScore). (D, 
E) The relationship between the expression of the two genes and eight immune checkpoint genes in BLCA. (F, G) The prediction results include a 
statistical table showing the immune response of samples (above) and the distribution of immune response scores (below) in various groups. 

Fig. 10. Construction of regulation network for the hub CDIs. (A) The Venn for related miRNAs for CHMP4C and GSDMB from mirTarBase and 
TarBase V.8. (B, C) The expression of identified miRNAs such as miR-146a-5p and miR-429 in BLCA and normal samples. (D) The Venn diagram 
illustrates the overlap between lncRNAs identified by miRNAs from lncBase predicted V.2 and StarBase V2.0. (E, F) The expression of identified 
lncRNAs such as lncRNA XIST and NEAT1 in BLCA and normal samples. (G) The OS of lncRNA NEAT1 in the high vs low expression group in BLCA. 
(H, I) GSEA for the low expression group of CHMP4C and GSDMB. 
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what we expected, the increase in CHMP4C expression in c-33a cells may enhance both cell proliferation and metastasis [29]. 
However, the unique roles of CHMP4C and GSDMB in BLCA have not been previously reported. 

It appeared that the expression of CHMP4C and GSDMB in BLCA was inconsistent with prognosis, which contradicted the pre-
dominant prognostic model. Of the 2 CDIs involved in tumors, overexpression of CHMP4C represents a worse prognosis for cervical 
cancer [29]. The expression of GSDMB was a poor prognostic factor for HER2 positive breast cancer [30]. The results were the opposite 
in BLCA, which was consistent with CXCL11 expression in colon adenocarcinoma [31]. To investigate the reason why low expression of 
CHMP4C and GSDMB led to a worse prognosis, we first examined their immune relevance. We found that infiltrating lymphocytes 
were independent prognostic factors for tumors [32,33]. Therefore, the correlation between CDIs and infiltrating immune cells sug-
gests that CDIs may participate in tumor immunity processes and affect BLCA prognosis. Moreover, the correlation between CDIs and 
immunity was explored by utilizing immune score and matrix score. Under normal circumstances, immune checkpoint molecules serve 
as safeguards against excessive autoimmunity; however, they can also facilitate tumor immune evasion in abnormal situations. For 
CHMP4C and GSDMB, we analyzed the differential expression of immune checkpoint molecules in the high expression group, low 
expression group, and normal bladder sample group. The discovery revealed that the low expression groups of the two CDIs exhibited 
increased immune-related enrichment, suggesting enhanced immune evasion by the tumor and consequently leading to its progres-
sion. The outcome aligns with the forecast stated for CHMP4C and GSDMB. 

In order to prove the above point, CHMP4C was selected for further study. In this study, the immunohistochemical expression of 
CHMP4C was validated, and its correlation with EMT was examined. The expression of CHMP4C was consistent with the results of 
bioinformatics analysis, which aligned with the performance of CHMP4C in cervical cancer [29]. To our surprise, patients with high 
CHMP4C expression had a worse prognosis (Supplementary Table 3), which was contrary to the predicted results. We attribute these 
unpredictable outcomes to the complex regulation of RNA-to-protein translation during tumorigenesis and progression. Previous 
studies have shown that EMT is associated with the activation of different immune checkpoint molecules, including PD-L1 [34]. 
EMT-induced immune evasion promotes cancer progression. Additionally, our study suggested that CHMP4C may influence EMT 
alterations. It is well established that EMT is closely linked to tumor metastasis. However, based on the collected clinical data, CHMP4C 
is not closely related to tumor metastasis (perhaps due to our insufficient sample size, Supplementary Table 4). Therefore, we hy-
pothesize that CHMP4C promotes the progression of BLCA by affecting the immune evasion through the EMT pathway. 

In conclusion, we screened core genes from the perspective of CDIs and focused on exploring the relationship between hub CDIs and 
immunity in BLCA. As a result, we found that the CDIs were highly correlated with immune checkpoints, providing insights into ICB 
treatment. Furthermore, the establishment of a regulatory network has helped us to understand the specific role of CDIs in BLCA. The 
limitation of this article is the failure to investigate how CHMP4C influences immunity through EMT at the cellular level. Because the 
patients involved in this study had relatively low PD-L1 expression, the relationship between CHMP4C and immunity was not well 
elucidated. Additionally, more verification at the animal level is required to determine the effect of CHMP4C on immunotherapy. 
Finally, we will continue to collect data from patients with bladder cancer treated with immunotherapy (for example: PD-L1 expression 
or corresponding inhibitor treatment effect) in the future to verify our conclusions. 

5. Conclusions 

By analyzing 13 pathways, we identified two central genes (CHMP4C and GSDMB) to investigate the disparity in expression be-
tween tumor and normal tissues, and assess their influence on the prognosis of BLCA. A prognostic model was constructed using these 
two genes, which were found to be involved in predicting the prognosis of BLCA. Furthermore, it was explained that these hub genes 
are related to immune infiltration and immunotherapy. Finally, the regulatory network of these two genes was constructed. The 
immunohistochemistry and cell experiment results demonstrated that CHMP4C influences the development of BLCA through the EMT 
pathway. In summary, the current findings emphasize the harmful impact of CHMP4C and GSDMB on the outlook of BLCA individuals, 
presenting a chance to enhance the response to immunotherapy. 
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Fig. 11. The expression and function of CHMP4C. (A) The expression of CHMP4C in bladder tumor (n = 408) and normal (n = 19) tissues in 
TCGA. (B) The expression of CHMP4C in bladder tumor (n = 100) and normal (n = 39) tissues in our central cohort. (C) The correlation between 
CHMP4C and EMT_markers in TCGA. (D) The correlation between CHMP4C and related-EMT_markers in our central cohort. (E) The typical 
immunohistochemical image for CHMP4C, N-Cadherin and E-Cadherin. (F) Western blot showed the effect of CHMP4C on the expression of N- 
Cadherin and E-Cadherin. (G) Transwell assay revealed the migratory capacity of cells with CHMP4C knockdown. 
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