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Aims: Microvolt T-wave alternans (TWA), an oscillation in T-wave morphology of
the electrocardiogram (ECG), has been associated with increased susceptibility to
ventricular tachy-arrhythmias, while vagus nerve stimulation has shown promising anti-
arrhythmic effects in in vivo and ex vivo animal studies. We aimed to examine the effect of
non-invasive, acute low-level tragus stimulation (LLTS) on TWA in patients with ischemic
cardiomyopathy and heart failure.

Methods: 26 patients with ischemic cardiomyopathy (left ventricular ejection fraction
<35%) and chronic stable heart failure, previously implanted with an automatic
implantable cardioverter defibrillator (ICD) device with an atrial lead (dual chamber ICD or
cardiac resynchronization therapy defibrillator), were enrolled in the study. Each patient
sequentially received, (1) Sham LLTS (electrode on tragus, but no stimulation delivered)
for 5 min; (2) Active LLTS at two different frequencies (5 and 20 Hz, 15 min each); and (3)
Active LLTS, during concomitant atrial pacing at 100 bpm at two different frequencies (5
and 20 Hz, 15 min each). LLTS was delivered through a transcutaneous electrical nerve
stimulation device (pulse width 200 µs, frequency 5/20 Hz, amplitude 1 mA lower than
the discomfort threshold). TWA burden was assessed using continuous ECG monitoring
during sham and active LLTS in sinus rhythm, as well as during atrial pacing.

Results: Right atrial pacing at 100 bpm led to significantly heightened TWA burden
compared to sinus rhythm, with or without LLTS. Acute LLTS at both 5 and 20 Hz, during
sinus rhythm led to a significant rise in TWA burden in the precordial leads (p < 0.05).

Conclusion: Acute LLTS results in a heart-rate dependent increase in TWA burden.
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HIGHLIGHTS

- Low level tragus stimulation (LLTS) significantly modulates
microvolt T-wave alternans (TWA) in patients with ischemic
cardiomyopathy and heart failure.

- Acute LLTS results in a heart rate (HR) dependent increase
in TWA burden, wherein increased HR leads to an
increase in TWA burden.

- The distinct and significant modulation of TWA by acute
LLTS, in conjunction with the possible bimodal effect of LLTS,
provides insights for a more comprehensive trial to evaluate
the effects of chronic LLTS in patients susceptible to ventricular
tachy-arrhythmias, and investigate the potential of patient-
specific stimulation strategies in evoking the optimal response
to LLTS, in a population at high risk for sudden cardiac death.

INTRODUCTION

Heightened sympathetic activity has been associated with the
generation of ventricular tachy-arrhythmias. Although the effect
of the sympathetic nervous system stimulation on the heart
is complex and is governed by the state of the myocardium,
interventions that reduce cardiac sympathetic activity have been
shown to protect against arrhythmias (Schwartz and Zipes, 2000;
Rubart and Zipes, 2005), whereas those that enhance sympathetic
activity provoke them (Rubart and Zipes, 2005; Billman, 2006).
Consistent with these findings, β-blocker therapy, used for
reducing cardiac sympathetic activity by blocking the effects
of epinephrine and norepinephrine, has been shown to reduce
sudden cardiac death (SCD) in patients with heart failure (HF)
(MERIT-HF, 1999; Poole-Wilson et al., 2003).

Sharp upsurges in T-wave alternans (TWA), an oscillation
in T-wave morphology of the electrocardiogram (ECG),
immediately preceding spontaneous ventricular tachycardia or
fibrillation (VT/VF) have been documented in body-surface
ECGs in patients with coronary artery disease (Shusterman et al.,
2006), as well as patients hospitalized for acute HF (Nearing
et al., 2012). Increase in microvolt TWA was shown to correlate
with elevated sympathetic activity in humans (Verrier and
Antzelevitch, 2004; Lampert et al., 2005), while the amplitude
of TWA was diminished with β-blockers (Klingenheben et al.,
2001; Rashba et al., 2002; Komiya et al., 2005). In patients with
ventricular tachy-arrhythmias who underwent TWA testing,
acute administration of β-blockers metoprolol and dl-sotalol
reduced overall TWA amplitude by 35% and 38%, respectively
(Klingenheben et al., 2001). TWA has also been observed to
occur at significantly lower heart rates (HRs), with peak alternans
level increasing with sympathetic stimulation compared to
baseline, in basic science studies (Ng et al., 2007).

These studies indicate that TWA can be, at least in part,
modulated by sympathetic activity. Furthermore, it has
been proposed that in addition to sympathetic activation,
parasympathetic withdrawal may also contribute to HF
(Olshansky et al., 2008). While in Holter monitoring chronic
vagal nerve stimulation (VNS) reduced TWA and the incidence
of VT (Libbus et al., 2016), it remains unclear whether targeted

use of VNS during heightened levels of TWA, could prevent
the onset of VT/VF.

We have recently shown that VNS can be delivered non-
invasively by stimulating the auricular branch of the vagus
nerve at the tragus of the ear (Stavrakis et al., 2015, 2020a,b).
Specifically, in our recent proof-of-concept randomized study
in humans, we showed that in patients with atrial fibrillation
(AF), low-level transcutaneous vagus nerve stimulation (LLTS),
delivered at the tragus of the ear, where the auricular branch of the
vagus nerve is located, for just one hour, significantly suppressed
AF and decreased systemic inflammatory cytokines (Stavrakis
et al., 2015), and similar effects were also observed with chronic
LLTS for 6 months (Stavrakis et al., 2020b).

Since, the most common cause of death in patients with
ischemic cardiomyopathy (ICM) is SCD, here, the objective of
this study is to examine the effect of LLTS on TWA, in patients
with ICM and HF (New York Heart Association, NYHA, class
II), which are known to have the highest risk of SCD (Myerburg
and Junttila, 2012). In this patient population, implantable
cardioverter defibrillators reduce mortality from SCD due to
VT/VF (Al-Khatib et al., 2018), yet implantable cardioverter
defibrillator (ICD) shocks are painful, and are associated with
significant morbidity and poor quality of life (Al-Khatib et al.,
2018). Therefore, preventive strategies to decrease ICD shocks are
imperative in the management of these patients (Al-Khatib et al.,
2018) and highlight the need for alternative treatment modalities.

METHODS

Patient Enrollment and Study Protocol
This was a prospective pilot study (NCT03549468). Patients with
ICM (left ventricular ejection fraction <35%) and HF who had
an implantable device with an atrial lead (dual chamber ICD or
cardiac resynchronization therapy) were enrolled in the study.
In addition, patients were required to be in sinus rhythm at the
time of the study visit. Patients were excluded if: they had recent
(<6 months) stroke or myocardial infarction, had persistent
AF, had recurrent vaso-vagal syncopal episodes, had undergone
unilateral or bilateral vagotomy, were in pregnancy or breast
feeding, had history of uncontrolled diabetes or hypertension,
or were hypotensive due to autonomic dysfunction. All patients
provided informed consent prior to enrollment in the study
which was approved by the Institutional Review Board of the
University of Oklahoma Health Sciences Center.

LLTS was delivered as previously described (Stavrakis
et al., 2015, 2020b) through a transcutaneous electrical nerve
stimulation (TENS) device (Parasym device, Parasym Health,
Inc., London, United Kingdom), at a pulse width of 200 µs
and a pulse frequency of 5 Hz or 20 Hz. The stimulation
amplitude was individually titrated to 1 mA below the discomfort
threshold based on individual patient’s perception. Active LLTS
was accomplished by attaching an ear clip to the tragus,
known to be innervated by the auricular branch of the vagus
nerve (Peuker and Filler, 2002). For sham stimulation, the
electrode was attached to the tragus, but no stimulation was
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delivered. A schematic of the study protocol is presented in
Figure 1.

Briefly, each patient received 15 min of active LLTS at
5 Hz and 20 Hz; 5 min of sham stimulation was performed
before and after each active LLTS period; 45 min of
continuous, high resolution ECG (12 lead ECG recorder,
IX-ECG12, iWorx, 62 Littleworth Road, Dover, NH 03820,
United States, sampling rate 10,000 Hz) was acquired for
TWA analysis during sinus rhythm, followed by a 10 min
wash-out period. Next, the same stimulation protocol was
repeated, with concomitant atrial pacing at 100 bpm, to
elicit TWA, as previously described (Kaufman et al., 2000;
Armoundas et al., 2013; Merchant et al., 2020). Patients with
significant premature ventricular contractions, AV nodal
dysfunction, ventricular pacing or significant stimulation
artifacts were excluded from the TWA analysis. Hence,
TWA results were available for 19 patients during sinus
rhythm and 17 patients during atrial pacing. Furthermore,
atrial pacing was performed at a rate as close to 100 bpm
as possible (for more details, please see the Supplementary
Material), without inducing Wenckebach AV block or other
adverse effects.

Estimation of Repolarization Alternans
Burden
We have previously demonstrated the ability of microvolt
TWA to predict short- (Weiss et al., 2011; Merchant and
Armoundas, 2012; Merchant et al., 2013b, 2020) and long-term
(Merchant et al., 2012, 2015; Sohn et al., 2019) susceptibility
to ventricular tachy-arrhythmias and sudden cardiac death,
using an algorithm based on the spectral method (Smith et al.,
1988; Merchant and Armoundas, 2012; Merchant et al., 2012,
2013b, 2015; Sohn et al., 2019). Briefly, the alternans voltage
was used as a direct measure of the presence of alternans and
calculated based on the amplitude of the power spectrum at
the alternans frequency (0.5 cycles/beat) (Armoundas et al.,
2013; Sayadi et al., 2013; Merchant et al., 2014, 2020). The
alternans ratio, Kscore, was used as a statistical measure of
alternans calculated as the alternans voltage relative to the

background noise level (Armoundas et al., 2013; Sayadi et al.,
2013; Merchant et al., 2014, 2020). TWA voltage and Kscore
was estimated using the spectral method for each moving
window of 128-beat data sequence, advanced one beat at a
time, using a 512-point power spectrum to improve frequency-
domain resolution.

TWA burden was calculated for each of the 12 leads, for each
intervention, based on estimates of the alternans voltage and
Kscore, for each patient, as follows:

TWA burden = (positive TWA sequences/total number of sequences)× 100%

where, a positive TWA sequence was defined as any 128 beat
sequence with Kscore > 3, alternans voltage >1.0 uV and
goodbeat% >80. Goodbeat percentage was calculated for all
sequences as a moving average of the number of good beats
(correlation with average QRS template >0.90 and the difference
between current R-to-R waveform interval and the median RR
interval from the preceding 7 beats <10%).

Statistical Analysis
Analysis was performed on a lead-by-lead basis and TWA
burden for each lead was calculated across all patients during
the five interventions: (1) Sham I, (2) 5 Hz Active LLTS, (3)
Sham II, (4) 20 Hz Active LLTS, and (5) Sham III. While
data for all 12 leads was individually analyzed, data were
aggregated across the precordial and limb leads, to increase
the power to detect differences in TWA burden. Significant
alternans levels were observed primarily in the precordial leads,
therefore, summary results of TWA burden distributions are
presented only for the precordial leads, with data grouped
across leads V1–V6.

Given the non-normal distribution of the TWA burden, the
non-parametric Kruskal-Wallis test was used to compare the
TWA burden during sinus rhythm with the concomitant atrial
pacing at 100 bpm (Figure 2). Inter-interventional comparison
of TWA burden was performed using the Wilcoxon rank sum
test (Figure 3). All analysis was performed using MATLAB
(MathWorks Inc., Natick, MA, United States) and values of
p < 0.05 were considered statistically significant.

FIGURE 1 | Schematic of the study protocol. Each patient enrolled in the study first received 15 min of active LLTS at 5 Hz and 20 Hz, during sinus rhythm.
5 minutes of sham LLTS was performed before and after each active LLTS acquisition. After a 10-minute wash-out period, the 45-minute stimulation protocol was
repeated with concomitant atrial pacing at 100 bpm.
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FIGURE 2 | Heart rate dependent effects of tragus stimulation on T-wave alternans (TWA). Quantification of the TWA burden during sinus rhythm and atrial pacing
(100 bpm), with sham and active LLTS. TWA burden is significantly elevated in the precordial leads irrespective of LLTS during atrial pacing, compared to sinus
rhythm. “*” denotes statistical significance of p < 0.05 using Kruskal-Wallis test.

FIGURE 3 | Acute effects of low level tragus stimulation (LLTS) on T-wave alternans (TWA) burden. (A) TWA burden is significantly elevated with active LLTS at 5 Hz
and 20 Hz, compared to sham LLTS during sinus rhythm. (B) Higher baseline TWA burden is observed during 100 bpm atrial pacing with no enhancement in TWA
burden observed with active LLTS. “*” denotes statistical significance of p < 0.05 using Wilcoxon rank sum test.

RESULTS

Patient Characteristics
The baseline clinical characteristics of the patients enrolled in
this study are summarized in Table 1. Briefly, the patients were
elderly (mean age 66.9 ± 8.2 years), predominantly male (77%),
with prevalent hypertension (77%), hyperlipidemia (82%), and
diabetes (38%), with mean LV ejection fraction 30.4 ± 9.3%.
None of the patients reported angina.

Comparison of the Effects of Acute Low
Level Tragus Stimulation During Sinus
Rhythm and Atrial Pacing
We first determined whether the effect of LLTS on TWA was
HR dependent. The individual heart rates for each patient
during sinus rhythm and atrial pacing, for all interventions
are presented in Supplementary Table 1. Expectedly, the heart

rates during sinus rhythm were significantly lower than during
atrial pacing for each intervention (Supplementary Table 1).
Figure 2 demonstrates summary results of TWA burden across
all patients during sinus rhythm (black) and during atrial pacing
at 100 bpm (red). Data are presented as median (horizontal solid
line), 75–25% percentiles (box) and 90–10% percentiles (error
bars). Significantly higher levels of TWA burden were observed
during atrial pacing compared to sinus rhythm, during all five
interventions, demonstrating the dependency of alternans onset
on the underlying HR and subsequently the effect of LLTS on
modulation of TWA.

Effect of Acute Low Level Tragus
Stimulation on T-Wave Alternans Burden
Next, we evaluated the effect of the LLTS frequency, on TWA
burden. Figure 3A shows summary results of acute LLTS at
5 Hz and 20 Hz, on TWA in the precordial leads, during sinus
rhythm. Data are presented as median (horizontal solid line),
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TABLE 1 | Baseline characteristics of the study population (n = 26).

Age (years) 66.9 ± 8.2

Female sex, n (%) 6 (23)

White race, n (%) 23 (89)

Type of device

Implantable cardioverter defibrillator, n (%) 19 (73)

Cardiac resynchronization therapy, n (%) 7 (27)

Body mass index (Kg/m2) 29.9 ± 5.1

Left ventricular ejection fraction (%) 30.4 ± 9.3

Coronary artery bypass graft surgery, n (%) 13 (50)

Diabetes, n (%) 10 (38)

Hyperlipidemia, n (%) 22 (85)

Hypertension, n (%) 20 (77)

Chronic kidney disease, n (%) 8 (31)

New York Heart Association class, n (%)

I 8 (31)

II 14 (54)

III 4 (15)

Medications

Beta blockers, n (%) 24 (92)

Angiotensin converting enzyme inhibitors/Angiotensin receptor
blockers, n (%)

24 (92)

Spironolactone, n (%) 9 (35)

Statins, n (%) 22 (85)

Hgb (g/dl) 13.7 ± 2.6

Creatinine (mg/dL) 1.4 ± 0.9

Sodium (mEq/L) 139.9 ± 2.8

Potassium (mEq/L) 4.2 ± 0.4

Brain natriuretic peptide (pg/ml) 324.6 ± 465.7

Continuous data are presented as mean ± standard deviation.

75–25% percentiles (box) and 90–10% percentiles (error bars).
Active LLTS at both 5 Hz and 20 Hz led to a significant rise
in TWA burden, compared to sham LLTS. This effect was no
longer present during atrial pacing (Figure 3B), when either
5 Hz or 20 Hz active LLTS had no significant effect of TWA
burden. Effect of LLTS on TWA burden of each individual
lead during both sinus rhythm and atrial pacing is presented in
Supplementary Table 2.

DISCUSSION

Microvolt TWA is a surrogate marker for susceptibility to VT/VF,
leading to SCD (Merchant et al., 2012, 2013a, 2015; Kulkarni
et al., 2019). Favorable modulation of VT/VF susceptibility by
LLTS in a population at high risk for VT/VF such as patients with
ICM may be a surrogate for potential benefit in a larger number of
patients at risk for VT/VF. A comprehensive clinical evaluation
of the effects of LLTS on cardiac arrhythmogenesis can aid
treatment of patients with chronic underlying - cardiovascular
diseases (De Ferrari et al., 2011). The major findings of our
preliminary study are, first, acute LLTS modulates TWA burden
in patients with ICM and HF; second, effect of LLTS on TWA
is modulated by the HR; and third, increased HR leads to an
increase in TWA burden in patients with ICM and HF, possibly
masking the effects of acute LLTS.

While the results of our study seem counterintuitive with
acute LLTS eliciting a rise in TWA burden, the current results
are in line with a recent study investigating the effect of LLTS
on atrial alternans and AF burden in patients with paroxysmal
AF (Kulkarni et al., 2021). A biphasic response to LLTS was
observed in this proof-of-concept study wherein acute LLTS
led to a rise in atrial alternans level, but chronic LLTS over
6 months, significantly reduced both alternans and AF burden.
Given the disparate effects of acute and chronic parasympathetic
stimulation, it is possible that chronic LLTS could favorably
modulate TWA burden in patients with HF and demonstrate
the expected anti-arrhythmic results. Furthermore, VNS has been
shown to affect both atrial and ventricular electrophysiology
(Schwartz and Zipes, 2000; Ng et al., 2007; Stavrakis et al., 2020a),
and modulate both P-wave and T-wave alternans in various
patient populations.

It is known that the effect of VNS depends on the stimulation
parameters (Ardell et al., 2017) which may partly explain the
inconsistent results of clinical trials aimed at investigating the
utility of VNS in treating cardiovascular diseases (Premchand
et al., 2014; Zannad et al., 2015; Gold et al., 2016). Response
to VNS can be patient-specific, requiring the use of optimal
stimulation parameters tailored to elicit the ideal response from
each patient (Ardell et al., 2017). Since standard stimulation
frequencies are yet to be established, in our study we used
the LLTS frequencies (5 Hz and 20 Hz) used in clinical
trials investigating the effect of VNS in HF, covering a wide
physiological range, in an attempt to elucidate a potential
frequency dependent effect of LLTS on TWA modulation.
However, we observed that both 5 Hz and 20 Hz acute LLTS led
to a similar rise in TWA burden during sinus rhythm.

TWA burden was observed to be higher during atrial pacing at
faster HR, which is consistent with previous findings and known
restitution mediated mechanisms of TWA onset (Ng et al., 2007;
Merchant et al., 2012, 2013a; Kulkarni et al., 2019). Hence, the
lack of significant effects of LLTS on TWA burden during atrial
pacing compared to sinus rhythm could be attributed to higher
baseline levels of alternans. This indicates that the effects of LLTS
on TWA is HR dependent and consequently the parasympathetic
stimulation parameters would need to be chosen taking into
account the underlying patient-specific HR dynamics.

Clinical Implications
The distinct and significant modulation of TWA by acute LLTS,
in conjunction with the bimodal effect of LLTS on atrial alternans
(Kulkarni et al., 2021) demonstrates a possible pathway for
designing an anti-arrhythmic treatment strategy for patients
with ICM and HF based on parasympathetic stimulation. Given
that LLTS is associated with minimal risk, based on our prior
experience (Stavrakis et al., 2020b), such a treatment may
have important clinical implications. Moreover, short-term (1 h
daily) LLTS application has been shown to achieve long-lasting
antiarrhythmic effects (Stavrakis et al., 2020b), consistent with
the notion that the LLTS effects exhibit memory (Stavrakis
et al., 2020a). Nonetheless, the minimal duration of LLTS that
is required to affect clinical outcomes remains to be determined.
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This study provides insights for a more comprehensive trial
to evaluate the effects of chronic LLTS in patients susceptible
to ventricular tachy-arrhythmias, as well as to investigate the
potential of patient-specific stimulation strategies in evoking the
optimal response to LLTS.

Limitations
This study has several limitations. First, this was a pilot study in
a small patient cohort. Second, we chose to evaluate continuous
LLTS at only two frequencies, 5 Hz and 20 Hz, with a fixed
pulse width (200 µs), for a duration of 15 min. Third, the ideal
wash out period for LLTS is not known. We chose to limit the
sham periods to 5 min, in order to keep the duration of the
experimental protocol within reasonable time limits. Fourth, we
did not evaluate the effects of chronic LLTS on TWA; given
that LLTS could have a biphasic response, further validation is
required in a larger cohort to evaluate its chronic effects. Finally,
an investigation of the effects of LLTS on heart rate variability
dynamics could help provide a physiological assessment of the
autonomic modulation of cardiac arrhythmias.

CONCLUSION

Acute LLTS results in increased TWA burden during sinus
rhythm in patients with ICM and HF, and this effect is HR
dependent, with atrial pacing at 100 bpm resulting in elevated
TWA burden compared to sinus rhythm.
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