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Oligoadenylate synthase-like (OASL) proteins:
dual functions and associations with diseases
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The study of antiviral pathways to reveal methods for the effective response and clearance of virus is closely related to

understanding interferon (IFN) signaling and its downstream target genes, IFN-stimulated genes. One of the key antiviral factors

induced by IFNs, 2′-5′ oligoadenylate synthase (OAS), is a well-known molecule that regulates the early phase of viral infection

by degrading viral RNA in combination with RNase L, resulting in the inhibition of viral replication. In this review, we describe

OAS family proteins from a different point of view from that of previous reviews. We discuss not only RNase L-dependent

(canonical) and -independent (noncanonical) pathways but also the possibility of the OAS family members as biomarkers for

various diseases and clues to non-immunological functions based on recent studies. In particular, we focus on OASL, a member

of the OAS family that is relatively less well understood than the other members. We will explain its anti- and pro-viral dual roles

as well as the diseases related to single-nucleotide polymorphisms in the corresponding gene.
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INTRODUCTION

To counter virus infection, the immune system produces
antiviral cytokines. Interferon (IFN) is the most powerful
antiviral cytokine, and it induces IFN-stimulated genes that
mediate antiviral effector functions. Among the proteins
induced by IFN, the oligoadenylate synthase (OAS) proteins
have been identified as enzymes that sense exogenous nucleic
acid and initiate antiviral pathways. The OAS family proteins
belong to a template-independent nucleotidyltransferase family.
The oligomerized OAS enzyme generates the 2′-5′-linked
oligoadenylate (2-5A) activating endoribonuclease, RNase L,
which degrades cellular and viral RNA. In this way, RNase L
contributes to the control of the early spread of a virus by
degrading the viral RNA and activating cytoplasmic pattern-
recognition receptors, including RIG-I and MDA-5 (Figure 1).
Although the antiviral activity of the OAS family and 2-5A-
RNase L is well characterized,1–3 it was reported recently that
not all of the OAS antiviral function is mediated by the RNase
L-dependent pathway.4,5 This indicates that the OAS family
proteins may be involved in pathways for regulating viral
infection other than the pathway involving RNase L activation.

The OAS family proteins consist of OAS1, OAS2, OAS3 and
OAS-like protein (OASL).6 The OAS1-3 proteins have signifi-
cant homology to each other and only differ in the number of

OAS units. OAS1, OAS2 and OAS3 contain one, two and three
OAS units, respectively. The genes encoding the OAS proteins
are clustered on chromosome 12 (in the 12q24.1 region) in
humans. Human OAS1 (hOAS1) has two spliced forms that
produce proteins of 40 and 46 kDa, each containing a distinct
C-terminal sequence.7 Three more alternative splice forms
of Oas1 are generated by single-nucleotide polymorphisms
(SNPs).8 There are two isoforms of OAS2 (p69 and p71), and
one 100 kDa OAS3 form.7 Two isoforms of hOASL OASLa
(p59) and OASLb (p30) are coded by a gene located on
chromosome 12 (in the 12q24.2 region), but OASLa is the
dominant isoform; OASLb has a C-terminal truncation.
Recently, another OASL isoform, OASLd, which is strongly
induced by IFNγ, was discovered.9 In the mouse genome, eight
Oas1 genes and one gene each for OAS2 and OAS3 exist on
chromosome 8.10 Mice have two OASL genes (Oasl1 and
Oasl2) on chromosome 5.11 Studies using genetically modified
mouse models for the OAS genes may allow us to gain insights
into the human OAS family functions, because the exon/intron
structures of all the genes are conserved between humans and
mice.10 In this article, we review the immune-related and other
cellular functions of OAS and the dual role of OASL. We then
discuss SNPs and the differential expression of OAS in various
diseases.
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RNASE L-DEPENDENT AND -INDEPENDENT ANTIVIRAL

FUNCTIONS OF OAS1, OAS2 AND OAS3

The canonical OAS/RNase L pathway has been intensively
studied, and the results have been well documented in several
reviews.6,12 The ability to activate RNase L of the OAS family is
dependent on the OAS oligomerization unit and the proces-
sivity of synthesizing dimeric or tri-tetrameric 2-5A. The CFK
motif in the OAS domain, which is required for tetramerization
of OAS and affects the synthesis of effective 2-5A, is only
conserved between OAS1 and OAS2.13 Originally, it was
believed that only OAS1 and OAS2, and not OAS3, contributed
to RNase L-dependent antiviral activity.13,14 This idea has been
revised by studies of mouse OAS1b. The observation that point
mutations of mOas1b increased the susceptibility of mice to
West Nile Virus (WNV) indicated that the OAS/RNase L
system is required for virus restriction.5,15 Recent experiments
with each of the isoforms of the OAS family overexpressed cell
revealed that OAS3 shows RNase L-dependent antiviral activity
against dengue virus.16 Furthermore, purified OAS3 can
produce long enough 2-5A to activate RNase L.17 In an
antiviral response to hepatitis C virus, overexpressed OAS1
p46 and OAS3 p100 show antiviral activity by mediating the
RNase L-dependent pathway.18 OAS3 synthesizes dimeric 2-5A
that binds to RNase L with low affinity and produces 2-5A
oligomers shorter than the tri-tetramer 2-5As produced by
OAS1 and OAS2. However, OAS3 can be induced by smaller
amounts of double-stranded RNA (dsRNA) than OAS1 and
OAS2.19 The higher dsRNA-binding affinity of OAS3 to dsRNA
might compensate for the lower binding affinity of dimeric
2-5A to RNase L.

Recent studies have focused on the OAS expression patterns
after various virus infections and the polymorphisms associated
with virus infection susceptibility. Dengue virus infection
causes the early induction of OAS1, whereas OAS2 and
OAS3 are upregulated later.20,21 Studies of polymorphisms in
the Oas genes have emphasized the importance of all the three
Oas genes during dengue virus infection.22 In the case of
Chikungunya virus (CHIKV), OAS3 shows a strong correlation
with resistance to CHIKV infection. Mutation of Oas3 caused
less efficient inhibition of CHIKV, regardless of RNase L
activation.23 CHIKV with the E2-E116K substitution escaped
the antiviral action of OAS3 and replicated more successfully
than the wild-type virus by reducing OAS3 expression.24,25

Therefore, OAS3 appears to be required for the restriction of
specific viruses, independent of RNase L.

THE OASL: AN ANTIVIRAL OR PRO-VIRAL PROTEIN?

OASL contains one OAS domain, two ubiquitin-like repeats
and a CCY motif instead of CFK in the OAS unit that is
required for oligomerization. Thus the hOASL lacks the 2′-5′-
linked OAS activity that is one of the hallmarks of OAS.26

Expression of OASL is also regulated differently from OAS.27

Whereas mOASL1 is mainly induced by IFNa, mOASL2 is
upregulated by both type I and type II IFN.28 Unlike hOASL,
mOASL2 maintains OAS activity and requires dsRNA as an
inducer. The amino-acid sequence of mOASL1 is more similar
to human OASL than mOASL2 is (mouse OASL1, 74%; mouse
OASL2, 49% identical with hOAL).10 Thus it is plausible that
mOASL1 is the functional counterpart and ortholog of hOASL.

Figure 1 The OAS family in antiviral pathways. Following virus infection of a host cell, viral dsRNA stimulates OAS1, OAS2 and OAS3 and
leads to the synthesis of 2′-5′ oligoA and RNase L activation. Activated RNase L cleaves viral and cellular RNA. MDA5 and RIG-I detect
cleaved viral RNA, thereby promoting the activation of IRF3 and IRF7. The hOASL binds to RIG-I and enhances the sensitivity of RIG-I
signaling through the UBL domain, whereas the mOASL1 binds to IRF7 mRNA and inhibits the translation of IRF7.
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It has been suggested that mOASL2 is an intermediate between
OAS and OASL that arose during evolution.11

The role of OASL was identified later than that of OAS, but
the recently identified functions seem to be critical to the
antiviral innate and adaptive immune responses. These facts
make further studies of OASL valuable. Because of its OAS-like
qualities (activation by IFN and binding to dsRNA) and
inactive nucleotidyltransferase domain, OASL has been
assumed to interfere with the 2-5A and RNase L pathway by
competing with OAS.29,30 An SNP study of the response to IFN
therapy for chronic hepatitis C suggested that OASL might
negatively regulate the antiviral function of OAS. An SNP that
cause lower levels of OASL was observed to be associated with a
sustained virological response after treatment.31 However, it
has been demonstrated that hOASL possesses antiviral activity
through the C-terminal ubiquitin-like domain. In Vero cells,
hOASL expression increases the resistance against single-
stranded RNA viruses, including picornavirus and encephalo-
myocarditis, but not against a DNA virus, herpes simplex
virus 1.32 A recent study using an OASL deletion mutant

produced by a transcription activator-like effector nucleases
(TALEN) procedure found that hOASL suppresses the replica-
tion of vesicular stomatis virus by enhancing the RIG-I
pathway (Figure 1). In addition, this study established that
mOASL2 also has an antiviral activity, suggesting that mOASL2
is functionally comparable to hOASL.33 The function of
mOASL1 is totally different from that of mOASL2 and hOASL.
The mOASL1 protein inhibits the translation of
IFN-regulating transcription factor 7, the main transcription
factor for type I IFN, and suppresses the production of type I
IFN during viral infection34 (Figure 1) through an interaction
with the stem loop structure in the 5′-untranslated region of
IFN-regulating transcription factor 7.35 Negative regulation of
type I IFN production by mOASL1 causes viral persistence and
represses T-cell function.36 Together, OASL proteins have dual
functions that depend on various mechanisms and on the
phase of the virus infection.

THE OAS FAMILY AS A BIOMARKER

Expression of the OAS family is upregulated in some diseases
whether it is dependent or independent of IFN stimuli. In light
of this, OAS can be a useful biomarker for various diseases in
multiple stages. A specific biomarker is needed to select an
adequate therapy for an individual and to monitor the effect of
the therapy. The OAS level is strongly related to autoimmune
diseases and chronic infections, including systemic lupus
erythematosus, systemic sclerosis, rheumatoid arthritis and
multiple sclerosis.37–40 Appropriate biomarkers must express
specific patterns depending on the condition of a disease. In the
study of systemic lupus erythematosus, it was shown that OAS1
is upregulated, whereas expression of OASL was lower in
systemic lupus erythematosus patients than in normal
individuals.41 In primary human peripheral blood mononuc-
lear cells isolated from systemic sclerosis patients, only the
expression of OAS2 and OASL was higher than in the basal
state and neither OAS1 nor OAS3 was induced.37 Patients with
severe chronic obstructive pulmonary disease show high
mortality. Exposure to influenza virus and cigarette smoke
leads to a more serious stage of chronic obstructive pulmonary
disease. In a mouse experiment, only OAS2 and OASL were
synergistically induced by cigarette smoke and influenza virus,
whereas OAS1 and OASL2 were not induced.42 OASL also can
be used as a biomarker to predict rheumatoid arthritis patients’
response to tocilizumab, the drug most commonly used to treat
this disease. Expression of OASL differs significantly between
nonresponders and responders.43 The expression pattern of the
OAS family may offer useful information for therapy of
autoimmune diseases and chronic infections and reveal differ-
ent roles of each member of the OAS family in autoimmune
disorders.

SNPS IN OASL-ASSOCIATED DISEASES

Several SNPs in the OAS family genes have been identified and
associated with various diseases (Table 1). Consistent with the
main role of OAS proteins, SNPs in OAS genes affect the
susceptibility to viral infection. Most people who are infected

Table 1 SNPs in the OAS family

Gene SNP

Associated

clinical

phenotype Location

Nucleotide

change SNP effect

Oas1 rs10774671 WNV Intron G/A Different
splicing

T1D
rs12307655 HPV Intron C/T

rs2660 SARS Exon6 A/G Arg/Gly sub-
stitution

HCV

Oas2 rs2010604 SVR 3′ UTR G/C
rs1293762 SVR Intron T/G

TBEV
rs15895 TBEV 3′ UTR/

exon11
A/G Early stop

codon
rs1732778 TBEV 3′ UTR G/A
rs718802 HPV 3′ UTR C/A

Oas3 rs2285932 TBEV Exon6 T/C Synonymous
rs2072136 HBV Exon2 C/G Synonymous

TBEV
rs12302655 HPV 5′ UTR G/A

Oasl rs1169279 SVR 3′ UTR A/G
rs3213545 SVR Exon2 C/T Synonymous

WNV
MCRT

rs2859398 SVR Promoter C/T

Abbreviations: HCV, hepatitis C virus;54 HPV, human papillomavirus;55 MCRT,
multiple cardiovascular-related traits; OAS, oligoadenylate synthase; SARS, severe
acute respiratory syndrome;56 SNP, single-nucleotide polymorphism; SVR,
sustained virologic response; TBEV, tick-borne encephalitis virus;58 T1D, type I
diabetes;57 UTR, untranslated region; WNV, West Nile Virus.
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with WNV of the Flaviviridae family show no symptoms, but a
few people (o1%) progress to a severe clinical infection, West
Nile fever.44 Genetic factors, age and environmental conditions
may have essential roles in disease progression. Sequencing the
OAS family exons in 33 patients with WNV infection showed
that a SNP (rs3213545) of the OASL gene is associated with
WNV infection.45 Although the rs3213545 SNP is synonymous
in OASL exon2, it contains a splice enhancer site that is a
minor allele ‘T’, which generates a dominant-negative mutant
form of OASL. A study using 331 WNV-infected patients
showed that the OAS1 SNP rs10774671 has a significant link
with WNV. These data support the conclusion that human
OAS1 and OASL have antiviral roles against WNV. In contrast,
the minor allele ‘T’, the rs3213545 SNP, is significantly
associated with a sustained virological response, an efficacy
measure of hepatitis C virus treatment after IFN therapy;31 that
is, diminished OASL activity confers an advantage for IFN
treatment. Depending on the early response to the recovery
phase, one of the dual roles of OASL can be addressed.

The role of OASL in diseases other than immune-related
diseases is demonstrated by genome-wide association studies.
The locus of the OASL gene on chromosome 12 was shown to
affect multiple cardiovascular-related traits, especially ‘high or
low’ gamma glutamyltransferase, low-density lipoprotein and
C-reactive protein. The study identified the rs3213545 SNP as a
possible candidate associated with liver function and lipid
constitution.46

NON-IMMUNOLOGICAL FUNCTIONS OF THE OAS

FAMILY PROTEINS

Although the major role of the OAS proteins is as immune
regulators, there are some data showing that OAS proteins are
involved in other cellular functions. The OAS family is
associated with the regulation of apoptosis, one of the ways
organisms react against virus infection in an effort to eliminate
the virus-infected cells and a core mechanism for inhibiting
tumorigenesis.47,48 A derivative of the dimeric 2-5A-activating
RNase L synthesized by OAS3 has been described as a new
molecule for inhibiting breast cancer cell growth.49 OAS3 is
also one of the genes in a breast tumor cell line (MCF7) that is
highly expressed after daily exposure to radiation.50 In addition,
the OAS/RNase L pathway is induced by BRCA1, a tumor
suppressor of the breast and ovarian cancer, and it activates
apoptosis of tumor cells.51 These observations implicate the
OAS proteins in counteracting tumor progression.

Even though hOASL has a supposed nuclear localization
signal (RKVKEKIRRTR) at the C-terminus, its nuclear func-
tion is not clear.6 However, there is some evidence that a
nuclear function of OASL exists. A yeast two-hybrid system
identified an interaction between OASL and methyl CpG-
binding protein 1, which is a transcriptional repressor.52 In
addition, it has been shown that OAS might also regulate
nuclear events, including pre-mRNA splicing, a complicated
process that requires a complex of RNA and proteins. OAS
assembles the 60S spliceosome and is necessary for the first step
of splicing.53

CONCLUSION

The RNaseL-dependent immune regulation by the OAS family
is widely known. However, various functions of each OAS
family member and a newly defined mechanism independent
of RNase L have been discovered recently. Because most of the
studies focusing on the RNase L-independent functions of OAS
employ in vitro methods, including genetic depletion, using an
in vivo knockout mouse model would be useful for finding new
mechanisms. Other important aspects are SNPs and the
expression level changes of the OAS family during disease
progression. Many SNPs in the OAS genes have been dis-
covered to be associated with viral infections and autoimmune
diseases. In addition, the expression levels of OAS family
members depend on disease progression. Although we still
lack a complete understanding of the roles of SNPs of the OAS
family members in disease, their strong correlation with viral
diseases will prove useful for identifying new treatment
methods for infectious and autoimmune diseases.
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