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A B S T R A C T

Background: Global public health was recently hampered by reported widespread spread of new coronavirus
illness, although morbidity and fatality rates were low. Future coronavirus infection rates may be accurately
predicted over a long-time horizon, using novel bio-reliability approach, being especially well suitable for
environmental multi-regional health and biological systems. The high regional dimensionality along with cross-
correlations between various regional datasets being challenging for conventional statistical tools to manage.
Methods: To assess future risks of epidemiological outbreak in any province of interest, novel spatio-temporal
technique has been proposed. In a multicenter, population-based environment, assess raw clinical data using
state-of-the-art, cutting-edge statistical methodologies.
Results: Authors have developed novel reliable long-term risk assessment methodology for future coronavirus
infection outbreaks.
Conclusions: Based on national clinical patient monitoring raw dataset, it is concluded that although underlying
data set data quality is questionable, the proposed method may be still applied.

1. Introduction

COVID-19 statistics and public health implications (SARS-CoV-2) in
a view of recent outbreaks have been the focus of contemporary
research, [1–10]. In general, traditional theoretical statistical tech-
niques may find it challenging to forecast breakout probability and
realistic bio-system reliability factors in actual epidemic settings,
[11–28]. The latter is typically brought on by variety of bio-system and
environmental degrees of freedom along with random factors that
control dynamic biological and health systems, dispersed across a wide
geographical area. Direct Monte Carlo (MC) simulations or observations
may be used to assess risks within a complex biological system. But
COVID-19 only offers data from observations for the first day of 2020. In
order to predict and potentially prevent epidemic outbreaks, authors
have developed specific reliability approach suitable for engineering,
bio and health systems, [29–37]. Various researchers have investigated
recent COVID-19 outbreaks in China, [38–45], focusing on connections
between several sites within same climatic zones; further studies on
statistical national variations may be found in [46]. China was chosen
based on its COVID-19 origin, as well as its extensive public health ob-
servations available online, [47–50]. This study utilized statistics,

obtained from the official website and database, maintained by PRC
(People Republic of China) National Health Commission, [2]. PRC em-
braces twenty-three provinces, five autonomous regions, four munici-
palities, two special administrative regions, included Taiwan and
excluding Tibet (as a region almost not affected by COVID-19), there is
therefore thirty-four administrative units to study.

EVT (Extreme Value Theory) methodology being frequently used
within both bio-engineering and medical research, [1]. Ref. [4] EVT was
used in study by the authors to estimate future influenza outbreaks risks
in China. While in [25] EVT has also been used to identify anomalies
both before and after the flu epidemic. Numerous statistical research
studies have been done to assess risks of an influenza epidemic or other
infectious disease breakouts, hence recently proposed novel methodol-
ogy intended to provide yet better epidemiological understanding, along
with improved potential illnesses spread indicators, [51–56]. Since an
epidemic breakout is treated as an unforeseen occurrence that might
occur at any time in any area within a particular country, geographic
dispersion is taken into account in this study. The latter pandemic
hazard may be predicted at any time and everywhere because to a
special non-dimensional component that is also present. Biosystems can
occasionally be impacted by environmental factors.
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Statistical methods have been applied in a number of recent re-
searches, notably for the linear log model, to forecast the progression of
COVID-19, [1,34]. Despite our stated research goals of predicting
epidemic breakouts and lowering their risk (by early diagnostics and
prognostics), the research only considers the daily number of patients
recorded and ignores the symptoms themselves. Earlier studies have
employed variety of techniques, to model influenza-like diseases. The
success of the methodologies outlined above is demonstrated in this part
using a novel approach to the actual unfiltered COVID-19 dataset, given
as daily-recorded infected number of patients time-series, geographi-
cally/spatially scattered. Both COVID-19 (SARS-CoV-2) and influenza
being contagious types of diseases, with a tendency to spread interna-
tionally, having low rates of morbidity and mortality. They are most
common throughout the year's late fall, winter, and early spring months,
with the winter being their peak season. According to estimates from
WHO (World Health Organization), epidemics of seasonal influenzas,
caused by influenza A, B viruses, resulted in between 3 and 5 million
critical illness cases, and between 250,000 and 500,000 fatalities glob-
ally each year, placing a strain on global public health, [28,63–65].

Many research studies, such as [36–39], have compiled substantial
current information on traditional reliability methods. Applying these
conventional methods to an actual bio-engineering or public health

system, however, may be challenging since bio-dynamic components
usually depend on numerous degrees of freedom, and environmental
random variables. Theoretically, it is well possible to precisely assess
reliability of a real and complex bio-engineering systems, if underlying
dataset being large enough. Such biological systems can be simulated
using MCmethods, or be represented by actual extensive measurements.
It is often challenging to assess bio and public health system reliability,
utilizing conventional public health and bio-reliability methods. The
latter is frequently caused by chaotic forces that control bio-systems and
very flexible systems. Complex bio-system reliability may be well
assessed directly, either by doing direct extensive MC simulations, or if
having substantial measured clinical dataset, [11–24]. Public and digital
health becoming more and more attractive subject for spatio-temporal
data analysis in the globalizing world. Numerous researches have been
done recently to investigate spatio-temporal analytic techniques, and
apply them to a variety of sectors. The spatio-temporal analysis land-
scape may be examined and projected from 3 angles: the spatio-
temporal analysis technique, the development of the spatio-temporal
data model and platform, and the application scenarios for the spatio-
temporal data analysis. For contemporary literature review on spatio-
temporal data analysis methods, see [66].

Fig. 1. Map of China with provinces, including Taiwan.
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2. Spatio-temporal Gaidai-Yakimov method

This study has utilized COVID-19 incidence data for all of China's
administrative provinces from February 2020 till the end of year 2022,
available at public websites, [2,3]. Biological or public health system
under consideration may be seen as MDOF (Multi-Degree-Of-Freedom)
spatio-temporal nonlinear dynamic system, having inter-correlated
geographical/administrative dimensions/components. Fig. 1 presents
map of China provinces, national territorial mapping is an important
feature of the suggested methodology.

Let's take a look at a MDOF biological or health system, represented
by biosystem's key/critical components (in this study those are daily
patient numbers per administrative units) (X(t) ,Y(t) ,Z(t) ,…) that have
been either simulated, or measured over representative observational
duration (0,T). One-dimensional (1D) bio-system key component's
global maxima being denoted asXmax

T = max
0≤t≤T

X(t), Ymax
T = max

0≤t≤T
Y(t),

Zmax
T = max

0≤t≤T
Z(t), …. Let X1,…,XNX be temporally non-decreasing bio-

system component's process X = X(t) local-maxima, recorded at
temporally increasing time-moments tX1 < … < tXNX

within (0,T). Similar
definitions will follow for other MDOF bio-system's
components Y(t), Z(t),… i.e., Y1,…,YNY ; Z1,…,ZNZ etc. Biological or
public health system component's local-maxima were assumed here
being positive just for simplicity, then

P =

∫∫∫(ηX ,ηY ,ηZ ,…)

(0,0,0,,…)

pXmax
T ,Ymax

T ,Zmax
T ,…

(
xmax

T , ymax
T , zmax

T ,…
)
dxmax

T dymax
T dzmax

T … (1)

being target dynamic biological or public health survival probability,
with limit/critical/hazard values of bio-system's critical components,
being denoted here as ηX, ηY , ηZ, …; and ∪ being logical unity operator
«or»; pXmax

T ,Ymax
T ,Zmax

T ,… being joint PDF (Probability Density Function) of
bio-system component's global maxima. If bio-system's NDOF (Number-

of-Degrees-Of-Freedom) being large, it is not always practically feasible
to directly estimate target joint PDF pXmax

T ,Ymax
T ,Zmax

T ,… and hence corre-
sponding bio-system survival probability P. The latter biological or
public health system survival probability P needs to be estimated, along
with related system's expected lifetime, following Eq. (1). Biological or
public health system's 1D components X,Y,Z,…being re-scaled and then
non-dimensionalized

X→
X

ληX
,Y→

Y
ληY

,Z→
X

ληX
,… (2)

resulting in all biological or public health system's components
becoming non-dimensional, having identical target failure/hazard limits
λ = 1, with bio-system's target hazard/ failure probability 1 − P = 1 −
P(1). Eq. (2) may be employed now to determine P(λ) as a function of
non-dimensional bio-system scaling parameter λ. 1D bio-system com-
ponent's local-maxima now have been merged to obtain single synthetic
temporally non-decreasing system vector R→= (R1,R2,…,RN) in agree-
ment with merged temporal system vector t1 ≤ … ≤ tN, N ≤ NX + NY +

NZ + …. Each element Rj being system component's local-maxima, once
encountered, corresponding to either X(t) or Y(t), or Z(t) or other bio-
system's key components. Constructed synthetic bio-system R→-vector
yields 0 data-loss, as illustrated by Fig. 2.

Hence, temporally increasing bio-system synthetic 1D vector R→,
along with corresponding temporally increasing occurrence
moments t1 < … < tN, have been fully introduced. Scaling system
parameter 0 < λ ≤ 1 has been introduced, in order to artificially,
simultaneously decrease limit/hazard values for all relevant bio-system
components, namely MDOF system hazard/limit vector

(
ηλ
X, ηλ

Y , ηλ
z,…

)

having ηλ
X ≡ λ • ηX, ≡ λ • ηY , ηλ

z ≡ λ • ηZ, … being introduced. Unified
system limit vector

(
ηλ
1,…, ηλ

N
)
being introduced with each biosystem's

component ηλ
j being either ηλ

X, ηλ
Y or ηλ

z etc. The latter naturally defines
survival probability P(λ) as a smooth function of λ, with P ≡ P(1), see Eq.

Fig. 2. Example of 2 bio-system components X, Y, merged into 1D synthetic vector R→, ellipse marks simultaneous occurrence of local-maxima in 2 different sys-
tem components.

O. Gaidai et al. Dialogues in Health 3 (2023) 100157 

3 



(1). Non-exceedance (or survival) probability P(λ) may be now assessed
as

P(λ) = Prob
{

RN ≤ ηλ
N ,…,R1 ≤ ηλ

1

}

= Prob
{

RN ≤ ηλ
N

⃒
⃒ RN− 1 ≤ ηλ

N− 1,…,R1 ≤ ηλ
1

}
⋅Prob

{
RN− 1

≤ ηλ
N− 1,…,R1 ≤ ηλ

1

}

=
∏N

j=2
Prob

{
Rj ≤ ηλ

j | Rj− 1 ≤ ηλ
1j− ,…,R1 ≤ ηλ

1

}
⋅Prob

(
R1 ≤ ηλ

1

)
(3)

Dependency between the neighboring local-maxima Rj is often non-
negligible; hence following 1-step (conditioning-number k = 1) mem-
ory approximation being introduced

Prob
{

Rj ≤ ηλ
j | Rj− 1 ≤ ηλ

j− 1,…,R1 ≤ ηλ
1

}
≈ Prob

{
Rj ≤ ηλ

j | Rj− 1 ≤ ηλ
j− 1

}

(4)

for 2 ≤ j ≤ N (conditioning-number k = 2). Approximation, set by Eq.
(3) may be further developed as

Prob
{

Rj ≤ ηλ
j | Rj− 1 ≤ ηλ

j− 1,…,R1 ≤ ηλ
1

}
≈ Prob

{
Rj ≤ ηλ

j | Rj− 1 ≤ ηλ
j− 1,Rj− 2

≤ ηλ
j− 2

}

(5)

where 3 ≤ j ≤ N (with conditioning-number k = 3), etc. Idea now is to
monitor every independent bio-system's hazard/failure, in temporally
increasing order, hence avoiding cascading component's inter-
correlated local exceedances. Eq. (4) presents statistical independence
assumption's subsequent refinements. The latter approximation captures
statistical dependency effects between neighboring bio-system compo-
nent's local-maxima, with steadily increasing accuracy. Since the orig-
inal MDOF system process R(t) has been assumed to be ergodic, and

hence stationary, the probability pk(λ) := Prob
{
Rj > ηλ

j

⃒
⃒
⃒ Rj− 1 ≤ ηλ

j− 1,

Rj− k+1 ≤ ηλ
j− k+1} for j ≥ k being independent of j and only being

dependent on conditioning-number k. Hence, non-exceedance (survival)
probability may be now approximated, as in modified (4-parameter)
Weibull method, [58]

Pk(λ) ≈ exp ( − N • pk(λ) ), k ≥ 1 (6)

In Eq. (6) exponent N • pk(λ)≪1, as design failure/hazard probability
is of a small order of magnitude by design; it is also has been assumed
that N≫k. Eq. (5) being similar to a well-known mean up-crossing-rate
formula, expressing exceedance probability. There is typical conver-
gence, with respect to conditioning-number k

P = lim
k→∞

Pk(1); p(λ) = lim
k→∞

pk(λ) (7)

Eq. (6) for k = 1 turns into the well-known non-exceedance (sur-
vival) probability relationship, with corresponding mean up-crossing-
rate function

P(λ) ≈ exp ( − ν+(λ)T ); ν+(λ) =
∫ ∞

0
ζpRṘ(λ, ζ)dζ (8)

with ν+(λ) being mean up-crossing-rate function of the non-dimensional
system level λ for the above constructed non-dimensional bio-system
vector R(t) constructed from the scaled MDOF bio-system vector
(

X
ηX
, Y

ηY
, Z

ηZ
,…

)
. The mean up-crossing-rate function being given by the

Rice formula, see Eq. (8), with pRṘ being system's joint PDF for
(
R, Ṙ

)

with Ṙ being temporal derivative R′(t), see [35]. Eq. (8) relied on well-
known Poisson's assumption, stating that high λ levels up-crossing
events (in the current study, it is λ ≥ 1) may be assumed nearly inde-
pendent. The latter may not always be the case e.g., for narrow-band

systems, exhibiting cascading/clustering failures/hazards in different
system components, temporally subsequent, caused by intrinsic inter-
dependencies between critical/extreme/hazard events, manifesting
themself through appearance of a highly-correlated biosystem key
component's local-maxima groups/clusters, present within constructed
bio-system vector R→ = (R1,R2,…,RN). In this section system statio-
narity/ergodicity assumption was used, but advocated methodology
may also treat reasonably nonstationary cases. For non-stationary bio-
systems, in-situ scatter diagram of m = 1, ..,M bio-epidemiological/
environmental seasonal conditions, with each short-term bio-environ-
mental state having individual probability qm, so that

∑M
m=1qm = 1. Let

one introduce the long-term statistical equation

pk(λ) ≡
∑M

m=1
pk(λ,m)qm (9)

with pk(λ,m) being identical function, following Eq. (6), but corre-
sponding to specific in-situ short-term bio-environmental epidemic state
with the number m. The above-introduced functions pk(λ) being typi-
cally regular in PDF tail, specifically for values of λ when approaching,
and exceeding 1. For λ ≥ λ0, PDF typically tail behaves asymptotically
similar to the exp{ − (aλ + b)c + d } with a, b, c, d being optimally-fitted
4 constants, given suitable PDF tail cut-on λ0 value. Hence

pk(λ) ≈ exp{ − (akλ + bk)
ck + dk }, λ ≥ λ0 (10)

Optimized values of all 4 parameters ak, bk, ck, dk can be well deter-
mined, using SQP (Sequential Quadratic Programming) method, being
incorporated in NAG (Numerical Algorithm Group) Numerical Library,
[62].

3. Results

The focus has long been on forecasting influenza-like epidemics in
epidemiology as well as in mathematical biology. Public health dy-
namics being a good example of a complex multidimensional, non-
linear, spatially cross-correlated dynamic bio-system. In this section,
the aforementioned tactic is demonstrated in action. The website [2]
provides numbers of new daily diagnosed cases in all PRC administrative
regions from 22 January 2020, to the end of 2022. Raw patient numbers
were originating from thirty-four different PRC administrative/auton-
omous regions have been chosen as bio-system components X,Y,Z,…
constituting practical example of a thirty-four dimensional (34D) dy-
namic bio-system. In order to unify all thirty-four measured raw time-
series X,Y,Z,… following system scaling has been performed,
following Eq. (2), making all thirty-four bio-system components to be
non-dimensional, having identical non-dimensional failure/risk/hazard
limits, all equal exactly to 1. Failure/risk/hazard limits ηX, ηY , ηZ, …,
(epidemic thresholds) being not always obvious choice. Straightforward
option would be for various nations to establish failure/risk/hazard
limits, being equal to the corresponding administrative unit's population
in percent to the local population, thus making X,Y, Z,… equivalent to
raw daily infection rates by regional (administrative) unit. Next, all bio-
system components local-maxima have been combined into a single
synthetic vector while maintaining their original order in terms of time
R→= (max{X1,Y1,Z1,…} ,…,max{XN,YN,ZN,…} ) with whole syn-
thetic vector R→ being here sorted in temporally increasing order of oc-
currences of bio-system component local-maxima, [58–61].

Fig. 3 left presents numbers of raw daily-recorded COVID-19 pa-
tients, as synthetic 34D vector R→, based on scaled-down regional new
patient counts derived for each million of the relevant regional popu-
lation Eq. (2). Note that synthetic bio-system vector R→being constructed
of various regional/province components, having obviously different
epidemic backgrounds. The index j being running-index of bio or public
health system component's local-maxima, being observed within
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increasing temporal sequence, [12–21]. Fig. 3 right predicts a new daily
number of COVID-19 patients with a 10-year return level extrapolation
towards a potential pandemic breakout with a once every 10-year return
timeframe, λ = 3 • 10− 3% being selected extrapolation cut-on value,
representing % of the local population on the horizontal axis. Dotted
lines highlight extrapolated 95% CI. Conditioning-number k = 5 has
been found to be well sufficient, as convergence has occurred with
respect to k, namely lim

k→∞
pk(λ) = P(λ), for details on conditional-number

k and convergence proof see [22–24,58–65]. Fig. 3 right exhibits a
reasonably-narrow 95% CI, and the latter being a certain benefit of the
suggested strategy. The COVID-19 infection rate was less than 0.01%,
and the observed and projected infection rates for the next ten years are
both below the 20% local population level that is usually considered to
be the cutoff for an influenza pandemic. It should be stressed that this
study did not contain cumulative data; it only examined daily newly
reported patient numbers.

The 2nd order difference plot (SODP) was inspired by Poincare plot.
It is possible to observe statistical patterns of sequential differences
using time-series raw dataset from 2nd order SODP.

Fig. 4 indicates an unnatural pattern in the data set from China,
namely three straight lines visible in Fig. 4. These plots may be used, for
instance, for the entropy artificial intelligence (AI) identification tech-
nique, to identify underlying clinical dataset patterns, then compare
them with other similar datasets, [57,67–72]. The above-introduced
technique, albeit novel, having benefit of effectively employing
measured unfiltered dataset, that is presently available, since it can
handle the multi-dimensionality of the public health bio-system,
executing appropriate extrapolation, based on a relatively small-size
underlying raw clinical dataset. Non-dimensional projection's level λ,
marked by the star in Fig. 3 right, representing risks that an epidemic
breaks out in any PRC region in the near future. Introduced method-
ology's weaknesses lie within its presumption of underlying environ-
mental/biological process quasi-stationarity. The estimated 10-year
return period hazard/ risk level of 0.01% may be explained by the low
ratio of newly reported patients to the local population at the time of
epidemic outbreak. Note that predicted risk/hazard probability P(λ)
from the previous Section has been defined as a chance of epidemic
outbreak in any of 34 admirative units, thus this study aims at giving
alarm on national (system) level; probability itself does not indicate in
which administrative unit epidemic outbreak will take place.

4. Discussion

Classic bio-reliability methods, evaluating risks and hazards of
health systems, based on limited raw clinical dataset do not always have
advantage of being able to handle bio-systems having high dimension-
ality, along with cross-correlation between various bio-system compo-
nents efficiently. Major advantage of advocated methodology lies within
its versatility, multi-dimensionality and ability to analyze even limited
clinical datasets. Drawback of described approach lies within its
assumption of bio-system's joint stationarity. In case, apart from sea-
sonal variations, a strongly nonlinear trend is present in the underlying
data, it is still possible to apply suggested methodology, but then un-
derlying trends have to be identified first. For rigged or corrupted
clinical data, authors suggest use AI pattern recognition to compare
underlying datasets with similar ones.

It is important to comment on temporal dependence (temporal
autocorrection). When underlying raw dataset is 2D (2-Dimensional),
one may present the correlation factor, but for 34D bio-system it is not
straightforward to visualize system components cross-correlations. Au-
thors employed SDOF Poincare plot to highlight those inherent inter-
correlations, as regards temporal autocorrection. Regarding

Fig. 3. Left: Daily-recorded raw patient numbers, as synthetic vector R→ in percents of regional populations. Right: 10-years extrapolation towards critical level
(marked by star).

Fig. 4. China COVID-19 daily-recorded patients' statistics as 2nd order SODP
Poincare plot.
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geographical dependence (spatial autocorrection) and geographical
heterogeneity, basically it is same challenge as with temporal auto-
correction, namely the question is how to represent it in an easy visual
manner.

5. Conclusions

Ability to evaluate bio-reliability of nonlinear highly dimensional
dynamic bio and health systems is the main benefit of the method pre-
sented in this study. Current study offers novel method for multidi-
mensional modeling and performing accurate epidemiological risks
forecast. Definition of epidemiological alarm/hazard levels (failure
limits) for each province of interest has been discussed. Proposed multi-
dimensional spatio-temporal method has been applied to COVID-19
patient 2020–2022 years raw dataset, containing raw clinical records
from various administrative provinces of China. Theoretical reasoning
has been provided for the suggested Gaidai-Yakimov methodology, as
well as for forecasting technique.

Clinical time-series may be measured, reproduced computationally,
or assessed by other means. It is evident that the suggested method
produced fairly narrow confidence intervals. Advocated approach may
hence be advantageous for a wide range of bio-reliability studies on non-
linear dynamic bio-systems. The suggested approach also has variety of
additional potential uses in public health. Discussed COVID-19 example
does in no way restrict potential usage range of the advocated method.
The main finding of this study is therefore has been the suggested novel
method itself, that is now has been proven to be able of dealing even
with limited raw clinical datasets. It is well understood now that the
SARS-CoV-2 virus has a high mutation rate, significantly changing
virulence, transmission rate, etc. Future studies should employ accurate
prognostic models, aiming at long-time epidemiological predictions.
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géosciences. Ecole des mines de Paris; 2007. R071113HLEE.

[27] Chen J, Lei X, Zhang L, Peng B. Using extreme value theory approaches to forecast
the probability of outbreak of highly pathogenic influenza in Zhejiang, China. PloS
One 2015;10(2):e0118521. https://doi.org/10.1371/journal.pone.0118521.

[28] China Health Organization. Influenza fact sheet. 2014 Mar [cited 10 June 2014].
In: China Health Organization Website [Internet]. Geneva: China Health
Organization; 1948 [about 2 screens]. Available: http://www.who.int/mediacent
re/factsheets/fs211/en/index.html.

[29] Goldstein E, Cobey S, Takahashi S, Miller JC, Lipsitch M. Predicting the epidemic
sizes of influenza a/H1N1, a/H3N2, and B: a statistical method. PLoS Med 2011;8:
e1001051. https://doi.org/10.1371/journal.pmed.1001051 [PMID: 21750666].

[30] Soebiyanto RP, Adimi F, Kiang RK. Modeling and predicting seasonal influenza
transmission in warm provinces using climatological parameters. PloS One 2010;5:
e9450. https://doi.org/10.1371/journal.pone.0009450 [PMID: 20209164].

[31] Mugglin AS, Cressie N, Gemmell I. Hierarchical statistical modelling of influenza
epidemic dynamics in space and time. Stat Med 2002;21(18):2703–21 [PMID:
12228886].

[32] Kim EK, Seok JH, Oh JS, Lee HW, Kim KH. Use of Hangeul twitter to track and
predict human influenza infection. PloS One 2013;7:e69305. https://doi.org/
10.1371/journal.pone.0069305 [PMID: 23894447].

[33] Lee HC, Wackernagel H. Extreme value analyses of US P&I mortality data under
consideration of demographic effects. In: Centre de géosciences / Géostatistique
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