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Abstract

This work represents a novel mechanistic approach to simulate and study genomic networks with accompanying regulatory interactions
and complex mechanisms of quantitative trait formation. The approach implemented in MeSCoT software is conceptually based on the
omnigenic genetic model of quantitative (complex) trait, and closely imitates the basic in vivo mechanisms of quantitative trait realization.
The software provides a framework to study molecular mechanisms of gene-by-gene and gene-by-environment interactions underlying
quantitative trait’s realization and allows detailed mechanistic studies of impact of genetic and phenotypic variance on gene regulation.
MeSCoT performs a detailed simulation of genes’ regulatory interactions for variable genomic architectures and generates complete set of
transcriptional and translational data together with simulated quantitative trait values. Such data provide opportunities to study, for exam-
ple, verification of novel statistical methods aiming to integrate intermediate phenotypes together with final phenotype in quantitative ge-
netic analyses or to investigate novel approaches for exploiting gene-by-gene and gene-by-environment interactions.
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Introduction
Genome-wide single nucleotide polymorphisms (SNPs) have been
used in animals and plants to map genes for many traits, leading
to discovery of the causal genes and mutations for several men-
delian traits but rarely for quantitative (complex) traits, those
represent majority of traits that are of economic importance in
agriculture (Goddard and Hayes 2009). Genetic variation in quan-
titative traits is considered to be determined by a large number of
loci with small to moderate effects, which are individually unde-
tectable by genome-wide association studies (GWAS) due to lim-
ited sample size and stringent genome-wide significance
threshold. Although genomic prediction (Meuwissen et al. 2001) is
fundamentally different from GWAS in that it involves the use of
all SNPs regardless of their statistical significance, a better under-
standing of the genetic architecture that underlies quantitative
traits could improve the predictive ability of models (Suravajhala
et al. 2016; Fang et al. 2017 ).

The trait-specific marker maps are normally regarded as geno-
mic architecture of a trait (Flint and Mackay 2009; Hayes et al.
2010). However, recent discoveries suggest that an intricate gene
networks with accompanying regulatory interactions constitute
genetic architecture of quantitative trait and, therefore, responsi-
ble for complex phenotype formation (Boyle et al. 2017; Liu et al.
2019b; Chateigner et al. 2020). Hence, marker maps alone cannot
guarantee accurate polygenic predictions without accounting for
underlying genetic regulatory networks with related nonadditive
genetic interactions (Dai et al. 2020).

Nonlinear interactions between segregating loci as a natural
consequence of existence of genomic regulatory networks, known
as epistasis, is a common feature of genetic architecture of quanti-
tative trait (Mackay 2014). Continuous discussion of a role and im-
portance of epistasis, which has been initiated several decades ago
(Cockerham 1954; Kojima 1959), is persistently under active debate
these days (Hill et al. 2008; Mäki-Tanila and Hill 2014; Huang and
Mackay 2016; Ehrenreich 2017; Dai et al. 2020; Duenk et al. 2020).
Such interest, viewed in context of quantitative genetics in general
and genomic prediction in particular, creates a constant demand
for tools to simulate realistic phenotypic data derived from known
genomic architecture with multilocus interactions.

Mapping gene interactions in vivo is challenging task (Mackay
2014; Ehrenreich 2017). This makes in silico generated expression
data widely accepted (Sargolzaei and Schenkel 2009; Faux et al.
2016; Angelin-Bonnet et al. 2019; Liu et al. 2019a). Though, mRNA
and protein concentrations form a molecular trait (Claringbould
et al. 2017; Angelin-Bonnet et al. 2019), it is not sufficient to consider
this as a complex trait in the sense of quantitative genetics.

A common approach to simulate a complex (quantitative) trait
is sampling gene-by-gene (G� GÞ interaction effects for some arbi-
trary pairwise markers, which gives genotypic values. Sampling ad-
ditional “error” effects that imitate gene-by-environment (G� E)
interactions simulate phenotypic values (Forneris et al. 2017;
Vitezica et al. 2017; Momen et al. 2018; Wang et al. 2019; Dai et al.
2020; Duenk et al. 2020). Unfortunately, such approach ignores non-
random genes co-regulation within a genomic network and rather
allows imitation of extra variance in data due to randomly
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generated interactions based on genomic maps than build pheno-
typic values using full genomic architecture.

Here, we present a novel mechanistic approach to in silico
quantitative trait simulation implemented within MeSCoT
(Mechanistic Simulation of Complex Trait) software. The ap-
proach realizes core in vivo mechanisms of complex trait forma-
tion and quantitatively maps genotypic and phenotypic variation
into the molecular mechanisms of gene expression. Therefore, it
constitutes a computational framework for G� G and G� E inter-
action studies as well as for verification of novel and existing sta-
tistical methods in quantitative genetics.

Primarily, the software performs a detailed mechanistic simu-
lation of gene regulatory interactions for variable genomic archi-
tectures and generates transcriptional/translational genes’
products data. Basically, such MeSCoT functionality overlaps
with some other software solutions, which have been proposed in
the last decades, see the detailed overview of principal algo-
rithms and key features in Angelin-Bonnet et al. (2019). However,
besides the detailed mechanistic model of gene regulatory inter-
actions, the major contribution of our approach is due to the
novel SNP and omnigenic genetic models implemented within
the MeSCoT software. These models allow detailed mechanistic
studies of impact of genetic and phenotypic variance on gene reg-
ulation and, hence, help to reveal molecular mechanisms linking
the heritability and variation in molecular traits.

Methods
Model
The underlying conceptual model for our simulation frame-
work is an omnigenic model of quantitative trait architecture
proposed in Boyle et al. (2017) and Liu et al. (2019b). According
to this model, complex formation of quantitative trait is due to
direct genetic contributions from core genes and indirect con-
tributions from peripheral genes. While core genes affect trait
explicitly, peripheral genes contribute to trait only through
trans-regulatory effects on core genes. In case of complex geno-
mic architectures, where the core genes are normally co-regu-
lated, peripheral genomic variation is magnified such that
most of variance is driven by weak trans-effects. Therefore,
such effects are responsible for most of trait heritability. While
products of core genes are responsible for direct quantitative
trait formation, many peripheral gene variants determine cu-
mulative polygenic effect.

Besides the omnigenic model, we consider a number of addi-
tional assumptions. All genes in a network are subject to an ex-
plicit transcriptional regulation where production rate of
gene’s mRNA is proportional to a binding probability of RNA
polymerase II complex (RNAP II). The binding probability of
RNAP II is mediated by the products of other genes from the
same network and is modeled here using a widely accepted sta-
tistical thermodynamic approach (Ackers et al. 1982; Shea and
Ackers 1985; Bintu et al. 2005; Chu et al. 2009). We do not con-
sider a direct regulation of mRNA translation but rather model
production rate of gene’s products as a linear function of
mRNA concentration.

The following matrix equation represents a mathematical for-
mulation of a model of genes regulatory interactions:

_c ¼ Kb� Zcþ Qc; (1)

where c and b are vectors of variables expressed as

c ¼ e1 � xðtÞ þ e2 � sðtÞ;

b ¼ e1 � pðsÞ þ e2 � xðt� sÞ;

K ¼ Kx

Ks

� �
;Z ¼ Zx

Zs

� �
;

e1; e2 are basis vectors in (2D real vector space) R2; t is time; x is a
vector of mRNA concentrations; s is a vector of protein concentra-
tions; K and Z are the diagonal matrices of rate and degradation con-
stants respectively; p is a vector of binding probabilities of RNAP II to
a promoter region of a gene; s is time delay due to a molecular diffu-
sion (Zhang et al. 2012; Chaplain et al. 2015; Macnamara et al. 2019); Q
is stochastic diagonal matrix with elements cqiiðtÞ, where
qiiðtÞ � Nð0; rq

2Þ, rq
2 � 1 is a variance and c is constant; and the up-

per dot _ðÞ indicates time derivative;� is the Kronecker product.
Binding probability of RNAP II to gene’s promoter

p sð Þ ¼ 2 Iþ F sð Þ�1 exp �Gp
� �

H
h i�1

1n; (2)

where I is n� n identity matrix; FðsÞ is n� n diagonal matrix of a
gene’s regulatory factors where FðsÞii ¼ detðFðsÞAiFðsÞRiÞ; Gp is n�
n diagonal matrix of a relative free energies related to a gene’s
RNAP II binding; H is n� n diagonal matrix of RNAP II-binding
constants; 1n is n� 1 vector where all elements are one; n is a
number of genes in the network.

Gene’s regulatory factors

FðsÞAi ¼ ½hAIþ SAi
2 exp ð�GAÞU�1=n½hAIþ SAi

2 exp ð�GAÞ��1=n; (3)

FðsÞRi ¼ ½Iþ hRSRi
2 exp ð�GRÞ��1=n; (4)

where FðsÞAi and FðsÞRi are n� n diagonal matrices of gene’s acti-
vator and repressor factors, respectively; SAi (SRi) is n� n diagonal
matrix of concentrations of activators (repressors) molecules for
a gene i; GA (GR) is n� n diagonal matrix of a relative free energies
related to a gene’s activators (repressors) binding; U is n� n diag-
onal matrix of activators binding interaction constants; hA (hR) is
activators (repressors) constant.

A network geometry accounted in the model through the
equations for SAi and SRi

SAi ¼ diagðdiag s t� sð Þð Þ AeiÞ; (5)

SRi ¼ diagðdiag s t� sð Þð Þ ReiÞ; (6)

where diag : Rn ! Rn�n is operator which transforms n� 1 vector

to n� n diagonal matrix, diag sð Þ ¼
Pn

j
eT

j sejeT
j ; ej and ei are the j-th

and i-th basis vectors in Rn; respectively; A, R are the adjacency
matrices of activators and repressors subnetworks, respectively,
so the adjacency matrix of the genomic network is N ¼ Aþ R.

Regulators subnetworks are deduced at the initial stage of
simulation process either from in vivo inferred genomic network
or from in silico generated networks. Whereas in vivo network
comes from an external source, a synthetic network geometry
can be generated in place.

We model trait as a superposition of weighted core gene products

y ¼ W � S½ � 1m; (7)

where y is m� 1 vector of trait values; m is a number of individu-
als in population; W is m� nc matrix of weights; nc is a number of
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core genes; S is m� nc matrix of time averaged and normalized
values of core genes’ proteins; Sji ¼ sji=sri, where sji is time-aver-
aged solution of the model for a gene i in individual j, sri is time-
averaged solution for a gene i in reference genotype; 1m is m� 1
vector where all elements are one; � is Hadamard product.

Accounting for polymorphism and genomic variation
In order to ensure a quantitative diversity in functioning of ge-
netic regulatory mechanisms across genome and guarantee ge-
nomic variation in population, we sample model parameters
responsible for transcription from the normal distribution and
adjust to relative markers’ effects (mapping genomic polymor-
phism on a molecular level of gene expression).

Recall Kx 2 Rn�n a diagonal parameter matrix that represents
specific to genotype j values of genes’ expression rates

Kxj ¼ diag PMTej

� �
;

where P � N Pl;RPÞ
�

is diagonal matrix of expression rates, Pl is a
mean expression rate, that is determined through the software in-
put interface; RP is a variance of expression rate, accepted here as
RP ¼ j 	 Pl, where j (Eq.8) is a response parameter determined
through the software interface; M is m� n matrix of relative
markers’ effects; ej is m� 1 unit vector with one in the j-th position
and zeros elsewhere, m is a number of individuals in population.

P has to be sampled once (hence, is the same across all geno-
types) and parametrically determines an expression variability
due to existence of different functional classes of genes in the

network (simply saying, all genes are different in terms of the ex-
pression rates). MTej is calculated for each genotype and realizes
variation in gene expression due to genomic polymorphism.

M ¼ j
3

Mpop �Mref
� �

þ 1; (8)

where j 2 ½0; 1� is a G� G response parameter; Mpop is a genotypic
matrix that contains which marker alleles each individual inher-
ited; Mref is a matrix of reference genotypes; 1 is m� n matrix
where all elements are one. Here, the reference genotype is a ge-
notype that consists of markers’ variants with highest frequen-
cies in population. There is one reference genotype per
population, therefore, all rows in Mref are the same.

The model of G 3 E interaction
Besides the basic simulation, where G� G interactions are
highlighted, the MeSCoT allows G� E studies by employing the
following model

Env � Nð0; rEnv
2Þ;

Kx � Nðlx;ulx
2Þ;

u ¼ rlx
2=lx

2;

where Env is a virtual environment with variance rEnv
2; Kx is the

same as in Eq. 1; lx is an expectation of Kx; u is a G� E response

Figure 1 The schematic overview of MeSCoT software simulation workflow. The shaded areas depict distinct software workflow components: data
blocks and functional units. The black arrows represent information flows within existing interfaces among the components. The “Genomic
Architecture” is a data block of prior information regarding a modeled complex trait, such as peripheral and core genes (markers colored in blue and
red, respectively), their locations and network relations (blue arrows). The prior information is used to build a (1) data file consisting the combined
information for all genotypes (SNP variants) in population, the shaded area named “SNP Data File”; and (2) adjacency matrices for the modeled genomic
network, the area named “Network.” The computational unit (“Model”) utilizes the genomic and network information to produce “Gene products” data
that can be further used for the trait calculations, depicted within “Quantitative Trait” area.
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parameter, it is related to the environment as u � xrEnv
2 where x

is a proportionality coefficient. Thus G� E interaction imple-
mented on a genome’s molecular level realized in changes of
mRNA transcription rates as a result of the environmental stress
imitated by the response parameter u.

Network geometry
To generate scale-free genomic network with complex predict-
able geometry [such as modularity, network motifs, etc.
(Newman 2006)], we simulate nonequilibrium dynamical evolu-
tion process of d-dimensional simplexes, which are fully con-
nected graphs of ðdþ 1Þ nodes (Bianconi and Rahmede 2016).

First, we construct three different basal (correspondent to
d ¼ 1; 2; 3) network geometries possessed known structural prop-
erties resembled real gene networks (Balaji et al. 2006). Here, we
use Bianconi–Rahmede model (Bianconi and Rahmede 2016).

At this stage of network simulation, the software uses three
sets of parameters (with two distinct parameters in each set that
are defined through the input interface) dedicated to basal geom-
etries: (1) the proportion of genes in each basal network; and (2)
the configuration parameters that determine a shape of basal
network.

The generated basal geometries then merged to form higher-
order organizational structures. Merging is performed by

Figure 2 MeSCoT interface. (A) Input interface. (B) Output interface. Blue color indicates different types of files and folders; black color describes a
function and purpose of files; red color marks different interface groups.

Figure 3 Simulated genomic network. Gene network geometry (directed graph) consisted of 50 genes among which 12 are core; the size of blue dots is
proportional to the graph’s nodes degrees; red dots indicate the core genes; nodes labels (numbers) correspond to SNP identity numbers in the genotypes
data file; arrows indicate the directions of regulatory interactions (activation and repression); note, the specific type of regulatory interaction is not
visualized on the graph, though, the details of the activators and repressors subnetworks are depicted in Figures A2 and A3 of Appendix 2.
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iteratively establishing new edges between random nodes of
basal geometries (graphs). The number of new edges is propor-
tional to an order of the resulting graph and a number of merging
iterations is determined through the input interface.

The resulting (merged) network represents geometrical model
of quantitative trait architecture further used by the genes inter-
action model.

Simulation workflow
The schematic overview of MeSCoT simulation workflow and a
main input data structure is depicted in Figure 1. The SNP data file
formed and structured according to assumed Genomic Architecture
(prior information), which is also the source for Network construc-
tion. The Model utilizes genomic information and a network ge-
ometry and produce Genes’ products data (a time-series data of
mRNA and protein concentrations for each gene in the network).

Figure 4 Connectivity properties of simulated regulatory network; (A)
log–log plot of in-Connectivity distribution; (B) log–log plot of out-
Connectivity distribution; TF stands for transcription factor; dots
indicate distribution data; solid lines are distributions’ fit; insets to the
plots depict the types and parameters of distributions fitting.

Figure 5 Standardized expression data for core genes. The expression level profiles were generated using mRNA concentration data of reference
genotype (see Equation 8 for definition); s:e:l: is standardized expression level, obtained by subtracting mean and dividing by standard deviation; t is time
in minutes, the time was adjusted to not include first 20% of dynamic solution in order to avoid the impact of initial condition.

V. Milkevych et al. | 5



Figure 6 Distributions of core genes’ products. The products represent proteins concentrations [here we use (molecules) though the model allows other
units of concentration]; the distributions were generated for the population consisting of 5000 distinct genotypes using products.txt file from the software
interface (Figure 2B).

Figure 7 Interaction subnetworks for core genes. The depicted subnetworks associated with the protein distributions in Figure 6; the red nodes indicate
the core genes and the blue nodes are the peripheral genes determined in terms of omnigenic model; arrows indicate the directions of regulatory
interactions (activation and repression); note, the specific type of regulatory interaction is not visualized on the graph, though, the details of the
activators and repressors subnetworks are depicted in Figures A2 and A3 of Appendix 2.
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The subset of time-averaged core genes’ products data forms an
input information for the Quantitative trait model that produces a
final output of simulated trait.

The software interface and the data used for the
case studies
For the case studies, we shall consider a trait with a pure artificial
genomic architecture determined by in silico generated genomic
network. To this end, we generated genotypic data for 5000 indi-
viduals completely at random, by sampling allele counts from 0,
1, and 2, for 50 SNP loci (“allSNP.dat” file in Figure 2A). Among the
50 SNPs simulated, 12 were considered as being associated with
core genes with equal contribution to the trait (“coreSNP.dat” file
in Figure 2A). That is, the same weight was assigned to each gene
product. The rest of the SNPs were considered as (associated
with) peripheral genes (note, there is no special data file is re-
quired).

Figure 2 shows the MeSCoT interface and represents a group-
ing of different input files required for launching simulations

(Figure 2A), as well as an output data supplied with successful
completion of a particular simulation, Figure 2B.

Numerical solution and model parameters
The model, which appeared as a system of stochastic differential
equations with time delay (Equation 1), numerically reduced to
two distinct problems: (1) if the stochastic matrix Q is determined
to be a nonzero, we consider a pure stochastic problem where
s ¼ 0; otherwise (2) it is a time delay problem.

In the case of stochastic problem, the Euler–Maruyama
method (Bayram et al. 2018) is used for numerical approximation.
Here, we use a constant diffusion coefficient and standard
Wiener process is parameterized via an input interface (a param-
eter that define variance of normal distribution while mean is al-
ways zero, see the Appendix 2 for the corresponding software
keywords). A time step is determined as Dt ¼ 5 	 10�4 Tmax, where
Tmax is a maximum simulation time. The solution to the problem
was implemented using SDE Toolbox (Picchini 2007).

In the case of time-delay problem, the extension of Runge–
Kutta method is used for integration of time delay differential
equations (Shampine and Thompson 2001). The initial step size is
based on the slope of the solution at the initial time. The upper
bound of step size is not fixed and is adjusted during the numeri-
cal integration. The solution to the problem was implemented us-
ing the MATLAB dde23 solver.

Regardless of the numerical problem, the integration time
span is defined through the input interface. A vector of initial
value is determined as 1n.

To provide a greater flexibility of the approach implemented
within MeSCoT, all adjustable model parameters (except one,
which is predefined constant) can be determined through the
software input interface (Appendix 2). Besides the possibility of
direct parameters input, there are the default values for the num-
ber of parameters that can be used to configure simulations. The
default values for the rates parameters are based on the results
represented in Hausser et al. (2019).

Figure 8 Dynamics of regulatory subnetwork for gene no. 24. The plots at
the left side represent protein concentrations for the regulatory genes;
the plots at the right side represent the expression level profiles for the
regulatory genes; the profiles were generated using mRNA concentration
data of reference genotype (see Equation 8 for definition); p is protein
concentration [molecules]; s:e:l: is standardized expression level,
obtained by subtracting mean and dividing by standard deviation; t is
time in minutes, the time was adjusted to not include first 20% of
dynamic solution in order to avoid the impact of initial condition; red
color represents repressors (gene nos. 11 and 36), blue color represents
activator (gene no. 17), black color represents the target gene (gene no.
24).

Figure 9 Distribution of simulated genotypic values (traits, expressed as
normalized values). The distribution was generated for population
consisting of 5000 distinct genotypes using traits.txt file from the
software interface (Figure 2B); the trait values were calculated using the
normalized values of protein concentrations according to Equation 7; the
inset to the main plot is the quantile–quantile plot of the genotypic
values vs standard normal.
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Data availability
The software was coded using MATLAB programming language
and compiled to stand-alone executable, which does not require
MATLAB environment to run the application. The executables
(for Linux and Windows platforms) as well as the necessary docu-
mentation and examples are freely accessible via the MeSCoT
supporting web site: https://genetics.ghpc.au.dk/vimi/mescot.

Results and discussion
Genomic network
To demonstrate the MeSCoT functionality of in silico networks
simulation the software interface ð
:grm and 
:tsim files in

Figure 2A and Figure A1A and B in Appendix 1) was configured
such that three data files representing the adjacency matrices
N; A, and R (Equations 5 and 6) were generated. The network
data were produced once and subsequently reused in all simula-
tion studies. The resulting network geometry represented in
terms of a directed graph is depicted in Figure 3.

The network was constructed only as a simplicial complex of
1-dimensional simplexes (where no 2- and 3-dimensional sim-
plexes were included in the resulting network, see the Appendix
1 for the details of the software interface configuration), which
was sufficient to achieve a basic connectivity properties (Figure 4)
typical to genomic regulatory networks (Balaji et al. 2006; Van den
Bulcke et al. 2006; de Matos Simoes et al. 2013; Angelin-Bonnet

Figure 10 Impact of the G� G response parameter j on simulated genotypic values (trait). (A) Changes of genomic variance and distribution means in
relation to j; VG is the genomic variance; EðtraitÞ is the genotypic value mean. (B) Segregation of genotypic value distributions in relation to increased
values of j; the distributions appear as a number of counts vs genotypic values (trait) which are normalized.

Figure 11 Norm of reaction and the results of G� E study. (A) The concept of the norm of reaction for population. (B) Simulation results of G� E
interaction for 6 distinctive environments characterized by u ¼ 0:05 � 0:3; for each environment there are 10 simulated phenotypes (black lines); red
line indicates the genotypic value distribution (no environmental impact). Distributions appear as probabilities vs normalized phenotypic values.

8 | G3, 2021, Vol. 11, No. 7

https://genetics.ghpc.au.dk/vimi/mescot


et al. 2019; Sarkar et al. 2021), including a scale-free distribution
characteristic (Strogatz 2001; Broido and Clauset 2019), Figure 4B.

Expression data
The detailed dynamics of gene regulatory network expressed in
terms of mRNA and protein concentrations are covered by basic
software functionality. As an example, the standardized expres-
sion level profiles of core genes (for the network depicted in
Figure 3) are generated using mRNA concentration data and
depicted in Figure 5.

G3G study
The program interface (Figure 2B) allows extensive analysis of
G� G interactions. The core genes’ products form complex pat-
terns, such as segregated distributions of protein molecules in
Figure 6, due to the interplay between the genomic differences in
population and the geometry of the genomic network, Figure 3.

While the effect of genomic variance acts on the genes’ prop-
erties related to the regulatory mechanisms (see the model

details in the Methods section) within the same network for all
genotypes, the effect of the network geometry can be conceptual-
ized as the core genes subnetworks interactions. Because it is
rather difficult to relate the particular subnetwork geometry
depicted in Figure 7 to its product distribution (similar subnet-
work geometries correspond to the different products distribu-
tions and vice versa, Figure 6), we suppose the subnetworks
interaction forms the patterns visualized in Figure 6 (the subnet-
works in Figure 7 associated with the protein distributions in
Figure 6).

On a molecular level, the characteristics of protein distribu-
tions (the means, in particular) are closely related to genomic in-
teraction within the subnetworks. As an example, the dynamics
of regulatory subnetwork for gene no. 24, expressed in terms of
its activators and repressors, is depicted in Figure 8. As expected,
the s:e:l: values of gene no.24 positively correlate with its activa-
tor’s (gene no.17) s:e:l: values and negatively correlate with its
repressors’ (genes no. 11 and 36) s:e:l: values (the right column of
plots in Figure 8).

Figure 12 Changes in environmental variance component re
2 within the phenotypic variance of simulated trait due to u.

V. Milkevych et al. | 9



Cumulative contribution of all normalized core genes’ prod-
ucts is visualized in Figure 9 where the result is represented as
the probability distribution of simulated genotypic values upon
5000 individuals. For the assumed genomic architecture and consid-
ered for this study genotypes, the trait distribution tends to be nor-
mal, though it is not exactly normal as the inset to the main plot in
Figure 9 demonstrates, and appears as a combination of minor dis-
tributions related to the individual core genes’ products (Figure 6).

Aside from the architecture-based characteristics of the trait
distribution (Figure 9), the response parameter j plays an addi-
tional role in adjustment of the resulting values of genomic vari-
ance and determines the compactness of the means of minor
distributions that form the trait. Increase of j magnifies the influ-
ence of relative markers effects (Equation 8) resulting in in-
creased values of the genomic variance, Figure 10A (blue line). In
addition, it tends to shift the trait distribution mean and increase
its segregation, Figure 10A (red line) and Figure 10B. Observed
segregation of the trait distribution is right-shifted and it is due to

the model solution space is always positive and the trait is nor-
malized but not centered.

Note, as a default, the MeSCoT uses the additive genetic model
of quantitative trait (Equation 7). However, the program interface
(Figure 2B) allows a custom model of a quantitative trait (here the
products data files should be utilized) as well a much broad analy-
sis of G� G interactions (here an additional sets of time-series
data for each genotype should be considered).

G3E study
The G� E study appears as series of G� G simulations with fixed
u. The simulated phenotypes represent the norms of reaction (De
Jong 1990; Gomulkiewicz and Kirkpatrick 1992) for the particular
environment, Figure 11.

G� E study reveals exponential increase of values of environ-
mental variance component in response to increased parameter
u, Figure 12.

Figure 13 The results of MeSCoT performance tests. The tests were conducted on HPC cluster of Intel servers of Skylake architecture; the requested
memory was limited to 50 GiB (though never has reached this value), the maximum observed CPU frequency during the tests was 3.5 GHz and the
number of requested computing threads 2–8; all the tests were conducted on 1000 genotypes data with variable size of genomic network where the
number of genes involved was 100, 1000, 2000; T is an elapsed time; n is number of computing threads; T8 is the elapsed time of computations where 8
threads were involved.
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Performance tests
The results of high-performance computing (HPC) tests, which
demonstrate the computing time and scalability of the software,
are depicted in Figure 13. Because the software multithreading
functionality is implemented such that blocks of multiple geno-
types belong to separate threads, all HPC tests were conducted
using 1000 genotypes data while the number of SNP variants
(genes involved in regulatory network) was variable.

The estimated time reduction coefficient for 8-threaded pro-
cess was �0:125 compare to 1-threaded process, Figure 13 (Time
reduction plot). The time required to complete one genotype cal-
culation shows linear scaling in relation to a number of genes in
regulatory network, Figure 14.
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Appendix 1: The network geometry
The details of configuration set-up used in MeSCoT
interface in relation to genomic network data are

depicted in Figure A1. The simulated activators ge-
nomic subnetwork and repressors genomic sub-
network are shown in Figures A2 and A3,
respectively.

Figure A1 Configuration set-up used in MeSCoT interface in relation to genomic network data. The network options used in (A) 
:grm parameters and (B)

:tsim configuration files to produce in silico genomic network depicted in Figures 3, A2, and A3; (c) the network options used in 
:tsim configuration file to
reuse (already simulated) genomic network data.
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Appendix 2: Model parameters

Figure A2 The simulated activators genomic subnetwork. The depicted subnetwork represents the adjacency matrix A 2 N (Equation 5) and
corresponds to the network depicted in Figure 3; the arrows indicate the directions of genes activation regulation.

Figure A3 The simulated repressors genomic subnetwork. The depicted subnetwork represents the adjacency matrix R 2 N (Equation 5) and
corresponds to the network depicted in Figure 3; the arrows indicate the directions of genes repression regulation.
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Table A1 Nomenclature of the model variables/parameters and their corresponding software implementation

Description Symbol Software

Keyword Default value Default unit Allowed interval

mRNA concentration X Non Calculated [a.unit] [0,þinf)
Protein concentration S Non Calculated [a.unit] [0,þinf)
Binding probabilities of RNAP II to a promoter region of a gene P Non Calculated Non [0,1]
Time t $TMAX 500 [min] [0,þinf)
Time delay s $TDIL 0 [min] [0,þinf)
Rate constant of mRNA transcription Kx $RATERNA 4.0 [1/min] [0,þinf)
Rate constant of protein translation Ks $RATEP 8.0 [1/min] [0,þinf)
Degradation constant of mRNA Zx $DEGRNA 0.2 [1/min] [0,þinf)
Degradation constant of protein Zs $DEGP 0.6 [1/min] [0,þinf)
Stochastic matrix variance rq

2 $STOCH 0.0 Non [0,1]
Stochastic matrix constant c Non Predefined Non Non
Number of genes in the network n $SNP Non Non [0,þinf)
Relative free energy related to a gene’s RNAP II binding Gp $EBIND 9.0 [kT] [0,11]
RNAP II binding constant H $KBIND 8.1e3 [1/kT] [0,þinf)
Gene’s regulatory factor FðsÞ Non Calculated Non [0,þinf)
Gene’s activator factor FðsÞAi Non Calculated Non [0,þinf)
Gene’s repressor factor FðsÞRi Non Calculated Non [0,þinf)
Concentration of activator SAi Non Calculated [a.unit] [0,þinf)
Concentration of repressor SRi Non Calculated [a.unit] [0,þinf)
Relative free energy related to a gene’s activator binding GA $EACT 6.0 [kT] [0,11]
Relative free energy related to a gene’s repressor binding GR $EREP 7.0 [kT] [0,11]
Activator binding interaction constant U $KACT 5.0e5 [1/kT] [0,þinf)
Activator constant hA

Repressor constant hR

Adjacency matrix of activator subnetwork A $ASAVED Calculated Non Non
Adjacency matrix of repressor subnetwork R $RSAVED Calculated Non Non
Adjacency matrix of the genomic network N $NSAVED Calculated Non Non
Genotypic value y non Calculated [n.value] [0,þinf)
Matrix of weights W $CORE Non Non [0,1]
Number of core genes nc $CORE Non Non [0,þinf)
Number of individuals in population m $SNP Non Non [1,þinf)
Time averaged and normalized value of core gene’s protein �Sji Non Calculated [a.unit] [0,þinf)
Matrix of relative markers’ effects M Non Calculated non non
Matrix of reference genotypes Mref Non Calculated non non
Genotypic matrix Mpop $SNP Non non non
G� G response paramete j $SNPDIFF 0.25 non [0,1]
G� E response parameter U $GENDIFF 0.0 non [0,1]

[a.unit] means arbitrary (user defined) units can be used in the model; [n.value] means normalized value.

V. Milkevych et al. | 15


	app1
	app2
	tblfn1

