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Summary

Sleep and epilepsy have a reciprocal relationship, and have been recognized as

bedfellows since antiquity. However, research on this topic has made a big step

forward only in recent years. In this narrative review we summarize the most stim-

ulating discoveries and insights reached by the “European school.” In particular,

different aspects concerning the sleep–epilepsy interactions are analysed: (a) the

effects of sleep on epilepsy; (b) the effects of epilepsy on sleep structure; (c) the

relationship between epilepsy, sleep and epileptogenesis; (d) the impact of epilep-

tic activity during sleep on cognition; (e) the relationship between epilepsy and

the circadian rhythm; (f ) the history and features of sleep hypermotor epilepsy

and its differential diagnosis; (g) the relationship between epilepsy and sleep

disorders.
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1 | INTRODUCTION

Until the 1980s, polysomnography (PSG) was principally used to clar-

ify diagnostic doubts about epilepsy. By exploiting the potential

capacity of sleep to activate subtle or muted paroxysmal abnormalities

during wakefulness, and to avoid inducing latent seizures by central

nervous system stimulants (e.g. bemegride; Bancaud, Talairach, Wal-

tregny, Bresson, & Morel, 1969; Feuerstein, Kurtz, & Rohmer, 1966),

clinical environments dedicated to electroencephalography (EEG)

were converted into rudimentary and temporary sleep laboratories.

However, because the patient had only to fall asleep and reach the

deepest non-rapid eye movement (NREM) sleep stages, recording was

limited to 30–60 min or at most an hour and a half to try to capture

also a period of rapid eye movement (REM) stage. Even today, espe-

cially in the paediatric field, video-EEGs are generally scheduled in the

morning after sleep deprivation in subjects with suspected epilepsy. In

effect, why extend PSG monitoring throughout the night if the diag-

nostic uncertainties of epilepsy may be resolved after a single sleep

cycle? Does it make sense to hire and pay a neurophysiology techni-

cian for an entire night? What could the complete sleep histogram

ever reveal? A portion of stage N3 could be enough even in the case

of NREM parasomnias. The tenacious and visionary curiosity of

European sleep medicine pioneers went further, allowing us to inves-

tigate the mysterious and fruitful intertwining between sleep and epi-

lepsy. This approach has allowed to shed light on unknown

neurophysiological mechanisms, consolidate the role of sleep micro-

structure, and disclose the impact of ictal and interictal manifestations

on daytime vigilance, cognitive functions and autonomic balance.

Moreover, important clinical findings on sleep-related epilepsies (SRE)

and co-morbidities with sleep disorders have been highlighted. In this

review, we summarize the most stimulating discoveries and insights

reached by the “European school.”

2 | THE EFFECTS OF SLEEP ON EPILEPSY

Sleep has a significant effect on epilepsy, with NREM sleep facilitating

and REM sleep inhibiting epileptic activity (Ng & Pavlova, 2013;

Shouse, Farber, & Staba, 2000). Evidence for the effects of sleep on

epilepsy is not only present for sleep architecture but also for its

microstructure. Analysis of the cyclic alternating pattern (CAP), an

EEG marker of unstable sleep, has shown that epileptic activity is not

uniformly increased during NREM sleep, but that enhanced epileptic

activity is associated with CAP A1 subtypes that consist of recurrent

EEG bursts of slow-wave activation (Parrino, Smerieri, Spaggiari, &

Terzano, 2000). Subsequently, the role of slow waves known to

orchestrate physiological brain rhythms was investigated in epilepsy

(Steriade, 2006). Isolated high-amplitude slow waves were found to

be the main driver of interictal epileptic activity during NREM sleep

(Frauscher et al., 2015a), likely mediated by EEG hypersynchronization

and by the presence of a bi-stable state typical of slow oscillations

(Steriade, 2006). On the other hand, in some epileptic conditions, the

distribution of interictal epileptiform discharges (IEDs) follows the

dynamics of spindle frequency activity throughout the night (Ferrillo,

Beelke, & Nobili, 2000; Zubler, Rubino, Lo Russo, Schindler, &

Nobili, 2017). In contrast, it was shown that REM sleep with (phasic)

and without (tonic) rapid eye movements has distinct suppressive

impact on interictal epileptic activity, with the most inhibiting effect

being present during phasic REM sleep where EEG desynchronization

is maximum (Campana et al., 2017; Frauscher, von Ellenrieder,

Dubeau, & Gotman, 2016). Apart from these well-documented rela-

tionships, the effect of arousals on sleep and epilepsy remains a cru-

cial issue to be investigated. In particular, it has been shown that

epileptic activity (Peter-Derex et al., 2020; Terzano, Parrino, Anelli, &

Halasz, 1989), as well as physiological, paraphysiological and patho-

logical motor events share a common trait of arousal-activated phe-

nomena (Parrino, Halasz, Tassinari, & Terzano, 2006).

In pre-surgical epilepsy evaluation as currently performed, analy-

sis of sleep plays at most a minor role. However, in a time of increased

efforts undertaken to localize the epileptogenic zone in the interictal

EEG, it might be particularly beneficial to take advantage of the dis-

tinct properties of sleep. Standard EEG shows that spikes (if present)

become more focally restricted during REM sleep and more wide-

spread, revealing additional foci during NREM sleep (Ng &

Pavlova, 2013; Sammaritano, Gigli, & Gotman, 1991). Furthermore, a

study performing electrical source imaging with high-density EEG in

six patients supported the source localizing value of REM spikes over

NREM spikes (Kang et al., 2020). Finally, a recent systematic review

concluded that spikes occurring during REM sleep correctly localized

the epileptogenic zone in 84% of cases and that REM spikes were

never false localizing (McLeod, Ghassemi, & Ng, 2020). On the other

hand, capitalizing on supervised machine learning techniques, a recent

study found that NREM sleep is best to identify the epileptogenic

zone for both single features such as spikes or high-frequency oscilla-

tions, a novel marker of the epileptogenic zone (Frauscher

et al., 2017) and the multi-feature approach (Klimes et al., 2019). One

explanation that could reconcile both findings is that REM sleep is

particularly useful for features relying on EEG desynchronization

effects such as increased localization accuracy of spikes, whereas

NREM sleep has particular value for features capitalizing on the

impact of synchronization. Utilizing strengths of both states of vigi-

lance might aid to further improve localization accuracy.

In clinical practice it is widely accepted that sleep deprivation can

provoke seizures and increases the likelihood of finding specific
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epileptiform abnormalities in the standard EEG, as cortical excitability

increases with time awake (Huber et al., 2013). However, this state-

ment is true only when considering specific epilepsy subtypes. It is

known that sleep deprivation results more frequently in seizures in

case of generalized epilepsies and in particular in juvenile myoclonic

epilepsy (Xu et al., 2018). Further, sleep deprivation protocols aiming

to provoke specific epileptiform anomalies in standard EEG were most

useful in the context of generalized epilepsies (Renzel, Baumann, &

Poryazova, 2016). In contrast, its blind use for all types of epilepsy or

focal epilepsies added no further value than a subsequent repeated

standard EEG. In a systematic review, Rossi et al. identified only five

relevant studies based on focal epilepsy; two of the five studies

showed no clear relationship between insufficient sleep and seizure

risk (Rossi, Joe, Makhija, & Goldenholz, 2020). The only randomized

study performed in the epilepsy monitoring unit in 84 pre-surgical epi-

lepsy patients found no effect of sleep deprivation on seizure occur-

rence (Malow, Passaro, Milling, Minecan, & Levy, 2002). Interestingly,

recent data obtained in focal drug-resistant epilepsy suggest that

increasing sleep duration by 1.6 hr may lower the risk of seizure

occurrence by 27% in the following 48 hr (Dell et al., 2021).

3 | THE EFFECTS OF EPILEPSY ON SLEEP
STRUCTURE

Epilepsy is associated with changes in sleep macro- and microstruc-

ture (Sudbrack-Oliveira, Lima Najar, Foldvary-Schaefer, & da Mota

Gomes, 2019). These changes are multifactorial, given that epilepsy is

not only seizures but rather a complex, multidimensional condition

regarding the underlying pathology, neuropsychiatric and sleep co-

morbidities, and effects of pharmacological and non-pharmacological

treatments (Fisher et al., 2014; Liguori, Toledo, & Kothare, 2021;

Romero-Osorio, Gil-Tamayo, Nariño, & Rosselli, 2018). However,

apart from these manifold factors, evidence suggests that epileptic

activity has a direct impact on sleep architecture, sleep continuity and

sleep oscillations.

Increased wake after sleep onset is the strongest feature

observed in patients with epilepsy (PWE; Crespel, Coubes, & Baldy-

Moulinier, 2000; Dell et al., 2021; Parrino et al., 2012; Peter-Derex

et al., 2020), especially during nights with clinical manifestations. It

may result in part from the awakening effect of certain seizures, not

only generalized tonic–clonic seizures but also focal, and even

paucisymptomatic seizures (Awad & Lüders, 2010; Manni et al., 1997;

Yildiz, Tezer, & Saygi, 2012). Seizure-associated changes in sleep

parameters also include a decrease in REM sleep quantity and a delay

in the first REM sleep episode (Bazil, Castro, & Walczak, 2000; Dell

et al., 2021). Sleep architecture disruption is observed at the micro-

structural level as well. Generalized interictal discharges are associ-

ated with alterations in NREM sleep stability as evident by an

increased amount of CAP rate and a longer duration of CAP cycles

(Terzano, Parrino, Anelli, Boselli, & Clemens, 1992). A direct arousing

effect of ictal and interictal activity has been demonstrated in focal

drug-resistant epilepsy using combined intracranial EEG and PSG

recordings, which allow to explore the precise temporal relationship

between epileptic discharges and arousals (Malow, Bowes, &

Ross, 2000; Peter-Derex et al., 2020; Terzaghi et al., 2008). Epileptic

activity also interferes with sleep oscillations. Epileptiform

K-complexes may be observed in patients with generalized idiopathic

or focal epilepsy, being considered as a paroxysmal response to arous-

ing stimuli (Halász, Terzano, & Parrino, 2002; Niedermeyer, 2008). A

focal deficit in sleep spindles, whose rate is negatively correlated with

the spike index, was reported in childhood epilepsy with centro-

temporal spikes (Kramer et al., 2021). Such a decrease in spindle activ-

ity is also observed in the region surrounding the epileptic focus in

patients with drug-resistant epilepsy. Epileptic activity may also dis-

rupt the orchestration of sleep oscillations, i.e. through abnormal cou-

pling between hippocampal IED and remote cortical spindles (Gelinas,

Khodagholy, Thesen, Devinsky, & Buzsáki, 2016). Changes in REM

sleep oscillations have been reported too, with a decrease in density,

duration and frequency of sawtooth waves in patients with temporal

and extratemporal lobe epilepsy (Vega-Bermudez, Szczepanski,

Malow, & Sato, 2005).

Epilepsy-related alterations in sleep patterns raise a number of

considerations. First, it is worth underlining the bi-directional interac-

tion between sleep instability and epileptic activity. Regardless of the

causal relationship, enhanced sleep instability in PWE may also exert a

negative impact on autonomic functions increasing the sympathetic

tone during sleep (Tobaldini et al., 2013). Second, disruption of sleep

architecture may be particularly pronounced in patients with sleep-

related hypermotor epilepsy (SHE; Loddo et al., 2020; Nobili

et al., 2005; Parrino et al., 2012). Third, despite the sleep alterations

related to epilepsy, not all patients complain of poor sleep quality. As

observed in insomnia, sleep misperception occurs frequently in PWE,

although the objective–subjective mismatch remains to be explored

(Ng & Bianchi, 2014). Finally, most evidence on the influence of epi-

lepsy on sleep has been gathered from single-night hospital-based

investigations many of which were performed in the epilepsy monitor-

ing unit and not in a controlled sleep laboratory environment. Longitu-

dinal assessment of sleep in PWE (at diagnosis and during follow-up,

taking into account seizure control, co-morbidities, anti-seizure medi-

cation, etc.) is recommended to disentangle the role of epilepsy from

that of confounding factors, and could benefit from ecological sleep

studies using home-based devices.

4 | EPILEPSY, SLEEP, BRAIN PLASTICITY
AND EPILEPTOGENESIS

Spontaneous cortical oscillations during slow-wave sleep are associ-

ated with neuronal plasticity due to rhythmic spike bursts and spike

trains fired by thalamic and neocortical neurons during low-frequency

rhythms characterizing this vigilance state. In vivo experimental data

have shown that during slow-wave sleep oscillations, neuroplasticity

changes occur at the level of both thalamic and cortical neurons,

which progressively enhance their responsiveness (Steriade &

Timofeev, 2003). Experimental and human studies have also shown
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that the same spontaneous synchronized sleep oscillations may

develop into paroxysmal epileptic activities (Steriade, Contreras, &

Amzica, 1994). Finally, sleep-related epileptic transformation of physi-

ological networks may underly plastic changes favouring epi-

leptogenesis (Halász & Szűcs, 2020). Indeed, the normal sleep circuitry

and sleep-specific oscillations (spindles, slow waves), hijacked to gen-

erate epileptic activity (Beenhakker & Huguenard, 2009; Steriade

et al., 1994), may favour epileptogenesis in the most frequent (devel-

opmental) epilepsies (Halász, B�odizs, Ujma, Fab�o, & Szűcs, 2019). In

particular: (a) absence epilepsy with spike and wave discharges

exploits the burst-firing mode of the corticothalamic system during

NREM sleep (Beenhakker & Huguenard, 2009; Gloor, 1978; Steriade,

McCormick, & Sejnowski, 1993); (b) in mesio-temporal epilepsy, hip-

pocampal sharp-wave-ripples transform to epileptic spikes joining

high-frequency pathological oscillations (Buzsáki, 2015; Frauscher

et al., 2015b); (c) in the frame of perisylvian epileptic network centro-

temporal spikes may shift into diffuse discharges as previously

observed in patients with electrical status epilepticus in sleep (ESES)

and Landau–Kleffner syndrome (LKS; Halász et al., 2019; Halász,

B�odizs, et al., 2019; Mirandola et al., 2013; Tassinari et al., 2000).

5 | IEDs DURING NREM SLEEP: IMPACT
ON COGNITION

The NREM sleep seems to play a major role in memory and cognition,

regulating synaptic homeostasis (Tononi & Cirelli, 2014) and reshaping

hippocampal-neocortical network necessary for long-term memory

consolidation (Born & Wilhelm, 2012; Buzsáki, 2015; Diekelmann,

2014). The fact that NREM sleep may strongly activate IEDs, including

those produced by the mesial temporal regions (Lambert et al., 2018),

may have consequences on both synaptic plasticity and hippocampal-

neocortical dialogue.

In childhood epilepsies characterized by a strong activation of

IEDs during NREM sleep and cognitive alterations (LKS, continuous

spike and waves during slow-wave sleep), an association between

cognitive impairment and an altered overnight decrease of slow

waves (a sign of altered slow wave homeostasis) has been reported,

suggesting that IEDs may prevent the physiological process of synap-

tic downscaling. This seems to be supported by the improvement of

cognitive functions in these patients after recovery of the homeo-

static regulation of slow waves (Bölsterli et al., 2011, 2017).

On the other hand, IEDs occurring during sleep have been

suggested to disturb the coupling between hippocampal ripples, tha-

lamic spindles and cortical slow waves, necessary for long-term mem-

ory consolidation (Buzsáki, 1989, 2015). Indeed, recent studies,

conducted during the presurgical evaluation of drug-resistant patients

with focal epilepsy, showed a link between NREM sleep-related hip-

pocampal IEDs and the impairment of long-term memory consolida-

tion (Lambert et al., 2020, 2021). Hippocampal IED density has been

shown to be negatively correlated with hippocampal spindle density

(Frauscher et al., 2015b). Knowing the role of spindles on cognitive

processes (Schabus et al., 2004), IEDs highly associated with spindle

frequency time course in different epileptic syndromes of childhood

characterized by cognitive dysfunctions (Baglietto et al., 2001; Gibbs,

Nobili, & Halász, 2019) play a negative role on cognition (Kramer

et al., 2021). Finally, hippocampal IEDs have also been shown to dis-

turb hippocampal-frontal networks, inducing spindle-like activity in

the frontal region during NREM sleep, REM sleep and wakefulness

(Dahal et al., 2019; Gelinas et al., 2016).

6 | CIRCADIAN RHYTHM AND EPILEPSY

Circadian rhythms are part of the internal 24-hr daily cycle of nearly

all biological functions. Circadian patterns in seizure occurrence have

been recognized for centuries. Advances in diagnostic technology

including chronic intracranial EEG recordings have confirmed the clini-

cal observation of different temporal patterns of epileptic activity and

seizure occurrence over the 24-hr period (Baud et al., 2018; Ct, Tk,

Ft, & Mj, 2015). The diurnal occurrence of seizures is influenced by

several factors, including the type of epilepsy (generalized or focal)

and the site of seizure onset (i.e. frontal, temporal, etc.; Khan

et al., 2018; Spencer et al., 2016). Generalized seizures have a ten-

dency to occur in the morning following sleep. In focal epilepsies,

frontal lobe seizures occur predominantly during sleep, while temporal

lobe seizures arise mostly in wakefulness (Hofstra et al., 2011). Of

note, these studies do not allow evaluation of whether the observed

preferred time of occurrence is modulated by behavioural states

(wakefulness versus sleep or drowsiness), environmental conditions or

independent effects of the endogenous circadian system. While dem-

onstrating circadian patterns of seizures in humans can be challenging,

strong evidence supporting a circadian modulation of seizures is

derived from animal models, where rigorous study designs are

feasible. In a rat model of limbic epilepsy, the presence of a distinct

endogenous circadian distribution of seizures, irrespective of the

sleep–wake status, has been shown, and the distribution of seizures

relative to time of day resembled the one observed in human mesial

temporal lobe epilepsy (Quigg, Straume, Menaker, & Bertram, 1998).

Variability in cortical excitability across the circadian cycle and follow-

ing sleep deprivation has also been shown in analyses of transcranial

magnetic stimulation. Cortical excitability increases with time awake

and appears to vary according to the epilepsy syndrome (Badawy,

Curatolo, Newton, Berkovic, & Macdonell, 2006), but is also modu-

lated by the circadian phase with lower cortical excitability in the eve-

ning hours (Ly et al., 2016). Some studies have tried using melatonin

to influence circadian rhythm and thereby improve seizure control;

however, results have been variable and the role of melatonin in

reducing seizures is uncertain (Brigo, Igwe, & Del Felice, 2016). Core

circadian genes, BMAL1 and CLOCK, which code for transcription fac-

tors, have been shown to influence excitability and seizure threshold

(Gerstner et al., 2014; Li et al., 2017). CLOCK and BMAL1 are also

involved in the regulation of the mTOR pathways consistent with the

notion that mTOR and the circadian system interact to promote epi-

lepsy (Lipton et al., 2015; Zhang et al., 2009). Several regulator pro-

teins bind to a complex GATOR1 to repress the activity of the
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mTOR-system. Among them, DEPDC5, NPRL2 and NPRL3 are interest-

ing, as mutations in these genes are specifically associated with SHE

(Ricos et al., 2016; Scheffer et al., 2014). Further studies are needed

to clarify the relationship, but this may inspire alternative future treat-

ment options, including gene therapy or optogenetics. Variability in

circadian seizure preponderance also opens the possibility for chrono-

therapy. An obvious treatment strategy in epilepsy to date is to treat

at times of greatest occurrence of seizures based on historically

highest seizure or epileptogenicity levels in relation to wakefulness,

sleep, circadian or non-circadian rhythms (Ramgopal, Thome-Souza, &

Loddenkemper, 2013). Such personalized antiepileptic drug-dosing

regimens may improve seizure control and reduce side-effects as well

as risks associated with seizures.

7 | FROM NOCTURNAL FRONTAL LOBE
EPILEPSY (NFLE) TO SHE

The first description of SHE dates back to 1981, when Lugaresi and

Cirignotta described five patients presenting bizarre motor behaviours

or sustained dystonic postures during sleep. They named this condi-

tion “hypnogenic paroxysmal dystonia” and later “nocturnal paroxys-
mal dystonia” (NPD) to emphasize the complex, violent, dystonic and

ballistic features of the episodes (Lugaresi & Cirignotta, 1981). In

1990, Tinuper et al. confirmed the epileptic nature of NPD docu-

menting clear-cut epileptic EEG abnormalities in three patients with

NPD (Tinuper et al., 1990). The term “NFLE” was coined, defining

NFLE as a syndrome characterized by a spectrum of motor manifesta-

tions of varying complexity and duration from the shortest episodes

(paroxysmal arousals, PA) to the most prolonged events (epileptic noc-

turnal wanderings, ENW; Montagna, 1992; Plazzi, Tinuper, Montagna,

Provini, & Lugaresi, 1995; Provini, Plazzi, & Lugaresi, 2000). A video-

PSG study of 100 consecutive NFLE cases highlighted that seizure

frequency was high with frequent clustering, and that PA, NPD and

ENW could occur in the same patient representing the continuum of

a common epileptic condition (Provini et al., 1999). Subsequently,

many studies showed that sleep-related seizures with hyperkinetic

automatisms could have also an extra-frontal origin (Nobili

et al., 2004; Proserpio et al., 2011; Ryvlin et al., 2006). During a con-

sensus conference in Bologna, the term NFLE was replaced by SHE to

reflect the evidence that seizures are associated with sleep rather

than time of day, have characteristic hypermotor features and are not

always of frontal lobe origin (Tinuper et al., 2016). It was also stated

that although aetiology remains unknown in the majority of patients,

it may include structural anomalies such as focal cortical dysplasia and

genetic mutations such as CHRNA4, the first recognized epilepsy

gene, identified in a large kindred of autosomal dominant SHE

(Scheffer et al., 1995; Steinlein et al., 1995). Other genes have since

then been recognized including KCNT1 and DEPDC5 (Heron

et al., 2012; Picard et al., 2014).

Reviewing the anatomo-electroclinical data of patients with SHE

also clarified seizure pattern subtypes arising from the frontal lobe,

and showed that the most highly integrated ictal behaviours tend to

emerge from the anterior prefrontal regions, while more elementary

motor signs are associated with posterior regions of the frontal lobe

(Bonini et al., 2014; Gibbs, Proserpio, et al., 2019). Although some-

times impressive in nature, these seizure manifestations have a corti-

cal correlate that include complex frontal networks as well as

subcortical circuitry (Pelliccia et al., 2022; Rheims et al., 2008;

Tassinari et al., 2005; Zalta et al., 2020). Distinguishing a frontal from

an extra-frontal onset can be challenging especially in patients with

normal brain magnetic resonance imaging. However, certain clues can

be useful, including non-motor seizure semiology (auras), seizure dura-

tion and latency between the first detectable movement, usually an

awakening, and the onset of hypermotor manifestations (Gibbs

et al., 2018; Gibbs et al., 2019). Diagnosis of SHE is based primarily on

clinical history and seizure description consisting of obvious and dis-

ruptive hypermotor events. Three diagnostic categories are available:

(a) witnessed SHE (possible), based on the description of clinical fea-

tures; (b) video-documented (clinical) SHE, based on the evaluation of

a video-recorded hypermotor episode; and (c) video-EEG-documented

(confirmed) SHE, requiring the video-polygraphic recording of stereo-

typed events and ictal or interictal epileptiform abnormalities. Because

the presence of clear-cut ictal or interictal epileptiform abnormalities

is only observed in a minority of patients, the absence of EEG corre-

lated does not exclude the diagnosis of SHE (Tinuper et al., 2016).

Differential diagnosis is broad, and includes disorders of arousals

(DOA), sleep-related movement disorders, and REM-sleep behaviour

disorder. Differentiation with DOA is often the most challenging due

to clinical similarities between both entities. DOA are parasomnic

events, characterized by complex, seemingly purposeful behaviours

occurring during an incomplete awakening from NREM sleep

(American Academy of Sleep Medicine, 2014). DOA often begin in

childhood, are of variable frequency and duration and, most impor-

tantly, are not stereotypic in nature, as one event will likely be differ-

ent from another (Castelnovo, Lopez, Proserpio, Nobili, &

Dauvilliers, 2018). Careful history taking represents the first step for

differentiating SHE and DOA, and this can be sufficient in typical

cases. Different questionnaires based on clinical features have been

developed as further support tool, though with variable accuracy

values (Bisulli et al., 2012; Derry et al., 2006; Loddo et al., 2021;

Manni, Terzaghi, & Repetto, 2008). Video-PSG represents the “gold-
standard” test for diagnosing complex sleep-related events, but the

widespread availability of home-recording devices also provides a use-

ful and affordable diagnostic instrument, especially if multiple DOA

events are captured (Montini, Loddo, Baldelli, Cilea, & Provini, 2021;

Nobili, 2009). However, in accordance with the current diagnostic

criteria for SHE, if the recorded episodes are minor motor events or

PA, the clinical diagnosis may be unreliable (Tinuper et al., 2016).

Indeed, recent findings demonstrate that DOAs are characterized not

only by major events but also by events of lesser intensity, such as

brief arousals called “simple arousal movements” (SAMs; Loddo

et al., 2017). These can be difficult to distinguish from minor motor

events or PA in patients with SHE. Here, video-PSG is most helpful as

the occurrence of at least one minor event during N3 is highly sugges-

tive for DOA, whereas a major motor event outside N3 is significantly
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indicative for SHE (Proserpio et al., 2019). Moreover, analysing spe-

cific semiological features captured on video-PSG such as duration,

sleep stage at onset, limb involvement, movement progression and

behaviours can be useful to differentiate seizure fragment in SHE

from SAMs in DOA (Loddo et al., 2020). However, other studies sug-

gest the existence of a possible continuum between the two condi-

tions, mitigating the sharp dichotomy DOA versus SHE (Halász,

Kelemen, & Szűcs, 2012; Mutti et al., 2020).

8 | EPILEPSY AND SLEEP DISORDERS

With a prevalence of epilepsy of 0.7% and the estimate that sleep dis-

orders occur in every third person in his or her lifetime, it is not

strange that both conditions may overlap. Sleep disorders often disap-

pear or are successfully treated, but still a major overlap remains. In a

large multicentre and long-term study in Italy, one or more co-

morbidities were found in 26.4% of 1006 PWE. From the

408 reported co-morbidities, 42.2% appeared to be associated by

chance. Unfortunately sleep disorders are not taken as a specific dis-

ease, but many of the disorders studied are often accompanied by

sleep disorders, for example depressions and other psychiatric dis-

eases (Giussani et al., 2021). In another large study based on question-

naires, sleep disorders were mentioned in adult PWE twice as often

when compared with controls (de Weerd et al., 2004). This ratio was

far higher in children treated in a tertiary epilepsy centre: major com-

plaints were reported by the parents 12 times more commonly than

for healthy children in the same age range (Gutter, Brouwer, & de

Weerd, 2013). In both studies, the quality of life (QoL) was lowest in

the PWE combined with a sleep disorder. In unselected adults with

PWE, 10% had coexisting obstructive sleep apnea (OSA); in a cohort

of children and adult patients with drug-resistant epilepsies, OSA per-

centages were 20 and 30, respectively (Manni & Terzaghi, 2010). In

general, sleep disorders seem to be prevalent in drug-resistant PWE

(Bergmann et al., 2020).

The frequency of primary RLS/PLMS (restless leg syndrome/

periodic leg movements) was higher in 98 patients with temporal epi-

lepsy when compared with healthy controls (Geyer, Geyer,

Fetterman, & Carney, 2017). In a review of 31 studies (Macêdo,

Oliveira, Foldvary-Schaefer, & Gomes, 2017), the prevalence of

insomnia was 28%–51% in PWE when a cut-off of the Insomnia

Severity Index > 15 was used, and 36%–74% when insomnia was

diagnosed according the DSM-IV or the International Classification of

Sleep Disorders second edition (American Academy of Sleep

Medicine, 2005).

It is clear that epilepsy and sleep have a bi-directional relation-

ship. The phenomena of epilepsy, ictal and interictal, during the night

and antiseizure medication (ASM) have an influence on sleep. Vice

versa, sleep itself, but in particular sleep deprivation and sleep disor-

ders, may worsen the severity of epilepsy. As such, these interactions

may induce a vicious circle (Eriksson, 2011; Quigg et al., 2021) and

have an even more negative influence on the QoL when compared

with PWE without a sleep disorder (de Weerd et al., 2004; Gutter

et al., 2013). It is often difficult to delineate which factor is most

important, the epilepsy or the sleep disorder, for example if a PWE

complains of insomnia in addition to seizures. The chosen ASM

(e.g. lamotrigine), may induce insomnia, but daytime as well nocturnal

seizures combined with frequent interictal EEG abnormalities may

also affect sleep (as outlined above). Further, if the PWE is sleepy dur-

ing the day is this due to seizures during the night, co-morbid

RLS/PLMS/OSA, or is it a side-effect of the administered ASM?

Recently, a consensus review on the “Standard procedures for

the diagnostic pathway of SRE and co-morbid sleep disorders” was

published under the auspices of the European Academy of Neurology,

the European Sleep Research Society, and the European chapter of

the International League Against Epilepsy (Nobili et al., 2020, 2021).

SRE are classified into three groups: (a) sleep-associated epilepsies

(seizures exclusively or almost exclusively from sleep) are SHE, epi-

lepsy with centro-temporal spikes and the Panayiotopoulos syn-

drome; (b) sleep-accentuated epilepsies (consistent extreme

potentiation of epileptiform activity during sleep) are ESES, LKS, West

syndrome and Lennox–Gastaut syndrome; (c) awakening epilepsies

(seizures typically occurring in the period after awakening from sleep)

are juvenile myoclonic epilepsy and epilepsy with generalized tonic–

clonic seizures alone. A description and value of the recommended

aspects of the diagnostic pathway in patients with suspected SRE are

given. They are grouped under: clinical history, questionnaires and

diaries, tools for capturing the events at home: home video and tools

for objective evaluation in the laboratory (e.g. video-EEG/PSG,

actigraphy). Part two describes the recommendations for the diagno-

sis of SRE together with co-morbidity with sleep disorders. The diag-

nostic steps are similar to those in part 1, and include guidelines for

management and therapy. The main rule for the diagnostic, manage-

ment and therapeutic aspects of SRE with co-morbid sleep disorders

is to simultaneously do two complete work-ups, one for the epilepsy

and the other for the co-morbid sleep disorder (Nobili et al., 2021).

For sleep disorders, the ICSD-3 and recent literature provide descrip-

tion and necessary diagnostic pathways. Further management and

decisions about the treatment of epilepsy and co-morbid sleep disor-

ders are similar to a situation when the disorders are not related to

each other (Bruni et al., 2018; Geyer et al., 2017; Nobili et al., 2021;

Pornsriniyom et al., 2014; Unterberger et al., 2015; Vignatelli

et al., 2006), but the literature on the combination of these diseases is

limited. Although not discussed in the standard for sudden unex-

pected death in epilepsy, knowledge of its prevalence and how to

inform the patient is important for all PWE and their doctors, and par-

ticularly for patients with nocturnal seizures (Lamberts, Thijs, Laffan,

Langan, & Sander, 2012).

9 | CONCLUSIONS

The impressive contribution of the “European school” in the field of

sleep and epilepsy stems from a cultural background that tries to

uncover all the information and secrets hidden in scalp- and

intracerebral-EEG and polygraphic recordings. To determine if a
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patient is or is not a carrier of an epileptic syndrome, hours can be

spent analysing the traces in search of a paroxysmal anomaly or an

alteration of the signal. Starting from these premises of detail and

dynamism, the new frontiers of research will continue to explore the

bi-directional interaction between the arousal mechanisms and epilep-

tic susceptibility, but also the impact of epilepsy on the processes of

circuit plasticity and memory consolidation that occur during or that

are modulated by sleep. Overlap and differentiation between NREM

parasomnias, SHE and other sleep pathologies also deserves to be

revisited from different perspectives, and perhaps the time is ripe to

also include SRE in the list of sleep disorders. Finally, due attention

should be devoted to the biological autonomic consequences of

epilepsy-related sleep alterations, and to the acute and long-term

action of ASM on sleep structure.
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