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Abstract: As a TCM, Hedyotis diffusa Willd. has been using to treat malignant tumors, and many
studies also showed that the extracts from Hedyotis diffusa Willd. possessed evident antitumor activities.
Therefore, we carried out chemical study on Hedyotis diffusa Willd. and investigated the cytotoxicity of
the obtained compounds on a panel of eight tumor cell lines. As a result, four new compounds were
isolated from Hedyotis diffusa Willd., including three iridoid glycosides of Shecaoiridoidside A–C (1–3)
and a cerebroside of shecaocerenoside A (4). Also, six known iridoid compounds (5–10) were also
obtained. The cytotoxicity of all compounds against human tumor cell lines of HL-60, HeLa, HCT15,
A459, HepG2, PC-3, CNE-2, and BCG-823 were also evaluated in vitro. New compound 3 exhibited
evident cytotoxicity to all tumor cell lines except the Hela, and the IC50 values are from 9.6 µM to
62.2 µM, while new compound 4 showed moderate cytotoxicity to all the cell lines, and the IC50 values
are from 33.6 µM to 89.3 µM. By contrast, new compound 1 and known compound 9 showed moderate
cytotoxicity to HCT15, A459, and HepG2 selectively. Known compound 7 also exhibited moderate
cytotoxicity to HCT15 and A459 selectively.
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1. Introduction

As an annual herb, Genus of Hedyotis has been widely distributed in subtropical area of the world [1].
62 species of Hedyotis are distributed in China, among which more than 20 species are used as medicines,
ingcluding Hedyotis diffusa Willd. (H. diffusa Willd.). H. diffusa Willd. has been recorded in Chinese
pharmacopoeia (2015 edt) and possesses the efficacies of diuresis to reduce edema, clearing away the
heat evil and detoxifying, and promoting blood circulation to arrest pain [2]. Clinically, H. diffusa
Willd. has been using to treat urinary tract infection, tonsillitis, appendicitis, pharyngitis, hepatitis,
dysentery, diarrhea, and snake bites [1–3]. But more importantly, H. diffusa Willd. also showed significant
effective on malignant tumors of breast, gastric, colon, rectal, and ovarian [2,4,5]. The components of
iridoids, triterpenes, flavonoids, lignans, anthraquinones, alkaloids, cerebrosides, coumarins, and sterols
were discovered during the chemical studies of H. diffusa Willd. [2,6–8]. There are some differences
of the chemical constituents if the H. diffusa Willd. grown in different parts of China. The contents of
anthraquinones and iridoids in H. diffusa Willd. from Guangdong province were higher than the H. diffusa
Willd. from the provinces of zhejiang, Jiangxi, Hubei, and Fujian. These include 2,7-dihydroxy-3-methyl
anthraquinone, 2-hydroxy-3-methyl-1-methoxy anthraquinone, 2-hydroxy-3-methoxy-7-methoxy
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anthraquinone, 2-methyl-3-hydroxy anthraquinone, 2-methyl-3-hydroxy-4-methoxy anthraquinone,
deacetyl asperulosidic acid, scandoside, E-6-O-p-coumaroyl scandoside methyl ester [9]. Various
hepatoprotective, immunoloregulation, anti-tumor, anti-inflammatory, antibacterial, analgesia, sedative,
and anti-oxidant activities can be found in pharmacological studies of H. diffusa Willd [3,6,10–13],
but more studies found that the extracts from H. diffusa Willd. possessed evident anticancer
activities [1,2,14–20]. H. diffusa Willd. has also been used to treat cancers adjuvantly for a long time in
China. With increasing incidence and mortality in China, cancer has become the leading cause of death
and caused serious public health problems. According to the latest report, in 2015, about 4,292,000 new
cancer cases and 2,814,000 cancer deaths occurred in China, with lung cancer being the most common
incident cancer and the leading cause of cancer death. Stomach, esophageal, and liver cancers were
also commonly diagnosed and identified as leading causes of cancer death [21]. Therefore, screened
active components from H. diffusa Willd. might be helpful. In this study, we carried out chemical
study on H. diffusa Willd., and four new (1–4) along with six known (5–10) compounds were obtained.
The structures of known compounds were determined by detailed NMR and ESI-MS spectra analyses,
as well as comparing the data with the literature. In this paper, we describe the isolation of compounds
1–4 and elucidate their structures. The cytotoxic activity of all compounds against tumor cell lines of
HL-60 (human leukemia cells), HeLa (human cervical cancer cells), HCT15 (human colon cancer cells),
A459 (human lung cancer cells), HepG2 (human hepatoma cells), PC-3 (human prostate cancer cells),
CNE-2 (human nasopharyngeal cancer cells), and BCG-823 (human gastric gland carcinoma cells) were
also investigated in vitro. As a result, some active compounds will be screened, and the therapeutic basis
of H. diffusa Willd. on tumors will also be revealed.

2. Results and Discussion

Compound 1 was obtained as a white amorphous powder. HRESIMS ([M + Na]+ m/z 511.1788,
calc. for 511.1791) established the molecular formula of 1 as C22H32O12. Hydrolysis experiment of 1
liberated D-galactose which determined by GC-MS analysis. In the 1H-NMR spectrum of 1 (Table 1),
signals of two methyl groups at δH 0.89 (3H, t, J = 7.4 Hz, H-5′) and 2.15 (3H, s, H-6′) could be
observed. The β-configuration of galactopyranosyl moiety was confirmed by the coupling constant of
H-1” (J = 8.1 Hz). The 13C-NMR and DEPT spectra of 1 (Table 2) showed 22 carbon signals, including
six carbon signals for a β-D-galactopyranosyl moiety at δC 100.4, 72.6, 73.2, 69.2, 75.6, and 63.4, and a
4-methylsenecioyloxy group at δC 165.8, 114.6, 162.1, 33.8, 11.7, and 19.0. The left carbon signals were
further identified by the 2D-NMR spectra of 1. The HSQC and 1H−1H COSY spectra of 1 showed
the coupling sequences of C(1)−C(9)−C(5)−C(6)−C(7) (Figure 1). The iridoids structure for 1 was
established by the HMBC spectrum (Figure 1). The HMBC correlations from H-1” to C-11 and H-1 to
C-1′ suggested that the galactopyranosyl moiety was located at C-11 and the 4-methylsenecioyloxy
group was located at C-1.

The stereo-configuration of 1 was determined by NOESY spectrum. The NOE correlations of
H-5/H-9, H-7/H-10 and H-6/H-10, but the absence of correlations of H-5/H-1, H-5/H-7, H-5/H-10 and
H-7/H-9 suggested that 8-OH, H-5 and H-9 were β-oriented, while H-1, H-6, H-7 and 8-CH2OH were
α-oriented. Thus, the structure of 1 was established as (1S,5S,9S,6S,7R,8S)-8-hydroxy-8-hydroxymethyl-
6,7-epoxylcyclopenta[c]pyran-1-O-4-methylsenecioyloxyl-11-hydroxymethyl-3-en
11-O-β-D-galactopyranoside and named as Shecaoiridoidside A (Figure 2).

Table 1. 1H-NMR data of compounds 1–4 (400 MHz, δ in ppm, J in Hz).

1 a 2 a 3 a 4 b

H δH (J, Hz) δH (J, Hz) δH (J, Hz) H δH (J, Hz)

1 6.41, d (2.0) 3.96, d (10.4);
3.76, d (10.4) NH 8.35, d, (8.4)

3 6.40, brs 5.10, d (11.0)
4.44, d (11.6)

4.37, d (12.6);
4.18, d (12.6) 1 4.22, m

4.72, m

5 3.09, brd (8.5) 3.34, m 3.25, m 2 4.78, m
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Table 1. Cont.

1 a 2 a 3 a 4 b

H δH (J, Hz) δH (J, Hz) δH (J, Hz) H δH (J, Hz)

6 4.04, d (2.5) 2.34, dd (8.4, 13.4);
2.19, m

2.74, m;
2.26, brd (16.4) 3 4.77, m

7 3.36, d (2.5) 3.87, m 5.78, brs 4 5.86, m

9 2.05, m 3.08, d (10.7) 5 5.98, m

10 3.69, d (2.8) 1.59, s 4.11, brd (10.0) 6 2.06, m

11 4.21, d (11.6);
4.35, d (11.6) 5.08, 5.11, s 4.92, 4.91, d (2.0) 7–22 1.16–1.42, brs

1′ 4.41, d (7.8) 4.72, d (7.8) 23 0.88, d (6.4)

2′ 5.62, s 3.16, t (8.2) 3.27, m 24 0.86, t (6.4)

3′ 3.30, m 3.43, m 2′ 4.61, m

4′ 2.16, m 3.29, m 3.40, m 3′ 1.85, m

5′ 0.89, t (7.4) 3.34, m 3.62, m 4′ 1.73, m;
1.16–1.42, brs

6′ 2.15, s 3.59, 3.95, m 4.60, brd, (11.6);
4.42, dd, (11.8, 4.8) 5′–17′ 1.16–1.42, brs

1"" 4.72, d (8.1) 5.01, d (1.7) 18′ 0.88, t (6.4)

2" 3.35, m 3.87, m 7.88, d (8.8) 1" 4.90, d, (7.6)

3" 4.05, m 6.81, d (8.8) 2" 4.02, m

4" 3.49, m 3.95, 3.75, m 3" 4.22, m

5" 3.59 (1H, m) 3.58, s 6.81, d (8.8) 4" 4.22, m

6" 3.67, m;
3.86, dd (1.5, 11.5) 7.88, d (8.8) 5" 3.88, m

6" 4.36, 4.50, m
a Measured in CD3OD at 30 ◦C; b Measured in C5D5N-d5 at 30 ◦C.

Table 2. 13C-NMR data of compounds 1–4 (100 MHz, δ in ppm).

1 a 2 a 3 a 4 b

C δC C δC C δC C δC

1 90.8, CH 1 175.2, C 1 72.8, CH2 1 70.2, CH2
3 142.4, CH 3 71.5, CH2 3 72.8, CH2 2 54.5, CH
4 109.8, C 4 144.5, C 4 156.2, C 3 72.3, CH
5 35.4, CH 5 41.2, CH 5 49.8, CH 4 131.6, CH
6 59.9, CH 6 40.0, CH2 6 39.2, CH2 5 132.7, CH
7 60.3, CH 7 90.1, CH 7 131.4, CH 6 34.2, CH2
8 80.2, C 8 86.1, C 8 144.4, C 7-20 29.5–30.5, CH2
9 43.6, CH 9 54.2, CH 9 99.8, C 21 35.7, CH

10 67.2, CH2 10 22.5, CH3 10 59.3, CH2 22 30.5, CH2
11 69.8, CH2 11 113.8, CH2 11 105.4, CH2 23 19.6, CH3
1′ 165.8, C 1′ 99.9, CH 1′ 103.9, CH 24 11.8, CH3
2′ 114.6, CH 2′ 75.5, CH 2′ 74.8, CH 1′ 175.6, C
3′ 162.1, C 3′ 78.7, CH 3′ 77.7, CH 2′ 72.5, CH
4′ 33.8, CH2 4′ 72.3, CH 4′ 72.3, CH 3′ 35.8, CH2
5′ 11.7, CH3 5′ 78.3, CH 5′ 76.0, CH 4′ 26.2, CH2
6′ 19.0, CH3 6′ 68.3, CH2 6′ 65.2, CH2 5′-15′ 29.5–30.5, CH2
1" 100.4, CH 1" 111.5, CH 1" 122.4, C 16′ 32.2, CH2
2" 72.6, CH 2" 76.2, CH 2" 132.9, CH 17′ 22.8, CH2
3" 73.2, CH 3" 80.8, C 3" 116.6, CH 18′ 14.2, CH3
4" 69.2, CH 4" 75.4, CH2 4" 164.2, C 1" 105.6, CH
5" 75.6, CH 5" 65.8, CH2 5" 116.6, CH 2" 75.2, CH
6" 63.4, CH2 6" 132.9, CH 3" 78.6, CH

7" 167.8, C 4" 71.5, CH
5" 78.7, CH
6" 62.6, CH2

a Measured in CD3OD at 30 ◦C; b Measured in C5D5N-d5 at 30 ◦C.
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Compound 2 was isolated as a white amorphous powder. HRESIMS ([M + Na]+ m/z 515.1737,
calcd. 515.1741) determined the molecular formula of 2 as C21H32O13. Hydrolysis experiment of 2
liberated D-glucose and D-apiose which determined by GC-MS analysis. In the 1H-NMR spectrum
of 2 (Table 1), signals of three methenyl groups at δ 3.34 (1H, m, H-5), 3.87 (1H, m, H-7), 3.08 (1H, d,
J = 10.7 Hz, H-9), three methylene groups at δ 5.10 (1H, d, J = 11.0 Hz, H-3a), 4.44 (1H, d, J = 11.6 Hz,
H-3b), 2.34 (1H, dd, J = 8.4, 13.4 Hz, H-6a), 2.19 (1H, m, H-6b), 5.08 (s, H-11a), 5.011 (s, H-11b), and a
methyl group at δ 1.59 (3H, s, H-10) could be observed. The β-configuration of glucopyranosyl moiety
was confirmed by the coupling constant of H-1′ (J = 7.8 Hz). The 13C-NMR and DEPT spectra of 2
(Table 2) showed 21 carbon signals, except for the 6 carbon signals at δC 99.9, 75.5, 78.7, 72.3, 78.3, 68.3
belong to a C-6′ substituted β-D-glucopyranosyl moiety and 5 carbon signals at δC 111.5, 76.2, 80.8,
75.4, 65.8 belong to a terminal β-D-apiofuranosyl moiety [22]. The left 10 carbon signals were similar to
those of jatamanin A [23]. The main difference lies in the chemical shift value of C-7 in 2 was shifted
downfield by 8.3 compared to that of jatamanin A, which confirmed that the β-D-glucopyranosyl
moiety was located at C-7. The HSQC and 1H−1H COSY spectra of 2 showed the coupling sequence of
C(9)−C(5)−C(6)−C(7) (Figure 1). The cyclopenta[c]pyran-type iridoid structure for 2 was established
by the HMBC correlations from H-7 to C-8, H-7 to C-9, H-5 to C-1, and H-3 to C-5. The HMBC
correlations from H-1” to C-6′ and H-1′ to C-8 suggested that the apiofuranosyl moiety was located at
C-6′ and glucopyranosyl moieties was located at C-7 (Figure 1).

The stereo-configuration of 2 was determined by NOESY spectrum. The NOE correlations
(Figure 2) of H-9/CH3-10 and H-5/CH3-10, but absence of the correlations of H-9/H-7 and H-5/H-7,
suggested that H-5, H-9 and CH3-10 were β-oriented, while 8-OH and H-7 was α-oriented. Therefore,
the structure of 2 was founded to be (5S,7S,8S,9S)-8-hydroxy-8-methyl-4-methylenehexahydrocyclo-
penta[c]pyran-1(3H)-one 7-O-(6-O-β-D-apiofuranosyl)-β-D-glucopyranoside and named Shecaoiridoidside
B (Figure 2).

Compound 3 was obtained as a white amorphous powder. HRESIMS ([M + Na]+ m/z 487.1576,
calcd. 487.1580) established the molecular formula of 3 as C23H28O10. Hydrolysis experiment of 3
liberated D-glucose which determined by GC-MS analysis. In the 1H-NMR of 3 (Table 1), signals of two
oxygenated methylenes at δ 3.96 (1H, d, J = 10.4 Hz, H-1a), 3.76(1H, d, J = 10.4 Hz, H-1b), 4.37 (1H, d,
J = 12.6 Hz, H-3a) and 4.18 (1H, d, J = 12.6 Hz, H-3b), a nonoxygenated methylene at δ 2.74 (1H, m,
H-6a) and 2.26 (1H, brd, J = 16.4 Hz, H-6b), a nonoxygenatedmethine at δ 3.25 (1H, m, H-5), and three
olefinic protons at δ 5.78 (1H, brs, H-7), 4.91 (1H, d, J = 2.0 Hz, H-11a) and 4.92 (1H, d, J = 2.0 Hz,
H-11b), and a p-substituted benzene protons at 7.88 (2H, d, J = 8.8 Hz) and 6.81 (2H, d, J = 8.8 Hz) were
observed. The β-configuration of glucopyranosyl moiety was confirmed by coupling constant of H-1′

(J = 7.8 Hz). The 13C-NMR and DEPT spectra of 3 (Table 2) showed 23 carbon signals, except for the 6
carbon signals at δC 103.9, 74.8, 77.7, 72.3, 76.0, 65.2 belong to a C-6′ substituted β-D-glucopyranosyl
moiety and 7 carbon signals at δC 122.4, 132.9 × 2, 116.6 × 2, 164.2, 167.8 belong to a p-hydroxybenzoyl
moiety, the left 10 carbon signals were similar with those of patriridoside G [24]. The main difference
lies in the signal at δC 12.1 (CH3-10) in patriridoside G was substituted by the signal at δC 59.3 (CH2-10)
in 3, which indicated that CH3-10 of patriridoside G was substituted by a hydroxyl group.

The HSQC and 1H−1H COSY spectra of 3 showed the coupling sequences of C-3/C-4/C-11,
C-11/C-4/C-5/C-6/C-7/C-8/C-10, C-2”/C-3”, and C-5”/C-6” (Figure 2). HMBC correlations of from
H-10 to C-7, C-8, and C-9, H-1 to C-5 and C-9, H-11 to C-3, C-4, and C-5, H-3 to C-9, H-1′ to C-1, H-6′ to
C-7” and H-2”/H-6” to C-7” established the structure of 3 (Figure 1). The NOE correlation of H-5β/H-1
in NOESY spectra suggested a β-orientation for C-1 (Figure 1). As a result, the structure of 3 was
identified as (5R,9S)-6-O-(6-O-4-hydroxybenzoyl-β-D-glucopyranosyl)-8-hydroxymethyl-4-methylene-
4,5,6,9-tetrahydro-3H-cyclopenta[b]furan-9-yl-methanol and named Shecaoiridoidside C (Figure 2).

Compound 4 was obtained as white amorphous powder. HRESIMS m/z 828.6924 [M + H]+

(calc. for 828.6929) determined the molecular formula of 4 as C48H93NO9. Methanolysis experiment
of 4 liberated D-glucose which determined by GC-MS analysis. In 1H- and 13C-NMR spectra of 4,
signals of anomeric proton δH (4.90, 1H, d, J = 7.6 Hz) and δC (105.6, 75.2, 78.6, 71.5, 78.7, and 62.6)
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indicated the presence of a β-D-glucopyranosyl moiety. The characteristics of a cerebroside with a
2-hydroxy fatty acid fraction in 4 could be confirmed by analyzing its 1H- and 13C-NMR data (Tables 1
and 2). A fatty acid methyl ester (FAME) and a long-chain base (LCB) were obtained respectively by
methanolysis of 4. GC-MS analysis determined the structure of FAM as 2-hydroxyoctadecanoic acid
methyl ester. The absolute configuration of C-2′R was determined by the specific rotation [α]22

D = −4.8◦

(c 0.03, CHCl3) of the FAM [25]. The NMR data of C-2 and C-3 were compared with those of in
literatures [26,27] and determined their stereo-configurations as 2S and 3R, respectively. The correlations
of δH 4.77 (1H, m, H-3) with 131.6 (C-4) and 132.7 (C-5) in HMBC spectrum of 4 confirmed the olefinic
bond was located in the LCB (Figure 2). The signals at δC 11.8 and 19.6 in 13C-NMR spectrum of 4
indicated the presence of a branched methyl group in 3. To determine the position of the branched
methyl group, the 1D-TOCSY spectrum was used and correlations of δH 4.22 (1H, m, H-1) with 5.86
(1H, m, H-4), 0.88 (3H, d, J = 6.4 Hz, CH3-23), and 0.86 (3H, t, J = 6.4 Hz, CH3-24) could be observed.
Therefore, the branched methyl group was located in the LCB. The 1H- and 13C-NMR data (Tables 1
and 2) were further assigned by the spectra of DEPT, HSQC, 1H-1H COSY, and HMBC. Thus, 4 was
established as 1-O-β-D-glucopyranosyl-(2S,3R,4E)-2-[(2′R)-2-hydroxyloctadecanamideamino]-
21-methyl-4-tetracosene-1,3-diol which was named as shecaocerenoside A (Figure 1).

The known compounds were identified as jatamanin E (5) [28], 11-methoxyviburtinal (6) [29],
15-Demethylisoplumieride (7) [28], suspensolide F (8) [30], kanokoside A (9) [31], and patrinoside
(10) [32] by comparing their physico-chemical constants and NMR spectroscopic data with those of in
literatures (Figure 2).

The cytotoxicity of compounds 1–10 against tumor human cell lines of HL-60, HeLa, HCT15,
A459, HepG2, PC-3, CNE-2, and BCG-823 were investigated in vitro. The MTT method was used
to determine the IC50 values. New compound 3 exhibited evident cytotoxicity to all tumor cell
lines except the Hela, and the IC50 values are from 9.6 µM to 62.2 µM, while new compound 4
showed moderate cytotoxicity to all the cell lines and the IC50 values are from 33.6 µM to 89.3 µM.
By contrast, new compound 1 and known compound 9 showed moderate cytotoxicity to HCT15,
A459, and HepG2 selectively. Known compound 7 also exhibited moderate cytotoxicity to HCT15
and A459 selectively (Table 3). Compounds 1 and 9 with the structural stem-nucleus 8-hydroxy-8-
hydroxymethyl-6,7-epoxylcyclopenta[c]pyran-1-O-4-methylsenecioyloxyl-11-hydroxymethyl-3-en
11-O-β-D-glycoside were tend to show cytotoxicity to HepG2, which was consist with the reference
reported [33]. While HCT15 was tend to sensitive to compound 3. The cytotoxicity of sfingolipids has
been reported in many references, and depend on its LCB, FAM, double bonds and glycosyl group to
show moderate or weak activity to most of tumor cell lines [34–37], as well as compound 4.

Table 3. In vitro antitumor activity of compounds 1–10 in a panel of 8 tumor cell lines.

Compounds HL-60 Hela HCT15 A459 HepG2 PC-3 CNE-2 BGC-823

1 >100.0 >100.0 87.6 ± 1.2 77.7 ± 1.6 37.6 ± 1.4 >100.0 >100.0 >100.0
2 >100.0 >100.0 >100.0 >100.0 >100.0 >100.0 >100.0 >100.0
3 17.1 ± 0.7 62.2 ± 0.5 9.6 ± 0.8 14.8 ± 0.9 11.4 ± 1.6 26.2 ± 1.3 21.5 ± 0.6 13.4 ± 1.1
4 74.8 ± 1.3 89.3 ± 1.8 37.3 ± 1.5 33.6 ± 1.1 49.5 ± 1.4 64.0 ± 0.9 55.2 ± 1.1 44.1 ± 1.7
5 >100.0 >100.0 >100.0 >100.0 >100.0 >100.0 >100.0 >100.0
6 >100.0 >100.0 >100.0 >100.0 >100.0 >100.0 >100.0 >100.0
7 >100.0 >100.0 71.3 ± 1.2 50.4 ± 1.1 >100.0 34.2 ± 1.3 >100.0 >100.0
8 >100.0 >100.0 89.8 ± 1.2 91.3 ± 0.7 >100.0 >100.0 >100.0 >100.0
9 >100.0 >100.0 96.1 ± 1.6 78.3 ± 0.8 97.9 ± 1.4 >100.0 >100.0 >100.0

10 >100.0 >100.0 >100.0 >100.0 >100.0 >100.0 >100.0 >100.0
5-Fluorouracil 7.5 ± 0.6 10.4 ± 0.4 4.7 ± 0.4 14.7 ± 1.1 22.8 ± 1.4 13.2 ± 0.7 11.6 ± 0.8 17.8 ± 0.7

Key: All results are expressed as IC50 values in µM. Compounds with IC50 > 100 µM were inactive for the tumor
cell lines.
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3. Materials and Methods

3.1. General

Column chromatographies such as Macroporous resin (AB-8 Crosslinked Polystyrene,
Shanxi Lanshen Resin, Xi’an, China), silica gel (200–300 mesh, Hejie Technology Co. Ltd., Shanghai,
China), and ODS-A (120A, 50 mm; DAISO, Kyoto, Japan) were used for isolations. Compounds
were prepared on a preparative HPLC (Waters, Milford, MA, USA). Bruker AVANCE 400 MHz NMR
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instrument (Bruker SpectroSpin, Karlsruhe, Germany) was used to measure all the NMR spectra,
including 1D-NMR and 2D-NMR spectra. Measured and analyzed the HRESIMS data was conducted
on a Xero Q Tof MS spectrometer (Waters, Milford, MA, USA). IR Spectra data was recorded on
FTIR-8400S (Shimadzu, Kyoto, Japan). The GC-MS (Angilent, Palo Alto, CA, USA) instrument was
used to analysis the volatile derivatives from compounds. The growth of the tumor cell lines was
monitored with a microplate reader (BMG FLUOStar OPTIMA, Ortenberg, Germany).

3.2. Plant Materials

The aerial part of H. diffusa Willd. was collected from Guangdong province of China and identified
by Shuyuan Li of Guangdong Pharmaceutical University. The voucher specimen (No. 20160987) is
deposited at the Herbarium of Guangdong Pharmaceutical University, Guangzhou, China.

3.3. Extraction and Isolation

The dried H. diffusa Willd. (10.0 Kg) were extracted two times (each for 2 h) with 75% EtOH (100 L)
under reflux. The extract (1611 g) was suspended in water (15 L), and then extracted with petroleum
ether (60–90 ◦C), EtOAc and n-butanol, respectively. Solvents were removed under vacuum to give
extracts of petroleum ether (74.3 g), EtOAc (135.3 g), n-butanol (196.5 g), and remained water (1152.4 g).
The EtOAc fraction (150.0 g) was subject to silica gel column column and eluted with a gradient of
CH2Cl2/MeOH (30:1 to 0:1) to yield fractions of F1–F6. F2 (28.4 g) was further chromatographed
on silica gel column and eluted with petroleum ether/EtOAc (15:1 to 1:1) to yield subfractions of
A1–A4. The sub-fraction A2 (6.2 g) was repeated chromatographed on silica gel column and eluted
with petroleum ether/EtOAc (5:1) to yield compound 4 (58 mg). F3 (30.6 g) was chromatographed on
silica gel column and eluted with a gradient of CH2Cl2/MeOH (20:1 to 5:1) to yield sub-fractions B1–B5.
B2 (10.4 g) was repeated chromatographed on silica gel column and eluted with CH2Cl2/MeOH (15:1)
to yield compound 6 (46 mg). B4 (5.6 g) was repeated chromatographed on silica gel column and eluted
with CH2Cl2/MeOH (8:1) to yield compound 5 (41 mg). F4 (62.4 g) was chromatographed on silica gel
column and eluted with a gradient of CH2Cl2/MeOH (15:1–1:1) to yield sub-fractions C1–C6. C3 (11.2 g)
was chromatographed on silica gel column and eluted with a gradient of CH2Cl2/MeOH (10:1 to 3:1),
and then purified on a preparative HPLC with Hypersil-ODS II column (10 µm, 20 × 300 mm) eluted
with MeOH/H2O (18%, flow rate 8 mL/min) to yield compounds 8 (48 mg, tR = 15 min), 10 (57 mg,
tR = 27 min), 1 (62 mg, tR = 31 min), and 9 (53 mg, tR = 35 min). C5 (14.4 g) was chromatographed on
silica gel column and eluted with CH2Cl2/MeOH (5:1), and then purified on a preparative HPLC with
Hypersil-ODS II column (10 µm, 20 × 300 mm) eluted with MeOH/H2O (8%, flow rate 8 mL/min)
to yield compounds 2 (48 mg, tR = 11 min), 7 (43 mg, tR = 18 min), and 3 (55 mg, tR = 23 min).

Shecaoiridoidside A (1). white amorphous powder; [α]22
D = −25.4 (c = 0.20, CH3OH); IR (KBr)

νmax 3433, 3384, 2921, 2871, 1723, 1648, 1455, 1353, 1252, 1082, 880 cm−1; ESIMS m/z 511 (100)
[M + Na]+; HRESIMS [M + Na]+ m/z 511.1788 calc. 511.1791 for C22H32O12Na; 1H- and 13C-NMR
data, see Tables 1 and 2.

Shecaoiridoidside B (2). white amorphous powder, [α]22
D + 109.4◦ (c 0.10, MeOH); IR (KBr) νmax 3462,

3430, 2974, 2858, 1712, 1648, 1428, 1373, 1235, 1104 cm−1; ESIMS m/z 515 (100) [M + Na]+; HRESIMS
[M + Na]+ m/z 515.1737, calcd. 515.1741 for C21H32O13Na; 1H- and 13C-NMR data, see Tables 1 and 2.

Shecaoiridoidside C (3). white amorphous powder, [α]22
D + 44.6◦ (c 0.12, MeOH); IR (KBr) νmax 3518, 3421,

2875, 1674, 1447, 1384, 1325, 1169, 1080, 891, 595 cm−1; ESIMS m/z 487 (100) [M + Na]+; HRESIMS [M +
Na]+ m/z 487.1576, calcd. 487.1580 for C23H28O10Na; 1H- and 13C-NMR data, see Tables 1 and 2.

Shecaocerenoside A (4). white amorphous powder; [α]22
D = +6.4 (c = 0.15, C5H5N); IR (KBr) νmax 3411,

2941, 2838, 1635, 1532, 1455, 1162, 724 cm−1; ESIMS m/z 828 (100) [M + H]+; HRESIMS [M + H]+ m/z
828.6924 calc. 828.6929 for C48H93NO9H; 1H- and 13C-NMR data, see Tables 1 and 2.
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3.4. Acid Hydrolysis of 1–3

Acid hydrolysis experiment was carried out as the method in reference [24]. Briefly, the sugar
residues were obtained by hydrolyzing of compounds 1–3 (2.0 mg) with 2 mol/L H2SO4 (2.0 mL),
and then treated with trimethylchlorosilane, respectively. The sugar derivatives were further analyzed
by GC-MS. As a result, the sugar derivatives from compounds 1 and 3 were determined to be
D-galactose (tR = 19.46 min) and D-glucose (tR = 11.33 min), respectively. The sugar derivatives
from compound 2 was determined to be D-glucose (tR = 11.33 min) and D-apiose (tR = 14.53 min).

3.5. Methanolysis of 4

Methanolysis of 4 was carried out according to the previous study [38]. In short, compound
4 (5.0 mg) was dissolved in in 82 % aqueous MeOH (20 mL) with 5% HCl and refluxed for 18 h.
The FAME of 4 was obtained by extracting the reaction mixture with n-hexane. The FAME of 4
was a white amorphous powder, [α]22

D = −4.8◦ (c 0.02, CHCl3). Analyzed the FAME by GC-MS and
the characteristic fragment ions (m/z 314 [M]+, 256 [M − COOMe]+) were obtained. As a result,
the FAME of 4 was identified as 2-hydroxyoctadecanoic acid methyl ester. The remained solution
was analyzed by GC-MS and the monosaccharide of 4 was identified as D-glucose (tR = 11.33 min).
After that the remained solution was evaporated MeOH and the aqueous ammonia was added to
adjust pH 9.0, and hen extracted the solution with Et2O to obtain the LCB. The fragment ions of
m/z 384 [M + H]+ and 366 [M − H2O + H]+ from ESIMS analysis led the LCB of 4 was identified as
2-aminotetracos-7-ene-1,3-diol (Figure 2).

3.6. Cytotoxicity Assay of Compounds 1–10

The cytotoxicity of all compounds against human tumor cell lines of HL-60, HeLa, HCT15, A459,
HepG2, PC-3, CNE-2 and BCG-823 was assayed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) method in vitro. The assay protocol was conducted by previous published paper [24,39].
The tested compounds 1–10 were dissolved in DMSO and adjusted to the final concentrations from
1.0 µM to 300 µM by diluting with the growth medium. 5-Fluorouracil was used as the positive drug.

4. Conclusions

We investigated the chemical constituents of H. diffusa Willd. based on its clinical application of
treating malignant tumors and 10 compounds were obtained, including three new iridoid glycosides
and a new cerebroside. The structures of new compounds were identified as (1S,5S,9S,6S,7R,8S)-8-
hydroxy-8-hydroxymethyl-6,7-epoxylcyclopenta[c]pyran-1-O-4-methylsenecioyl-oxyl-11- hydroxymethyl-3-en
11-O-β-D-glucopyranoside (1), (5S,7S,8S,9S)-8-hydroxy-8-methyl-4-methylenehexahydrocyclopenta[c]pyran-
1(3H)-one 7-O-(6-O-β-D-apiofuranosyl)-β-D-glucopyrano-side (2), (5R,9S)-6-O-(6-O-4-hydroxybenzoyl-β-D-
glucopyranosyl)-8-hydroxymethyl-4-methylene-4,5,6,9-tetrahydro-3H-cyclopenta[b]furan-9-yl-methanol
(3), and 1-O-β-D-glucopyranosyl-(2S,3R,4E) -2-[(2′R)- 2-hydroxyloctadecanamideamino]-21- methyl-4-
tetracosene-1,3-diol (4), respectively. Antitumor assays in vitro discovered cytotoxic compounds 1, 3,
4, 7, and 9, especially found that new compound 3 exhibited evident cytotoxicity to all tumor cell lines
except the Hela.
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